The Darkside Program for Dark Matter Searches

Cristia Princet Co

Universidad Au Ba Februa

- Cristiano Galbiati
- Princeton University
 - Colloquium
 - IFAE
- Universidad Autonoma de Barcelona
 - Barcelona
 - February 19, 2016

The DarkSide Program

- The DarkSide-50 direct dark matter search:
 - A liquid argon TPC in stable operation having matched or surpassed all basic requirements
 - Thanks to Fermilab, first dark matter detector operating with isotopically enhanced target
 - Dark matter search operating in background-free mode

An Ambitious Discovery Program

- Ambitious program for discovery of heavy dark matter
- Raising the bar: 0.1 ton×yr \Rightarrow 1000 ton×yr
- Complementary to LHC and raising its energy scale:
 - 500 GeV \Rightarrow 1 TeV \Rightarrow 10 TeV \Rightarrow ...
- "Zero Background" absolutely necessary
- Strong investment in ⁴⁰Ar by INFN, NSF, and Fermilab

Liquid Argon TPC 153 kg ³⁹Ar-Depleted Underground Argon Target

4 m Diameter 30 Tonnes Liquid Scintillator Neutron Veto

10 m Height 11 m Diameter 1,000 Tonnes Water Cherenkov Muon Veto

Liquid Argon TPC 153 kg ³⁹Ar-Depleted Underground Argon Target

4 m Diameter 30 Tonnes Liquid Scintillator Neutron Veto

10 m Height 11 m Diameter 1,000 Tonnes Water Cherenkov Muon Veto

DarkSide-50 Milestones

- Oct 2013: three detectors commissioned, cryostat filled with AAr
- Oct 2014: WIMP search results with 1422 kg d AAr exposure
- Fall 2014: Calibration campaign
- Winter 2014: Refurbishment of LSV, ¹⁴C rate from 150 kHz to 0.3 kHz
- Apr 2015: cryostat drained and filled with 153 kg of UAr
- Oct 2015: WIMP search results with 2616 kg d UAr exposure

2015) 12345 510 - $\bullet \bullet$ arXiv UAr Ъ kg 6 9 2

"Zero Background" condition (<0.1 background events) necessary to conduct discovery program

What are the backgrounds for large scale, high mass dark matter searches?

Scatters of *pp* solar neutrinos on electrons

Radioactive noble gases (³⁹Ar)

Elastic Scatters of pp Solar Neutrinos on Electrons

- 200 events/tonnexyr in ROI
- 200,000 background events @neutrino floor
- Defeated in argon thanks to β/γ rejection better than $1 \div 1.6 \times 10^7$

additional active isotopic depletion and higher light yield

1,000 tonne×yr (UAr/DAr)

³⁹Ar Rejection

1,422 kg×day (@AAr)

x1400 (³⁹Ar AAr/³⁹Ar UAr)

5.5 tonne×yr (UAr)

Based on what we know today, can a depleted argon experiment be background free at the scale of 1000 tonnes×yr?

Based on what we know today, can a xenon experiment be background free at the scale of 1000 tonnesxyr?

Meeting Basic Requirements Pays Off

- Light Yield: > 8 p.e./keV
- Electron meanlife: >>5 ms
- ³⁹Ar contamination: 0.7 mBq/kg, factor 1,400 reduction res to atmosphere
- ²²²Rn contamination: <2 μBq/kg

Impact of Basic Research on Industry

Air Products and Helium: A Success Story

- stream
- extraction plant
- Production started in June 2015 accounts for 15% of the total production by the US govt at the National Helium Reservoir

 Based on research for underground argon funded by US NSF, the discovery of a sustained fraction of helium in the Kinder Morgan CO₂

An investment by Air Products resulted in the most modern helium

Cryogenic Distillation Column at Fermilab

Goals of Future Program Procurement of 30 tonnes by 2020 in support of DarkSide-20k

- - 100 tonnexyr background free exposure for dark matter
- Procurement of 300 tonnes by 2030 in support of Argo
 - 1000 tonnexyr background free exposure for dark matter
 - Precision solar neutrino measurements
- Possible procurement of larger quantities ... maybe to enable solar and supernova relic neutrino physics in DUNE?

