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Motivation

The first collider signals of a new heavy resonance can typically be 
explained by a variety of explicit models.

Important to find an approach allowing to extract key information 
about the underlying physics without case by case study of all the 
explicit UV model.

To do so, one can construct a simple unified framework which:

1) describes only one new state with respect to the SM
2) captures the predictions of a large set of explicit UV models
3) reflects the key structural features of the underlying dynamics 
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Motivation

Given no signal so far, we assume the simplest possibility - a new 
heavy spin-zero ElectroWeak singlet.

The stated problem is difficult to solve in full generality, we limit 
ourselves to a large subclass of motivated TeV-scale new physics - 
Composite Higgs scenarios. 

Our construction is a minimal add-on to SILH* - the simplified 
framework describing the composite Higgs scenarios below the scale 
of other composite resonances.

*Giudice,Grojean,Pomarol,Rattazzi [0703164]
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Framework

Assumptions:

• S is a part of a new strong sector,

• new resonance S has a spin 0

• S is an EW singlet

- strong dynamics produces PNGB Higgs

- Goldstone sym breaking and top mass from partial 
compositeness

• S is the second lightest composite state

- rest of SM fields are elementary
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II. EFT FOR STRONGLY COUPLED UV COMPLETIONS

We start with the models which assume an existence of a new strongly coupled dynamics, which confines at
a certain scale f , not very far above the electroweak scale, and produces a set of composite resonances, one of
which is S. Such situation can generically occur in some theories attempting to address the gauge hierarchy
problem, such as for instance the Composite Higgs (CH) models [2, 3]. Following the idea presented in the
introduction, we will describe the e↵ect of the rest of strong dynamics using a version of naive dimensional
analysis (NDA) similar to those developed in [7, 8, 20], with a cuto↵ scale m⇢ and a coupling g⇢ ⇠ 1 � 4⇡,
related by m⇢ ⇠ g⇢f . m⇢ and g⇢ correspond to a typical mass and a coupling of the composite resonances.
Matching of these parameters to the parameters appearing in weakly coupled UV completions will be discussed
in Section III. Thus any operator generated by UV physics and involving S, the Higgs boson, SM fermions,
vectors or derivatives will have the following form
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where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
S, H, fermions, vector bosons or momenta insertions. Possible reasons for a loop suppression in the operator
include for instance need for elementary fields running in loops (see text below) or Minimal Coupling (MC)
assumption in the sense of [7, 8]. Nf is an enhancement factor of the loop-level operators, reflecting the
multiplicity of states running in a loop. Later on in Section III we will comment more on this point. The
power counting formula (II.1) only refers to the operators generated by the strong dynamics, hence does not
apply for instance to the elementary fields kinetic terms.

An important ingredient of the power counting is the assumptions about symmetry properties of the under-
lying theory. A simple example which will be useful in the following is a shift symmetry of the filed S, weakly
broken by an interaction with an elementary gauge field A. In such case any operator violating S ! S+const
has to involve the parameter which breaks the shift symmetry, i.e. the gauge field coupling strength, be
it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
assumed to be elementary. This type of explicit breaking, usually referred to as Partial Compositeness mech-
anism, is also responsible for generating the SM fermions masses. Hence the largest breaking of the Goldstone
symmetry is typically proportional to the top quark Yukawa coupling. A key parameter of CH models is a
ratio of the electroweak symmetry breaking scale v = 246 GeV to the strong sector global symmetry breaking
scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 39], hence
pointing at a certain level of tuning.

III. MATCHING TO LARGE-N THEORIES AND N-SITE MODELS

In this section we simplistically describe two well-known classes of models, which obey the power counting
rules presented in Section II. A reader not interested in technical details behind the formula (II.1) can skip
this section. The first class is confining SU(N) or SO(N) gauge theories with large N and a number of hyper-
fermion generations Nf . For this kind of theories one can identify a regime in which all orders in the gauge

coupling gS expansion of the amplitudes become of the same size, namely N g2
S

16⇡2 ⇠ 1. Hence the size of whole
infinite sums can be estimated from their scaling with N , which is the same as for the leading order diagram.

• Mass spectrum 

cutoff, typical mass of composite states

typical coupling of composite states  
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coupling gS expansion of the amplitudes become of the same size, namely N g2
S

16⇡2 ⇠ 1. Hence the size of whole
infinite sums can be estimated from their scaling with N , which is the same as for the leading order diagram.

• Mass spectrum 

cutoff, typical mass of composite states

typical coupling of composite states  

M a new scalar S, either a PNGB or accidentally 
lighter than other composite states

SO(6) ! SO(5) SO(5)⇥ U(1) ! SO(4)e.g.                             and
produce 5=4+1 PNGB’s
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16⇡2 ⇠ 1. Hence the size of whole
infinite sums can be estimated from their scaling with N , which is the same as for the leading order diagram.

• Mass spectrum 

cutoff, typical mass of composite states

typical coupling of composite states  

EW tuning

M

mh

a new scalar S, either a PNGB or accidentally 
lighter than other composite states

PNGB Higgs, with a small mass provided by the 
Goldstone symmetry breaking

SO(6) ! SO(5) SO(5)⇥ U(1) ! SO(4)e.g.                             and
produce 5=4+1 PNGB’s
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it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
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1) when < S > is >> f , (1 + S/f)F 2 is una↵ected while the other S couplings are dumped.
S >> f is the case in some well-known theories. Can it be implemented here? better suited for
weakly-coupled case (NDA for S potential predicts S ⇠ f and also predicts that S couples to
everything, hence < S > substitutes f)? are there implications for those well-known theories?

2) was it my problem before, when trying to use a tadpole for CH, that there was no way for
some enhancement?
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which is S. Such situation can generically occur in some theories attempting to address the gauge hierarchy
problem, such as for instance the Composite Higgs (CH) models [2, 3]. Following the idea presented in the
introduction, we will describe the e↵ect of the rest of strong dynamics using a version of naive dimensional
analysis (NDA) similar to those developed in [7, 8, 24], with a cuto↵ scale m⇢ and a coupling g⇢ ⇠ 1 � 4⇡,
related by m⇢ ⇠ g⇢f . m⇢ and g⇢ correspond to a typical mass and a coupling of the composite resonances.
Matching of these parameters to the parameters appearing in weakly coupled UV completions will be discussed
in Section III. Thus any operator generated by UV physics and involving S, the Higgs boson, SM fermions,
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where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
S, H, fermions, vector bosons or momenta insertions. Possible reasons for a loop suppression in the operator
include for instance need for elementary fields running in loops (see text below) or Minimal Coupling (MC)
assumption in the sense of [7, 8]. Nf is an enhancement factor of the loop-level operators, reflecting the
multiplicity of states running in a loop. Later on in Section III we will comment more on this point. The
power counting formula (II.1) only refers to the operators generated by the strong dynamics, hence does not
apply for instance to the elementary fields kinetic terms.

