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LBL concept

• The observable is the disappearance/appearance 
of events as function of the ν energy.

• We have to reconstruct the energy of the 
neutrinos!!!!!
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Cross-section problem
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• The number of events depends on the cross-section: 

• This is not so critical if we can determine the energy of the 
neutrino, since at the far detector

• and it cancels out in the ratio as function of energy:
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Cross-section problem
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• Since the neutrino energy is not monochromatic, we need to 
determine event by event the energy of the neutrino. 

• This estimation is not perfect, we have the problem that the cross-
section does not cancels out in the ratio. 

• The neutrino oscillations introduce differences in the flux spectrum 
and the ratio does not cancel the cross-sections. 
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Oscillation experiments require to know both
σ(Eν) & P(Eν|E’ν)

Both are related to cross-sections !!!!
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Cross-section problem
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How to measure the neutrino energy ? 

Low Energy ν’s  (≲2GeV)

• Eν relies on the lepton kinematics.

• channel identification is critical:

• Final State Interactions

•  hadron kinematics.

• Fermi momentum,  Pauli blocking 
and bound energy are relevant 
contributions.

Medium-high Energy  ν’s (≳ 3GeV)

• Eν = El + Ehadrons  with Ehadrons << El

• Hadronic energy depends on 
modelling of DIS and high mass 
resonances. 

• Hadronic energy depends on Final 
State Interactions.
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Cross-section problem
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Kinematics

• Only a fraction of the energy is 
visible.

• Rely on channel interaction id. 

• The visible energy is altered by 
the hadronic interactions and it 
depends on hadron nature. 
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The problem
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The problem
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• Present and future oscillation experiments cover a region full of 
reaction thresholds and sparse data.
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The shopping list 

• Future CP violation measurements with Long Base Line 
neutrino beams require “ideally” the measurement of νμ,  anti-
νμ, νe   and anti-νe

• between ~500 MeV and ~10 GeV,

• for (at least!) 4 nuclei: C, O, Fe and Ar. (Not all isoscalars!) 

• for ~10 exclusive channels: 

• QE, 1π0±, Νπ0±, DIS both CC and NC. 

• Require a precise determination of the energy of the 
neutrino for the dominant(s) channel(s) at each energy. 
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CCQE + 2p2h 
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The most urgent 
problem!!!
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The problem is that 
the Eν is wrongly 
reconstructed. 

2p2h and Eν
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Effect of multi-nucleon 
(2p2h) 

interactions in the neutrino 
energy reconstruction.

• Recon values (Eν)

• P(Eν|E´ν)
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Search for 2 proton
• LiqAr ArgoNeut (FNAL) has bubble chamber 

imaging capabilities to look into final states. 

• It has first indications of correlated final state 
protons.

• Spectral functions ? (~Initial state correlations) 

• 2p2h ? (~Final state correlations)

• Both ? 
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Effect of RPA 

• RPA model is based on pion capture by nuclei and NN 
interactions (both at very low q2). No process to tune it 
at higher values of q2 except electron/neutrino scattering. 

• RPA changes the acceptance of the events, reduces the 
cross-section in forward direction (low q2)  and increases 
in backward (high q2). 

• Systematics! 

• RPA calls for full acceptance near and far detectors (4π 
coverage). 
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Final state interactions
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Problem factorisation
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• Example:  events with μ-+π+ in the final state. 

• Topology is altered by FSI. 
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More on FSI...

• Hadrons outside the nucleus will keep interacting altering the 
event topology. 

• This is already part of the measurement program of  WA105 
but we need to measure exclusive channels and not only 
calorimetry.  
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This is already
a dominant systematic 

@ T2K 

Specific experiment 
(DUET) is being run 

to reduce it. 
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Monochromatic beam ? 
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Monochromatic beam
• Many of the problems in neutrino cross-section and 

neutrino oscillations comes from the reconstruction 
of the energy. 

• Imaging you know precisely the response function of a 
detector: 

• The oscillation result of the oscillation would be: 

• and the cross-section problem is reduced/vanished. 
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NuPrism
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Ideal xsect experiment 
• Design of a perfect neutrino cross-section detector: 

• 4π coverage

• very low energy hadrons and mesons thresholds and excellent PID for 
muon/proton/electron separation.

• Charge separation to separate neutrinos from antineutrinos. (B field)

• Variable target A including hydrogen. 

• Reduced external background (reduced mass around active target)

• Excellent control of beam systematics and variable beam spectra.

• In addition: 

• Improved theory to be able to extract the information from data.

• Electron scattering hadron production. 
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HPTPC experiment
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• TPC imaging capabilities. 

• Interactions in the same gas (no passive material). 

• Low momentum detected inside the TPC.  Large momentum done with tracker 
chambers or range detector.

• High pressure (~10 bars) to increase particle containment and # interactions. 

• It requires additional calorimeter for neutral energy containment. 

HPTPC

tracker or 
range 

detector

Ecal

Ecal

Ecal

⊗ B
A moving detector (“a la 

NuPrism”) or tuneable beam 
will help to reduce systematics.

A dream (?): a HPTPC 
filled with hydrogen 

and deuterium.
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PID
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