### Challenges of a Multi–Gas HP TPC: A personal view Thorsten Lux





# **Physics Wish List**

- Target for neutrinos between 500 MeV and 10 GeV => we need (some) mass

- Operation with different nuclei (Ar, He, Ne, ...)
- Excellent pattern reconstruction => distinguish CCQE e.g. from CC1 $\pi$  / detect hadrons with low momentum (100 MeV/c)
- Good reconstruction of the neutrino energy

=> TPC might provide most of this but some challenges have to be overcome

### **Detector Concept**



Implications => We need a thin wall high pressure TPC!

# Gas Wish List

Gas should be as close as possible to oxygen or H2O
Provide as much mass as possible -> high pressure
"right" stopping power for FSI particles -> able to
reconstruct track but particle should be stopped inside TPC
should allow some gain at high pressure (5-10 bar)
"fast" at low voltages -> electronics/ HV stability
Not too large diffusion to reconstruct well the tracks
non-flammable/non-toxic/non-corrossive
as cheap as possible

#### Compromises will be necessary!

# 3 Gas Scenarios

I consider three options for the TPC gas:

- 1. Pure noble gases
- 2. Noble gases + some quencher
- 3. More exotic gas (mixtures)



### Noble Gases:

|                               | Не           | Ne           | Ar         |
|-------------------------------|--------------|--------------|------------|
| Density [kg/m3]               | 0.17         | 0.9          | 1.7        |
| Volume [m3] (100 kg @ 10 bar) | 56           | 12           | 6          |
| Price                         | Ľ            | $\downarrow$ | $\uparrow$ |
| HV insulation                 | $\downarrow$ | _            | $\uparrow$ |
| Stopping power                | Small        | Medium       | Large      |
| High gain @ high pressure     | $\uparrow$   | $\uparrow$   | -12        |

### Gain in Pure Noble Gases:



- Measurements performed with GEMs but should be the similar behavior for MM (to be confirmed by R&D studies).
- Maximal gain limited for Argon at high pressures
- Scintillation light in pure noble gases (He,Ne: ~15.5 eV, Ar: 9.7 eV) => Effect on detector material?



#### Pure Noble Gases: Drift Velocity



#### Pure Noble Gases: Transverse Diffusion



#### Pure Noble Gases: Longitudinal Diffusion



#### Pure Noble Gases: Pressure Dependency



Pure argon

### Pure Noble Gases: Stopping Power + dE/dx

Let us assume MIP-like and protons with 100 MeV/c (~ 5 MeV kinetic energy) at 10 bar:

|    | MIP       | proton (100 MeV, | proton (100 MeV/c) |  |  |
|----|-----------|------------------|--------------------|--|--|
|    | e- per cm | CSDA range [cm]  | dE/dx [MeV/cm]     |  |  |
| He | 80        | ~19.5            | ~0.25              |  |  |
| Ne | 430       | ~5.3             | ~0.95              |  |  |
| Ar | 940       | ~3.5             | ~1.4               |  |  |
|    |           |                  |                    |  |  |

Large differences between the gases but one could play also with the pressure ...

#### Pure Noble Gases: Summary

- A He HP TPC would have to be huge to achieve enough mass
- pure noble gases are quite slow at low E fields
- diffusion relatively large for Ar and Ne (pressure and possibly higher B field would help)
- Ne, He promise good gains at high pressures, Ar not (needs confirmation from R&D study)

• in the case of Ne and He probably for cost reasons a closed gas system is needed

### Noble Gas + Some Quencher:

Adding a small amount of quencher might help:

- to improve gain stability/ increase maximal achievable gain
- to make the gas faster
- to reduce the diffusion
- might avoid vacuum operation for a closed gas system (ALICE approach)

On the other hand:

- affects cross section measurements -> which amount of quencher is acceptable? 1% in mass?
- increases sensitivity to electron attachment

#### Possible quencher gases:

N2\*, CO2, CH4, CF4, i-C4H10, ... \* almost not avoidable in a closed gas system due to outgassing, adding it makes the gas properties more stable (following the idea of Rob Veenhof for the ALICE TPC gas mixture)