An important ingredient of the power counting is the assumptions about symmetry properties of the under-
lying theory. A simple example which will be useful in the following is a shift symmetry of the filed S, weakly
broken by an interaction with an elementary gauge field A. In such case any operator violating S ! S+const
has to involve the parameter which breaks the shift symmetry, i.e. the gauge field coupling strength, be
it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
assumed to be elementary. This type of explicit breaking, usually referred to as Partial Compositeness mech-
anism, is also responsible for generating the SM fermions masses. Hence the largest breaking of the Goldstone
symmetry is typically proportional to the top quark Yukawa coupling. A key parameter of CH models is a
ratio of the electroweak symmetry breaking scale v = 246 GeV to the strong sector global symmetry breaking
scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 43], hence
pointing at a certain level of tuning.

1) when < S > is >> f , (1 + S/f)F 2 is una↵ected while the other S couplings are dumped.
S >> f is the case in some well-known theories. Can it be implemented here? better suited for
weakly-coupled case (NDA for S potential predicts S ⇠ f and also predicts that S couples to
everything, hence < S > substitutes f)? are there implications for those well-known theories?

2) was it my problem before, when trying to use a tadpole for CH, that there was no way for
some enhancement?
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where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
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scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 43], hence
pointing at a certain level of tuning.
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where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
S, H, fermions, vector bosons or momenta insertions. Possible reasons for a loop suppression in the operator
include for instance need for elementary fields running in loops (see text below) or Minimal Coupling (MC)
assumption in the sense of [7, 8]. Nf is an enhancement factor of the loop-level operators, reflecting the
multiplicity of states running in a loop. Later on in Section III we will comment more on this point. The
power counting formula (II.1) only refers to the operators generated by the strong dynamics, hence does not
apply for instance to the elementary fields kinetic terms.

An important ingredient of the power counting is the assumptions about symmetry properties of the under-
lying theory. A simple example which will be useful in the following is a shift symmetry of the filed S, weakly
broken by an interaction with an elementary gauge field A. In such case any operator violating S ! S+const
has to involve the parameter which breaks the shift symmetry, i.e. the gauge field coupling strength, be
it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
assumed to be elementary. This type of explicit breaking, usually referred to as Partial Compositeness mech-
anism, is also responsible for generating the SM fermions masses. Hence the largest breaking of the Goldstone
symmetry is typically proportional to the top quark Yukawa coupling. A key parameter of CH models is a
ratio of the electroweak symmetry breaking scale v = 246 GeV to the strong sector global symmetry breaking
scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 43], hence
pointing at a certain level of tuning.

1) when < S > is >> f , (1 + S/f)F 2 is una↵ected while the other S couplings are dumped.
S >> f is the case in some well-known theories. Can it be implemented here? better suited for
weakly-coupled case (NDA for S potential predicts S ⇠ f and also predicts that S couples to
everything, hence < S > substitutes f)? are there implications for those well-known theories?

2) was it my problem before, when trying to use a tadpole for CH, that there was no way for
some enhancement?
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Shift Symmetry and Partial Compositeness

‣ Goldstone symmetry can require a presence of symmetry breaking 
sources
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natural to assume that S, if realised as a PNGB, shares the shift symmetry breaking source with the

Higgs. Since the shift-breaking interactions couple elementary SM states to the Higgs boson, they

are also responsible for generating the SM masses. The couplings to the heaviest SM fermion, the

top quark, hence induce the largest breaking of the shift symmetry. Therefore all the shift symmetry

breaking operators have to either explicitly contain the SM fields or be suppressed by a loop involving

the elementary top quark. This loop suppression can be estimated from dimensional arguments as

Ncy2t /(4⇡)
2 or Ncytg⇢/(4⇡)2, where yt is the SM top quark Yukawa coupling and Nc is a number

of colors. Both values can be realized in the explicit models [13], but in the following we will stick

to the first option since it gives the most distinct results with respect to the non-PNGB case. This

discussion can be formalized by adding the following factors to the power counting formula (2.1)

elementary states :
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�
#/L


yq q̄q
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�
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gAA
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�
#A

, (2.3)

where yq is the SM Yukawa coupling of a fermion q, gA is a coupling strength of the SM gauge

field A, and #q̄q,#A,#/L are respectively the numbers of fermion bilinears, gauge fields and the

loop suppression factors required to break the S or H shift symmetry. The parametric form of the

coe�cient again follows from dimensional analysis, while the presence of the Yukawa coupling in

front of the fermion bilinear follows from the need to reproduce the right form of the SM Yukawa

interactions yq q̄Hq.

Using the formulas (2.1),(2.3) we can, for example, reconstruct the parametric form of the

one-loop PNGB Higgs potential

Vh = m2

⇢f
2
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|H|4
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where ↵ and � are dimensionless coe�cient which are expected to be of order 1. By minimizing it

we obtain

v =

✓
↵

2�

◆ 1
2

f and m2

h ' �
Ncy2t
2⇡2

v2

f2

m2
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where v is the Higgs VEV and mh its mass 4. The key parameter of CH models is a ratio of the

electroweak symmetry breaking scale v = 246 GeV and the strong sector global symmetry breaking

scale f , ⇠ = v2/f2, which controls the size of the Higgs couplings deformations with respect to

the SM predictions [14, 15] and is already bounded to be ⇠ . 0.2 [16, 17]. In order to achieve

a phenomenologically required separation v ⌧ f one has to tune the coe�cients ↵ and � of the

potential. In addition the � coe�cient may be required to be tuned to lower values to provide a

su�ciently low Higgs mass. If S is a PNGB as well, its potential would have the same parametric

form as the one of Eq. (2.4), but there is no a priori reason for any tuning to take place. Therefore

one expects to have the following hierarchy between the Higgs boson mass, the S mass M and the

masses of other composite states

PNGB S with PC breaking: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ :
Ncy2t
(4⇡)2

: 1 . (2.6)

4Notice that the Higgs field value is not proportional to the symmetry breaking parameters because in the absence

of external breaking there is no Higgs potential, a Higgs VEV is simply not fixed and can take any value, i.e. one

should not expect that v ! 0 for yt ! 0.
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elementary. It is rather natural to assume that S, if realised as a PNGB, shares the shift symmetry

breaking source with the Higgs. Since the shift-breaking interactions couple elementary SM states

to the Higgs boson, they are also responsible for the SM states mass generation. The couplings to

the heaviest SM fermion, the top quark, hence induce the largest breaking of the shift symmetry.