Urania

- about 100 kg/d from the Cortez, CO source
- production with the same plant

• The goal is to build a plant capable of extracting UAr at a rate of

 Cooperation with Air Products and utilization of a premium stream from their He extraction plant may result in a significant boost of

Argon Purification Unit

- A set of elemental process units:
 - The first cryogenic column removes the bulk of CO2 and CH₄
 - The Pressure Swing Adsorption columns removes the traces of CO2 and CH₄
 - The second cryogenic column removes N₂ and He
 - The third cryogenic column refines the argon-rich stream detectorgrade argon

Urania to Aria to LNGS

Aria

- The purpose of Aria is the reduction of ³⁹Ar in the target of the DarkSide detectors
- The method of isotopic separation is cryogenic distillation
- della Sardegna

The project is supported by INFN, US NSF, and Regione Autonoma

Isotope Vapor Pressure

- and Scoles in the 1960's
- Detailed measurements of the $p(^{36}Ar)/p(^{40}Ar)$ relative volatility
- developed by Fieschi and Terzi
- equilibrium stages

• First measurements of relative volatility of argon isotopes by Boato

General model to calculate the vapor pressure ratio of argon isotope

• Small difference in ratio of volatilities O(10⁻³) requires thousands of

Seruci Wells

Seruci in Sardinia an excellent location

DarkSide-20k

20-tonnes fiducial dark matter detector start of operations at LNGS within 2020 100 tonnexyear background-free search for dark matter

20-	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	3
DS-20k																			
ARGO																			

300-tonnes depleted argon detector start of operations at LNGS within 2025 1,000 tonnexyear background-free search for dark matter precision measurement of solar neutrinos

Argo

DarkSide-20k Institutions БелГ S G AUGUSTANA S Black Hills State University ETH iemat JOINT INSTITUTE Centro de Investigaciones JINR Eidgenössische Technische Hochschule Zürich Energéticas, Medioambientales FONDAZIONE BRUNO KESSLER FOR NUCLEAR y Tecnológicas Swiss Federal Institute of Technology Zurich RESEARCH Institute of High Energy Physics INFN Chinese Academy of Sciences Institut Pluridisciplinaire Hubert CURIEN PARIS Sunded . Pacific Northwest NATIONAL LABORATORY UNIVERSITÀ DEGLI STUD OF MASS ŝ Trento Institute for TIFPA **Fundamental Physics** and Applications

Photosensors for LAr Detectors INFN LFoundry VET NOV TES TAM EN TVM FONDAZIONE Trento Institute for TIFPA **Fundamental Physics** and Applications

- - Much lower radioactivity
 - Light yield increase by 50%
 - Greater stability
 - Ten-fold reduction of costs per unit area vs. R11065-xx
 - Capability of large-scale production at LFoundry

 A new program of FBK/TIFPA and LFoundry under the guidance of INFN and Princeton: complete replacement of Hamamatsu cryogenic PMTs

Requirements for DarkSide

- PDE larger than 40% at 420 nm, signicant improvement over the 34% QE of the photocathode of the Hamamatsu R11065 PMTs used in DarkSide-50;
- 2. Dark count rate (DCR) lower than 1 Hz/mm², as higher rates would impact both the trigger efficiency and the pulse shape discrimination power;
- 3. Total correlated noise probability (TCNP) (crosstalk + afterpulsing) lower than 40%;
- Inactive gap between devices smaller than 200 μm to maximize the tiling efficiency;
- 5. Photo-electron gain larger than 1M and a signal duration of less than 300 ns; and
- 6. Overall surface 14 m^2 .

Measurement Setup @ LNGS

4x4 mm² SiPMs

Measured quantities:

- correlated
- Photo Detection Efficiency

INFN Istituto Nazionale di Fisica Nucleare

Cables and optical fiber feedthrough

Noise: primary and

from 40 K to 300 K!

Devices Under Test

Parameters (@ room T)	NUV-HD Std. field	NUV-HD Low-field
Cell Size	25 µm	25 µm
Fill Factor	73%	73%
Breakdown Voltage	26.5 V	32 V
Max PDE	50%	50%
Peak PDE λ	410 nm	410 nm
DCR (20°C)	< 150 kHz/mm ²	< 150 kHz/mm ²
Direct CT (~ps)	25%	25%
Del. CT + AP (~ns)	2%	2%

decreasing temperature.

The mean free path of the carriers in the high-field region increases with

DCR / mm² vs. Temperature

FONDAZIONE BRUNO KESSLER

Signal Shape

negligible at cryogenic temperature.

The exponential tail of the single cell response (SCR) becomes almost

The growth of the microcell recharge time constant helps reducing the afterpulsing at low temperature.

Standard field

Low-field

The direct crosstalk probability has only minor variations with respect to temperature.

Standard field

Direct CT vs. Temp

Slightly lower gain and triggering probability at the same overvoltage.

Low-field

We used a pulsed, low-level light source and the p(0) method to calculate the PDE.

PDE for different NUV-HD LF cell sizes.

INFN stituto Nazional di Fisica Nucleare

TPB emission between 400 and 450 nm

PDE variations with temperature

Tile concepts (1)

3.23 cm

> 4mm pitch in x and y > 85% (packaging) fill factor

~ 200µm active-to-active distance

Tile concepts (2)

Fill factor: 89%

All channels connected together on one front-end. Tile illuminated with laser. Integration time = 6us.

Single-photon spectrum visible!! - low noise - very uniform behavior of the SiPMs!!

First Test on 10cm² tile at 80K

Alberto Gola – NSS 2015

The End