#### Some Magboltz Simulations:

- Quencher: N2 and CO2 (more in the future)
- 1% in mass:
  - ≻ He: CO2=0.1%, N2=0.15%
  - ≻ Ne: CO2=0.5%, N2=0.7%
  - ➤ Ar: CO2=1%, N2=1.4%
- B=0.2 T
- P=5 bar



#### Some Magboltz Simulations:





#### 3-Body Attachment:

Loss of electrons during the drift due to attachment to oxygen: 1)  $e^- + O_2 \rightarrow O_2^{*-}$ 2)  $O_2^{*-} + X \rightarrow O_2^{-} + X$ 

X is a molecule which carries away the excitation energy of the oxygen. Efficiency depends on molecule.

| Gas      | Attachment coefficient [1/(µs*bar²)] |
|----------|--------------------------------------|
| CH4      | ~170                                 |
| i-C4H10  | ~2300                                |
| CO2      | ~2300                                |
| N2       | ~50 (?)                              |
| CF4      | ?                                    |
| Ar/Ne/He | 0                                    |

∞p<sup>2</sup> => minimize quencher at high pressures! => Should be fine with mass limit!

#### More Exotic Gas (Mixtures)

#### Alain's idea: Let us construct H20!

Measure with CO2, CH4 and iC4H10:

```
\frac{1}{2} CO2+13/6 CH4 - 2/3 iC4H10 = H2O
```

Some problems:

- 1) Performance quite unknown especially at HP
- 2) CO2 and iC4H10 highly attaching
- 3) iC4H10, CH4 as also H2 highly flammable => would require extreme safety regulations if possible at all

### Not saying that impossible but very challenging and requires even more R&D!

### Readout Technology

The never ending story: MM, GEMs or something else? What gain is necessary? Pad size? Pads or strips?

MMs: Well established T2K technology but we cannot use T2K gas

GEMs: Multi-stage amplification perhaps allows more stable operation?

THGEM: Do we need the fine pitch of MM/GEMs? Certainly robust

RPWELLS, ...?

No judgment, we need to define requirements and possible gas mixtures and do R&D studies ...

### Electronics

Measuring with different gases, requires very flexible electronics.

T2K electronics good starting point but (assuming up to 1 m drift) ...

• pure Ar and Ne and also some mixtures would need peaking times above 2000 ns => ballistic effects

• slow drift and small diffusion in some gases (He, CO2, ...) might lead to only one or 2 time bin information => no pulse shape

• large dE/dx differences between muons and protons and differences between noble gases + large differences in diffusion => dynamic range issue?

Conclusion: One electronic for different gases challenging!

# Gas System

#### Challenges:

- Stability of low quencher quantities over time?
- Oxygen: ppt to very few ppm; H2O: < few ppm
- Filling of the chamber for Ne/He mixtures
- Recovery system for expensive gases

#### 3 options:

- Open loop (T2K): simple, cheap but only possible with Ar (gas costs)
- $\bullet$  Closed loop (ALICE): more complex and more expensive but necessary with Ne(/He) and gases as CH4/iC4H10



### Vessel

Challenges for the vessel:

- suitable for high pressure of 10 bar + margin
- thin to not stop e.g. photons before ECAL
- possibly also suitable for vacuum
- Feedthroughs for ??? thousands of readout channels



# Field Cage

Obviously the field cage should be also light but this should not be the problem ...

The problem is the HV insulation of the cathode!

HV @ cathode easily could reach 100 kV + margin = 150 kV!

Solid insulator contradicts thin walls + is delicate  $\dots$  spark might damage it permanently  $\dots$ 

Insulation through HP gas is another option but factor 2 differences between gases (He ~ 10-15 cm, Ar ~5-7 cm @ 10 bar)



### **Personal Conclusions**

- from the detector point of view a fascinating project
- using the same TPC with different gases challenging
- only one target nucleus or at least only Ne + Ar would simplify things a lot
- "exotic" fill gases not excluded but huge R&D necessary
- for sure not cheap
- large and well defined R&D program with input from physics necessary