Therefore all the shift symmetry breaking operators have to either explicitly contain the SM fields or

be suppressed by a loop involving the elementary top quark. This loop suppression can be estimated

from dimensional arguments as Ncy2t /(4⇡)
2 or Ncytg⇢/(4⇡)2, where yt is the SM top quark Yukawa

coupling and Nc = 3. Both values can be realized in the explicit models [13], but in the following we

will stick to the first option since it gives the most distinct results with respect to the non-PNGB

case. This discussion can be formalized by adding the following factors to the power counting

formula (2.1)

elementary states :
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where yq is the SM Yukawa coupling of a fermion q, gA is a coupling strength of the SM gauge field

A, and #q̄q,#A,#/L are respectively the numbers of fermion bilinears, gauge fields and the loop

suppression factors required to break S or H shift symmetry. The parametric form of the coe�cient

again follows from dimensional analysis, while the presence of the Yukawa coupling in front of the

fermion bilinear follows from the need to reproduce the right form of the SM Yukawa interactions

yq q̄Hq.

We will now discuss the first implications of Eqs. (2.1),(2.3). Using these formulas we can

reconstruct the parametric form of the PNGB Higgs potential
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where v is the Higgs VEV and mh its mass 4. The key parameter of CH models is a ratio of the

electroweak symmetry breaking scale v = 246 GeV and the strong sector global symmetry breaking

scale f , ⇠ = v2/f2, which controlls the size of the Higgs couplings deformations with respect to

the SM predictions [14, 15] and is already bounded to be ⇠ . 0.2 [16, 17]. In order to achieve

a phenomenologically required separation v ⌧ f one has to tune the coe�cients ↵ and � of the

potential. In addition the � coe�cient may be required to be tuned to lower values to provide a

su�ciently low Higgs mass. If S is a PNGB as well, its potential would have the same parametric

form as the one of Eq. (2.4), but this time there is no a priori reason for some tuning to take place.

Therefore one expects to have the following hierarchy between the Higgs boson mass, S mass M

and the masses of other composite states

PNGB S with PC breaking: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ :
Ncy2t
(4⇡)2

: 1 . (2.6)

4Notice that the Higgs field value is not proportional to the symmetry breaking parameters because in the absence

of external breaking there is no Higgs potential, a Higgs VEV is simply not fixed and can take any value, i.e. one

should not expect that v ! 0 for yt ! 0.
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natural to assume that S, if realised as a PNGB, shares the shift symmetry breaking source with the

Higgs. Since the shift-breaking interactions couple elementary SM states to the Higgs boson, they

are also responsible for generating the SM masses. The couplings to the heaviest SM fermion, the

top quark, hence induce the largest breaking of the shift symmetry. Therefore all the shift symmetry

breaking operators have to either explicitly contain the SM fields or be suppressed by a loop involving

the elementary top quark. This loop suppression can be estimated from dimensional arguments as

Ncy2t /(4⇡)
2 or Ncytg⇢/(4⇡)2, where yt is the SM top quark Yukawa coupling and Nc is a number

of colors. Both values can be realized in the explicit models [13], but in the following we will stick

to the first option since it gives the most distinct results with respect to the non-PNGB case. This

discussion can be formalized by adding the following factors to the power counting formula (2.1)
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where yq is the SM Yukawa coupling of a fermion q, gA is a coupling strength of the SM gauge

field A, and #q̄q,#A,#/L are respectively the numbers of fermion bilinears, gauge fields and the

loop suppression factors required to break the S or H shift symmetry. The parametric form of the

coe�cient again follows from dimensional analysis, while the presence of the Yukawa coupling in

front of the fermion bilinear follows from the need to reproduce the right form of the SM Yukawa

interactions yq q̄Hq.

Using the formulas (2.1),(2.3) we can, for example, reconstruct the parametric form of the

one-loop PNGB Higgs potential
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where v is the Higgs VEV and mh its mass 4. The key parameter of CH models is a ratio of the

electroweak symmetry breaking scale v = 246 GeV and the strong sector global symmetry breaking

scale f , ⇠ = v2/f2, which controls the size of the Higgs couplings deformations with respect to

the SM predictions [14, 15] and is already bounded to be ⇠ . 0.2 [16, 17]. In order to achieve

a phenomenologically required separation v ⌧ f one has to tune the coe�cients ↵ and � of the

potential. In addition the � coe�cient may be required to be tuned to lower values to provide a

su�ciently low Higgs mass. If S is a PNGB as well, its potential would have the same parametric

form as the one of Eq. (2.4), but there is no a priori reason for any tuning to take place. Therefore

one expects to have the following hierarchy between the Higgs boson mass, the S mass M and the

masses of other composite states

PNGB S with PC breaking: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ :
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: 1 . (2.6)

4Notice that the Higgs field value is not proportional to the symmetry breaking parameters because in the absence

of external breaking there is no Higgs potential, a Higgs VEV is simply not fixed and can take any value, i.e. one

should not expect that v ! 0 for yt ! 0.
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‣shift symmetry breaking by anomalies

Shift symmetry and Anomalies

In case of non-PNGB generic S for the mass hierarchy one would naturally expect

generic S: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ : 1 : 1 . (2.7)

This last estimate tells us that in order to make our EFT work, S has to be accidentally lighter than

the cuto↵ m⇢, with the degree of tuning ⇠ M2/m2

⇢ defining the accuracy of our approach.

