Low momentum hadrons

Jan T. Sobczyk

Wrocław University

Barcelona, July 16, 2015

Nucleons

In the Fermi gas model there are no knocked out nucleons with $p \ge k_F$ (k_F is Fermi momentum)

- detection of nucleons with $p \leq k_F$ points directly to physics beyond FG model

There is a lot of discussion about a size of MEC contribution to CC inclusive cross section

• a lot of excitement about Argoneut events back-to-back protons (in LAr a threshold for proton detection is $\sim 200 \text{ MeV/c}$ i.e. less than k_F for Argon).

Sample of events with 2 protons.

A search for MEC events

The goal is to seperate three contributions to CC0 π (defined by a primary interaction in the impulse approximation picture):

- CCQE
- π production and absorption
- MEC (two body current)

Muon information is not sufficient.

Clearly, the more information we have on final state nucleons more likely it is that a seperation can be done.

3/6

3

イロト イポト イヨト イヨト

Transparency

An interesting observable is proton nuclear transparency, a probability that a proton will reinteract.

On the horizontal axis: proton kinetic energy.

Low momentum protons are less likely to interact (Pauli blocking!) and carry more information about the process in which were produced.

4/6

Pion absorption

Low momentum nucleons can be used in pion absorption studies

a dominant mechanism is two body absorption:

$$\pi N \to \Delta, \qquad \Delta N \to NN.$$

- but more complicated mechanisms are likely to contribute as well
- in the past several interesting proton/deuteron multiplicity studies

Bellotti, Cavalli, Matteuzzi, Nuovo Cim. 18A (1973) 75

< ロ > < 同 > < 回 > < 回 >

Proton detection threshold is $T_p = 12$ MeV i.e. p = 150 MeV/c.

5/6

Validation of MC simulation tools

Information about low energy hadrons can be used in upgrades of MC events generators

TABLE 1. Data comparison with GENIE for proton multiplicity of μ +Np events for neutrinos in neutrino mode with statistical and preliminary systematic uncertainties.

Multiplicity	Genie Expectation	Genie % of Total	DATA	DATA % of Total
0p+µ	28±4	16%	15±3	14%
1p+µ	80±7	47%	51±10	48%
2p+µ	23±4	13.4%	28±6	26%
3p+µ	14±3	8.3%	13±3	12%
4p+µ	8±2	4.5%	0	0%
Total(including>4p)	172±10	-%	107±12	-%

TABLE 2. Same as Table 1 for antineutrinos in anti-neutrino mode.

Multiplicity	Genie Expectation	Genie % of Total	DATA	DATA % of Total
0p+µ	553±11	60%	422 ± 42	58%
1p+μ	160±6	17%	266±53	37%
2p+µ	68±4	7%	30±6	4%
3p+µ	50±3	5%	3±1	0.4%
4p+μ	32±3	4%	3±1	0.4%
Total(including>4p)	925±15	-%	727±68	-%

TABLE 3. Same as Table 1 for neutrinos in anti-neutrino mode.

Multiplicity	Genie Expectation	Genie % of Total	DATA	DATA % of Total
0p+µ	46±3	14%	60±12	23%
1p+µ	163±6	48%	154±31	59%
2p+µ	46±3	13.6%	33±7	13%
3p+µ	23±2	7%	9±2	3.5%
4p+µ	16±2	5%	4±1	1.5%
Total(including>4p)	337±9	-%	260 ± 34	-%

Argoneut/GENIE proton multiplicities comparison

Partyka, proceedings of NuInt12.

Problems with large multiplicities i.e. at low kinetic energies are clearly seen.

イロト イポト イヨト イヨト

6/6

э