Anomaly-Mediated Shift Symmetry Breaking

The PC-induced breaking of the PNGB S shift symmetry is however not the only possibility and

moreover it is not strictly necessary. Indeed, since S, unlike H, is not essential for the generation of

the masses of SM fermions, it does not have to couple to them. For instance the shift symmetry of

the CP-odd S can be violated by anomalies associated to the SM gauge fields or the gauge fields of

the new strong interactions
Nfg2X
(4⇡)2

S

f
Xµ⌫X̃

µ⌫ , (2.8)

where Xµ⌫ is a gauge field strength tensor and Nf is an anomaly coe�cient roughly corresponding

to the number of strong sector fermion flavours generating the anomaly. The anomalous interactions

with the SM gauge fields (2.8) however can not generate a su�ciently large S mass [18]. In order

to make S heavier than the Higgs boson one could either again invoke the PC breaking, or assume

that M comes from the anomaly related to the new strong dynamics. In the latter case in analogy

with ⌘0 of QCD [19], we obtain M2 ' (Nf/N)m2

⇢, where N is a number of colors of the underlying

strong dynamics. Using the relation 1/N ⇠ g2⇢/(4⇡)
2, predicted for large-N theories (see the next

section), the expression for the S mass can be rewritten as M2 ' (Nfg2⇢/(4⇡)
2)m2

⇢, so the estimate

for the mass hierarchy in this case is

PNGB S with anom. breaking: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ :
Nfg2⇢
(4⇡)2

: 1 . (2.9)

The discussed coe�cients of the S couplings to gauge bosons and for the mass term di↵er from the

generic estimates of Eqs. (2.1), (2.3) g2A/g
2

⇢Aµ⌫Ãµ⌫S/f and m2

⇢S
2 by a factor Nfg2⇢/(4⇡)

2, which

we thus include in our power counting rule as a suppression related to anomalous breaking. Notice

that Nf factors appearing in di↵erent anomalous couplings and in the expression for the mass are

in general independent.

UV Selection Rules

So far we have discussed selection rules connected to symmetry breaking. In addition to this some

of the operators can appear suppressed even without a transparent relation to the EFT symmetries.

Two types of such a suppression present in large-N and N-site theories will be described in the

following two sections. They can a↵ect the couplings of S to the SM gauge bosons or the Higgs

field, leading to an additional loop factor Nfg2⇢/(4⇡)
2 where Nf is an e↵ective number of composite

flavours.
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II. EFT FOR STRONGLY COUPLED UV COMPLETIONS

We start with the models which assume an existence of a new strongly coupled dynamics, which confines at
a certain scale f , not very far above the electroweak scale, and produces a set of composite resonances, one of
which is S. Such situation can generically occur in some theories attempting to address the gauge hierarchy
problem, such as for instance the Composite Higgs (CH) models [2, 3]. Following the idea presented in the
introduction, we will describe the e↵ect of the rest of strong dynamics using a version of naive dimensional
analysis (NDA) similar to those developed in [7, 8, 24], with a cuto↵ scale m⇢ and a coupling g⇢ ⇠ 1 � 4⇡,
related by m⇢ ⇠ g⇢f . m⇢ and g⇢ correspond to a typical mass and a coupling of the composite resonances.
Matching of these parameters to the parameters appearing in weakly coupled UV completions will be discussed
in Section III. Thus any operator generated by UV physics and involving S, the Higgs boson, SM fermions,
vectors or derivatives will have the following form
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(II.2)

where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
S, H, fermions, vector bosons or momenta insertions. Possible reasons for a loop suppression in the operator
include for instance need for elementary fields running in loops (see text below) or Minimal Coupling (MC)
assumption in the sense of [7, 8]. Nf is an enhancement factor of the loop-level operators, reflecting the
multiplicity of states running in a loop. Later on in Section III we will comment more on this point. The
power counting formula (II.1) only refers to the operators generated by the strong dynamics, hence does not
apply for instance to the elementary fields kinetic terms.

An important ingredient of the power counting is the assumptions about symmetry properties of the under-
lying theory. A simple example which will be useful in the following is a shift symmetry of the filed S, weakly
broken by an interaction with an elementary gauge field A. In such case any operator violating S ! S+const
has to involve the parameter which breaks the shift symmetry, i.e. the gauge field coupling strength, be
it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
assumed to be elementary. This type of explicit breaking, usually referred to as Partial Compositeness mech-
anism, is also responsible for generating the SM fermions masses. Hence the largest breaking of the Goldstone
symmetry is typically proportional to the top quark Yukawa coupling. A key parameter of CH models is a
ratio of the electroweak symmetry breaking scale v = 246 GeV to the strong sector global symmetry breaking
scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 43], hence
pointing at a certain level of tuning.

1) when < S > is >> f , (1 + S/f)F 2 is una↵ected while the other S couplings are dumped.
S >> f is the case in some well-known theories. Can it be implemented here? better suited for
weakly-coupled case (NDA for S potential predicts S ⇠ f and also predicts that S couples to
everything, hence < S > substitutes f)? are there implications for those well-known theories?

2) was it my problem before, when trying to use a tadpole for CH, that there was no way for
some enhancement?

S

H

H

S
S

�

�

�

�

Figure 1. Example of diagrams generating S|H|2 and S|DµH|2 couplings (left diagram) and SFµ⌫Fµ⌫

coupling at loop level in terms of hypothetical hyperquark constituents of S (center) and in terms of their
bound states (right).

additional gluon line to the diagram containing one quark and one antiquark (which form a meson)

brings exactly the factor N
g2S

16⇡2 ⇠ 1 with respect to the initial diagram without an extra gluon. This

means that all the diagrams with any number of additional gluon propagator insertions have at most

the same size as the leading order diagram, hence their sum has to have the same scaling with N as

the LO contribution, which can be easily estimated. Using this features one can estimate the size

of di↵erent n-point functions [22–24], e↵ectively summing over the infinite series of expansion in gS ,

and reconstruct the power counting formula (2.1) for the interaction of meson-like states, given that

the identification

g⇢ =
4⇡p
N

(2.12)

for the meson-meson coupling strength is made. One can also show that the mass of mesons m⇢

is independent on N . Notice that glueballs and barions behave di↵erently and our power counting

applies to mesons only.

Any process whose diagram includes a closed quark line has to be suppressed by N with respect

to those which do not include it. This can be seen from the mentioned fact that in the regime

N
g2S

16⇡2 ⇠ 1 additional gluon loops do not bring any suppression, hence a loop of quarks, which carry

one color index less, is down by a factor of N . From the identification (2.12), a 1/N suppression

equals to
g2⇢

16⇡2 , corresponding to a loop factor in the formula (2.10). An example of this suppression

at work for QCD physics is the Zweig rule. Analogous suppression can show up for instance in the

coupling S|H|2 if S and H consist of di↵erent types of quarks (see left graph on Fig. 1). The diagram

describing their interactions has to contain two closed fermionic lines, i.e. one more with respect to

the diagram describing interactions of one type of mesons, e.g. S3.

The closed fermionic lines can however be enhanced by a multiplicity of quarks, hence a factor

Nf in Eq. (2.10). Staying within a region of applicability of large-N expansion, Nf < N , which also

ensures confinement, one can conclude that the scalings of meson masses and couplings (2.12) with

N identified above are not a↵ected by Nf [25]. As an example let us consider the coupling of S to

SM gauge fields strengths when the quark constituents of S are SM-neutral. In order to couple S to

SM gauge fields one needs to produce a pair of other quark flavour, charged under SM. This brings

a 1/N suppression but at the same time an enhancement by a number of quark flavours running in

this additional loop. This example is represented graphically on the central graph of Fig. 1, note

the analogy with a process induced by a loop of mesons charged under SM (right graph of Fig. 1).
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UV selection rules

Known classes of explicit UV completions allow for additional 
selection rules, dictated by the internal structure of the UV 
completion. We will consider two possible completions: 

• large-N theories 
• N-site models (~5D)
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‣“loop” suppression in large-N theories for non-PNGB S

UV selection rules: Large-N

At this point we can summarize the power counting in a single expression
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, (2.10)

where #/L is a number of loops required to break the shift symmetry in case it is broken by Partial

Compositeness (PC), #L stands for a number of loops required by the UV selection rules or the

shift symmetry breaking by anomalies, and #i corresponds to the number of insertions of external

fields or momenta. The power counting formula (2.10) only refers to the operators generated by

the strong dynamics, hence does not apply for instance to the elementary fields kinetic terms. This

power counting rule completes those developed in Refs [8, 20, 21] for the Composite Higgs in what

concerns an additional state S, and di↵ers in what concerns its generality, i.e. we have made certain

simplifications to make a more transparent connection to the physics relevant for our discussion.

After having defined the basic ingredients of the EFT we will comment on its validity. Clearly,

we will have to limit our EFT description to operators of a certain energy dimension. In order to

keep the e↵ect of other operators negligible, we need a sizeable separation between M and m⇢. As

we have seen the PNGB S can be su�ciently lighter than m⇢, while for a generic S the separation

can be a result of an accident or some unknown features of the underlying strong dynamics leading

to deviations from our power counting estimates. However we want to point out that in case of

observation of a new resonance of the type we are considering, the first data will not allow for a

precise determination of the resonance properties. Instead one will only be su�ciently sensitive to

the selection rules, which define the order of magnitude of di↵erent operator coe�cients. Hence

even with a not extremely large M -m⇢ separation our framework can allow to determine the main

features of the underlying theory and move to the construction of explicit UV completions of the

most appropriate type.

2.2 Matching to Large-N Theories

In this and the following subsections we give a short overview of the two well-known approaches

used to describe the behaviour of bound states of strongly coupled dynamics, which lead to the

power counting rule (2.10) and allow to understand it better. The first approach is to use a 1/N

expansion of the amplitudes in confining SU(N) or SO(N) gauge theories with large N , containing

Nf quark flavours transforming in the fundamental representation of a gauge group (we will call

the new states quarks and gluons for simplicity and will never refer to SM quarks or gluons in this

section). The bound states, which we are interested in, form when the coupling between the quarks

and gluons gS becomes strong, so that the perturbative expansion in gS can not be used for their

description. Nevertheless one can identify a strongly coupled regime in which the amplitudes acquire

a well-defined scaling with N , which can be used to estimate their relative size. This happens for a

certain value of gS , namely when it satisfies

N
g2S

16⇡2

⇠ 1 , (2.11)

hence one has to rely on the assumption that this regime plays the dominant role in the dynamics

of the bound states. Let us consider a specific example of meson-like bound states (which can

correspond to H and S) to understand how the 1/N expansion works. In this case adding an
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Figure 1. Example of diagrams generating S|H|2 and S|DµH|2 couplings (left diagram) and SFµ⌫Fµ⌫

coupling at loop level in terms of hypothetical hyperquark constituents of S (center) and in terms of their
bound states (right).

additional gluon line to the diagram containing one quark and one antiquark (which form a meson)

brings exactly the factor N
g2S

16⇡2 ⇠ 1 with respect to the initial diagram without an extra gluon. This

means that all the diagrams with any number of additional gluon propagator insertions have at most

the same size as the leading order diagram, hence their sum has to have the same scaling with N as

the LO contribution, which can be easily estimated. Using this features one can estimate the size

of di↵erent n-point functions [22–24], e↵ectively summing over the infinite series of expansion in gS ,

and reconstruct the power counting formula (2.1) for the interaction of meson-like states, given that

the identification

g⇢ =
4⇡p
N

(2.12)

for the meson-meson coupling strength is made. One can also show that the mass of mesons m⇢

is independent on N . Notice that glueballs and barions behave di↵erently and our power counting

applies to mesons only.

Any process whose diagram includes a closed quark line has to be suppressed by N with respect

to those which do not include it. This can be seen from the mentioned fact that in the regime

N
g2S

16⇡2 ⇠ 1 additional gluon loops do not bring any suppression, hence a loop of quarks, which carry

one color index less, is down by a factor of N . From the identification (2.12), a 1/N suppression

equals to
g2⇢

16⇡2 , corresponding to a loop factor in the formula (2.10). An example of this suppression

at work for QCD physics is the Zweig rule. Analogous suppression can show up for instance in the

coupling S|H|2 if S and H consist of di↵erent types of quarks (see left graph on Fig. 1). The diagram

describing their interactions has to contain two closed fermionic lines, i.e. one more with respect to

the diagram describing interactions of one type of mesons, e.g. S3.

The closed fermionic lines can however be enhanced by a multiplicity of quarks, hence a factor

Nf in Eq. (2.10). Staying within a region of applicability of large-N expansion, Nf < N , which also

ensures confinement, one can conclude that the scalings of meson masses and couplings (2.12) with

N identified above are not a↵ected by Nf [25]. As an example let us consider the coupling of S to

SM gauge fields strengths when the quark constituents of S are SM-neutral. In order to couple S to

SM gauge fields one needs to produce a pair of other quark flavour, charged under SM. This brings

a 1/N suppression but at the same time an enhancement by a number of quark flavours running in

this additional loop. This example is represented graphically on the central graph of Fig. 1, note

the analogy with a process induced by a loop of mesons charged under SM (right graph of Fig. 1).
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‣“loop” suppression in large-N theories for non-PNGB S

At this point we can summarize the power counting in a single expression
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where #/L is a number of loops required to break the shift symmetry in case it is broken by Partial

Compositeness (PC), #L stands for a number of loops required by the UV selection rules or the

shift symmetry breaking by anomalies, and #i corresponds to the number of insertions of external

fields or momenta. The power counting formula (2.10) only refers to the operators generated by

the strong dynamics, hence does not apply for instance to the elementary fields kinetic terms. This

power counting rule completes those developed in Refs [8, 20, 21] for the Composite Higgs in what

concerns an additional state S, and di↵ers in what concerns its generality, i.e. we have made certain

simplifications to make a more transparent connection to the physics relevant for our discussion.

After having defined the basic ingredients of the EFT we will comment on its validity. Clearly,

we will have to limit our EFT description to operators of a certain energy dimension. In order to

keep the e↵ect of other operators negligible, we need a sizeable separation between M and m⇢. As

we have seen the PNGB S can be su�ciently lighter than m⇢, while for a generic S the separation

can be a result of an accident or some unknown features of the underlying strong dynamics leading

to deviations from our power counting estimates. However we want to point out that in case of

observation of a new resonance of the type we are considering, the first data will not allow for a

precise determination of the resonance properties. Instead one will only be su�ciently sensitive to

the selection rules, which define the order of magnitude of di↵erent operator coe�cients. Hence

even with a not extremely large M -m⇢ separation our framework can allow to determine the main

features of the underlying theory and move to the construction of explicit UV completions of the

most appropriate type.

2.2 Matching to Large-N Theories

In this and the following subsections we give a short overview of the two well-known approaches

used to describe the behaviour of bound states of strongly coupled dynamics, which lead to the

power counting rule (2.10) and allow to understand it better. The first approach is to use a 1/N

expansion of the amplitudes in confining SU(N) or SO(N) gauge theories with large N , containing

Nf quark flavours transforming in the fundamental representation of a gauge group (we will call

the new states quarks and gluons for simplicity and will never refer to SM quarks or gluons in this

section). The bound states, which we are interested in, form when the coupling between the quarks

and gluons gS becomes strong, so that the perturbative expansion in gS can not be used for their

description. Nevertheless one can identify a strongly coupled regime in which the amplitudes acquire

a well-defined scaling with N , which can be used to estimate their relative size. This happens for a

certain value of gS , namely when it satisfies

N
g2S

16⇡2

⇠ 1 , (2.11)

hence one has to rely on the assumption that this regime plays the dominant role in the dynamics

of the bound states. Let us consider a specific example of meson-like bound states (which can

correspond to H and S) to understand how the 1/N expansion works. In this case adding an
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Figure 1. Example of diagrams generating S|H|2 and S|DµH|2 couplings (left diagram) and SFµ⌫Fµ⌫

coupling at loop level in terms of hypothetical hyperquark constituents of S (center) and in terms of their
bound states (right).

additional gluon line to the diagram containing one quark and one antiquark (which form a meson)

brings exactly the factor N
g2S

16⇡2 ⇠ 1 with respect to the initial diagram without an extra gluon. This

means that all the diagrams with any number of additional gluon propagator insertions have at most

the same size as the leading order diagram, hence their sum has to have the same scaling with N as

the LO contribution, which can be easily estimated. Using this features one can estimate the size

of di↵erent n-point functions [22–24], e↵ectively summing over the infinite series of expansion in gS ,

and reconstruct the power counting formula (2.1) for the interaction of meson-like states, given that

the identification

g⇢ =
4⇡p
N

(2.12)

for the meson-meson coupling strength is made. One can also show that the mass of mesons m⇢

is independent on N . Notice that glueballs and barions behave di↵erently and our power counting

applies to mesons only.

Any process whose diagram includes a closed quark line has to be suppressed by N with respect

to those which do not include it. This can be seen from the mentioned fact that in the regime

N
g2S

16⇡2 ⇠ 1 additional gluon loops do not bring any suppression, hence a loop of quarks, which carry

one color index less, is down by a factor of N . From the identification (2.12), a 1/N suppression

equals to
g2⇢

16⇡2 , corresponding to a loop factor in the formula (2.10). An example of this suppression

at work for QCD physics is the Zweig rule. Analogous suppression can show up for instance in the

coupling S|H|2 if S and H consist of di↵erent types of quarks (see left graph on Fig. 1). The diagram

describing their interactions has to contain two closed fermionic lines, i.e. one more with respect to

the diagram describing interactions of one type of mesons, e.g. S3.

The closed fermionic lines can however be enhanced by a multiplicity of quarks, hence a factor

Nf in Eq. (2.10). Staying within a region of applicability of large-N expansion, Nf < N , which also

ensures confinement, one can conclude that the scalings of meson masses and couplings (2.12) with

N identified above are not a↵ected by Nf [25]. As an example let us consider the coupling of S to

SM gauge fields strengths when the quark constituents of S are SM-neutral. In order to couple S to

SM gauge fields one needs to produce a pair of other quark flavour, charged under SM. This brings

a 1/N suppression but at the same time an enhancement by a number of quark flavours running in

this additional loop. This example is represented graphically on the central graph of Fig. 1, note

the analogy with a process induced by a loop of mesons charged under SM (right graph of Fig. 1).
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mass hierarchy in non-PNGB S case:In case of non-PNGB generic S for the mass hierarchy one would naturally expect

generic S: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ : 1 : 1 . (2.7)

This last estimate tells us that in order to make our EFT work, S has to be accidentally lighter than

the cuto↵ m⇢, with the degree of tuning ⇠ M2/m2

⇢ defining the accuracy of our approach.

Anomaly-Mediated Shift Symmetry Breaking

The PC-induced breaking of the PNGB S shift symmetry is however not the only possibility and

moreover it is not strictly necessary. Indeed, since S, unlike H, is not essential for the generation of

the masses of SM fermions, it does not have to couple to them. For instance the shift symmetry of

the CP-odd S can be violated by anomalies associated to the SM gauge fields or the gauge fields of

the new strong interactions
Nfg2X
(4⇡)2

S

f
Xµ⌫X̃

µ⌫ , (2.8)

where Xµ⌫ is a gauge field strength tensor and Nf is an anomaly coe�cient roughly corresponding

to the number of strong sector fermion flavours generating the anomaly. The anomalous interactions

with the SM gauge fields (2.8) however can not generate a su�ciently large S mass [18]. In order

to make S heavier than the Higgs boson one could either again invoke the PC breaking, or assume

that M comes from the anomaly related to the new strong dynamics. In the latter case in analogy

with ⌘0 of QCD [19], we obtain M2 ' (Nf/N)m2

⇢, where N is a number of colors of the underlying

strong dynamics. Using the relation 1/N ⇠ g2⇢/(4⇡)
2, predicted for large-N theories (see the next

section), the expression for the S mass can be rewritten as M2 ' (Nfg2⇢/(4⇡)
2)m2

⇢, so the estimate

for the mass hierarchy in this case is

PNGB S with anom. breaking: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ :
Nfg2⇢
(4⇡)2

: 1 . (2.9)

The discussed coe�cients of the S couplings to gauge bosons and for the mass term di↵er from the

generic estimates of Eqs. (2.1), (2.3) g2A/g
2

⇢Aµ⌫Ãµ⌫S/f and m2

⇢S
2 by a factor Nfg2⇢/(4⇡)

2, which

we thus include in our power counting rule as a suppression related to anomalous breaking. Notice

that Nf factors appearing in di↵erent anomalous couplings and in the expression for the mass are

in general independent.

UV Selection Rules

So far we have discussed selection rules connected to symmetry breaking. In addition to this some

of the operators can appear suppressed even without a transparent relation to the EFT symmetries.

Two types of such a suppression present in large-N and N-site theories will be described in the

following two sections. They can a↵ect the couplings of S to the SM gauge bosons or the Higgs

field, leading to an additional loop factor Nfg2⇢/(4⇡)
2 where Nf is an e↵ective number of composite

flavours.
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‣“loop” suppression in large-N theories for non-PNGB S
2

II. EFT FOR STRONGLY COUPLED UV COMPLETIONS

We start with the models which assume an existence of a new strongly coupled dynamics, which confines at
a certain scale f , not very far above the electroweak scale, and produces a set of composite resonances, one of
which is S. Such situation can generically occur in some theories attempting to address the gauge hierarchy
problem, such as for instance the Composite Higgs (CH) models [2, 3]. Following the idea presented in the
introduction, we will describe the e↵ect of the rest of strong dynamics using a version of naive dimensional
analysis (NDA) similar to those developed in [7, 8, 24], with a cuto↵ scale m⇢ and a coupling g⇢ ⇠ 1 � 4⇡,
related by m⇢ ⇠ g⇢f . m⇢ and g⇢ correspond to a typical mass and a coupling of the composite resonances.
Matching of these parameters to the parameters appearing in weakly coupled UV completions will be discussed
in Section III. Thus any operator generated by UV physics and involving S, the Higgs boson, SM fermions,
vectors or derivatives will have the following form
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(II.1)

where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
S, H, fermions, vector bosons or momenta insertions. Possible reasons for a loop suppression in the operator
include for instance need for elementary fields running in loops (see text below) or Minimal Coupling (MC)
assumption in the sense of [7, 8]. Nf is an enhancement factor of the loop-level operators, reflecting the
multiplicity of states running in a loop. Later on in Section III we will comment more on this point. The
power counting formula (II.1) only refers to the operators generated by the strong dynamics, hence does not
apply for instance to the elementary fields kinetic terms.

An important ingredient of the power counting is the assumptions about symmetry properties of the under-
lying theory. A simple example which will be useful in the following is a shift symmetry of the filed S, weakly
broken by an interaction with an elementary gauge field A. In such case any operator violating S ! S+const
has to involve the parameter which breaks the shift symmetry, i.e. the gauge field coupling strength, be
it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
assumed to be elementary. This type of explicit breaking, usually referred to as Partial Compositeness mech-
anism, is also responsible for generating the SM fermions masses. Hence the largest breaking of the Goldstone
symmetry is typically proportional to the top quark Yukawa coupling. A key parameter of CH models is a
ratio of the electroweak symmetry breaking scale v = 246 GeV to the strong sector global symmetry breaking
scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 43], hence
pointing at a certain level of tuning.

1) when < S > is >> f , (1 + S/f)F 2 is una↵ected while the other S couplings are dumped.
S >> f is the case in some well-known theories. Can it be implemented here? better suited for
weakly-coupled case (NDA for S potential predicts S ⇠ f and also predicts that S couples to
everything, hence < S > substitutes f)? are there implications for those well-known theories?

2) was it my problem before, when trying to use a tadpole for CH, that there was no way for
some enhancement?
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At this point we can summarize the power counting in a single expression
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where #/L is a number of loops required to break the shift symmetry in case it is broken by Partial

Compositeness (PC), #L stands for a number of loops required by the UV selection rules or the

shift symmetry breaking by anomalies, and #i corresponds to the number of insertions of external

fields or momenta. The power counting formula (2.10) only refers to the operators generated by

the strong dynamics, hence does not apply for instance to the elementary fields kinetic terms. This

power counting rule completes those developed in Refs [8, 20, 21] for the Composite Higgs in what

concerns an additional state S, and di↵ers in what concerns its generality, i.e. we have made certain

simplifications to make a more transparent connection to the physics relevant for our discussion.

After having defined the basic ingredients of the EFT we will comment on its validity. Clearly,

we will have to limit our EFT description to operators of a certain energy dimension. In order to

keep the e↵ect of other operators negligible, we need a sizeable separation between M and m⇢. As

we have seen the PNGB S can be su�ciently lighter than m⇢, while for a generic S the separation

can be a result of an accident or some unknown features of the underlying strong dynamics leading

to deviations from our power counting estimates. However we want to point out that in case of

observation of a new resonance of the type we are considering, the first data will not allow for a

precise determination of the resonance properties. Instead one will only be su�ciently sensitive to

the selection rules, which define the order of magnitude of di↵erent operator coe�cients. Hence

even with a not extremely large M -m⇢ separation our framework can allow to determine the main

features of the underlying theory and move to the construction of explicit UV completions of the

most appropriate type.

2.2 Matching to Large-N Theories

In this and the following subsections we give a short overview of the two well-known approaches

used to describe the behaviour of bound states of strongly coupled dynamics, which lead to the

power counting rule (2.10) and allow to understand it better. The first approach is to use a 1/N

expansion of the amplitudes in confining SU(N) or SO(N) gauge theories with large N , containing

Nf quark flavours transforming in the fundamental representation of a gauge group (we will call

the new states quarks and gluons for simplicity and will never refer to SM quarks or gluons in this

section). The bound states, which we are interested in, form when the coupling between the quarks

and gluons gS becomes strong, so that the perturbative expansion in gS can not be used for their

description. Nevertheless one can identify a strongly coupled regime in which the amplitudes acquire

a well-defined scaling with N , which can be used to estimate their relative size. This happens for a

certain value of gS , namely when it satisfies

N
g2S

16⇡2

⇠ 1 , (2.11)

hence one has to rely on the assumption that this regime plays the dominant role in the dynamics

of the bound states. Let us consider a specific example of meson-like bound states (which can

correspond to H and S) to understand how the 1/N expansion works. In this case adding an
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Figure 1. Example of diagrams generating S|H|2 and S|DµH|2 couplings (left diagram) and SFµ⌫Fµ⌫

coupling at loop level in terms of hypothetical hyperquark constituents of S (center) and in terms of their
bound states (right).

additional gluon line to the diagram containing one quark and one antiquark (which form a meson)

brings exactly the factor N
g2S

16⇡2 ⇠ 1 with respect to the initial diagram without an extra gluon. This

means that all the diagrams with any number of additional gluon propagator insertions have at most

the same size as the leading order diagram, hence their sum has to have the same scaling with N as

the LO contribution, which can be easily estimated. Using this features one can estimate the size

of di↵erent n-point functions [22–24], e↵ectively summing over the infinite series of expansion in gS ,

and reconstruct the power counting formula (2.1) for the interaction of meson-like states, given that

the identification

g⇢ =
4⇡p
N

(2.12)

for the meson-meson coupling strength is made. One can also show that the mass of mesons m⇢

is independent on N . Notice that glueballs and barions behave di↵erently and our power counting

applies to mesons only.

Any process whose diagram includes a closed quark line has to be suppressed by N with respect

to those which do not include it. This can be seen from the mentioned fact that in the regime

N
g2S

16⇡2 ⇠ 1 additional gluon loops do not bring any suppression, hence a loop of quarks, which carry

one color index less, is down by a factor of N . From the identification (2.12), a 1/N suppression

equals to
g2⇢

16⇡2 , corresponding to a loop factor in the formula (2.10). An example of this suppression

at work for QCD physics is the Zweig rule. Analogous suppression can show up for instance in the

coupling S|H|2 if S and H consist of di↵erent types of quarks (see left graph on Fig. 1). The diagram

describing their interactions has to contain two closed fermionic lines, i.e. one more with respect to

the diagram describing interactions of one type of mesons, e.g. S3.

The closed fermionic lines can however be enhanced by a multiplicity of quarks, hence a factor

Nf in Eq. (2.10). Staying within a region of applicability of large-N expansion, Nf < N , which also

ensures confinement, one can conclude that the scalings of meson masses and couplings (2.12) with

N identified above are not a↵ected by Nf [25]. As an example let us consider the coupling of S to

SM gauge fields strengths when the quark constituents of S are SM-neutral. In order to couple S to

SM gauge fields one needs to produce a pair of other quark flavour, charged under SM. This brings

a 1/N suppression but at the same time an enhancement by a number of quark flavours running in

this additional loop. This example is represented graphically on the central graph of Fig. 1, note

the analogy with a process induced by a loop of mesons charged under SM (right graph of Fig. 1).
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mass hierarchy in non-PNGB S case:In case of non-PNGB generic S for the mass hierarchy one would naturally expect

generic S: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ : 1 : 1 . (2.7)

This last estimate tells us that in order to make our EFT work, S has to be accidentally lighter than

the cuto↵ m⇢, with the degree of tuning ⇠ M2/m2

⇢ defining the accuracy of our approach.

Anomaly-Mediated Shift Symmetry Breaking

The PC-induced breaking of the PNGB S shift symmetry is however not the only possibility and

moreover it is not strictly necessary. Indeed, since S, unlike H, is not essential for the generation of

the masses of SM fermions, it does not have to couple to them. For instance the shift symmetry of

the CP-odd S can be violated by anomalies associated to the SM gauge fields or the gauge fields of

the new strong interactions
Nfg2X
(4⇡)2

S

f
Xµ⌫X̃

µ⌫ , (2.8)

where Xµ⌫ is a gauge field strength tensor and Nf is an anomaly coe�cient roughly corresponding

to the number of strong sector fermion flavours generating the anomaly. The anomalous interactions

with the SM gauge fields (2.8) however can not generate a su�ciently large S mass [18]. In order

to make S heavier than the Higgs boson one could either again invoke the PC breaking, or assume

that M comes from the anomaly related to the new strong dynamics. In the latter case in analogy

with ⌘0 of QCD [19], we obtain M2 ' (Nf/N)m2

⇢, where N is a number of colors of the underlying

strong dynamics. Using the relation 1/N ⇠ g2⇢/(4⇡)
2, predicted for large-N theories (see the next

section), the expression for the S mass can be rewritten as M2 ' (Nfg2⇢/(4⇡)
2)m2

⇢, so the estimate

for the mass hierarchy in this case is

PNGB S with anom. breaking: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ :
Nfg2⇢
(4⇡)2

: 1 . (2.9)

The discussed coe�cients of the S couplings to gauge bosons and for the mass term di↵er from the

generic estimates of Eqs. (2.1), (2.3) g2A/g
2

⇢Aµ⌫Ãµ⌫S/f and m2

⇢S
2 by a factor Nfg2⇢/(4⇡)

2, which

we thus include in our power counting rule as a suppression related to anomalous breaking. Notice

that Nf factors appearing in di↵erent anomalous couplings and in the expression for the mass are

in general independent.

UV Selection Rules

So far we have discussed selection rules connected to symmetry breaking. In addition to this some

of the operators can appear suppressed even without a transparent relation to the EFT symmetries.

Two types of such a suppression present in large-N and N-site theories will be described in the

following two sections. They can a↵ect the couplings of S to the SM gauge bosons or the Higgs

field, leading to an additional loop factor Nfg2⇢/(4⇡)
2 where Nf is an e↵ective number of composite

flavours.
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II. EFT FOR STRONGLY COUPLED UV COMPLETIONS

We start with the models which assume an existence of a new strongly coupled dynamics, which confines at
a certain scale f , not very far above the electroweak scale, and produces a set of composite resonances, one of
which is S. Such situation can generically occur in some theories attempting to address the gauge hierarchy
problem, such as for instance the Composite Higgs (CH) models [2, 3]. Following the idea presented in the
introduction, we will describe the e↵ect of the rest of strong dynamics using a version of naive dimensional
analysis (NDA) similar to those developed in [7, 8, 24], with a cuto↵ scale m⇢ and a coupling g⇢ ⇠ 1 � 4⇡,
related by m⇢ ⇠ g⇢f . m⇢ and g⇢ correspond to a typical mass and a coupling of the composite resonances.
Matching of these parameters to the parameters appearing in weakly coupled UV completions will be discussed
in Section III. Thus any operator generated by UV physics and involving S, the Higgs boson, SM fermions,
vectors or derivatives will have the following form
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where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
S, H, fermions, vector bosons or momenta insertions. Possible reasons for a loop suppression in the operator
include for instance need for elementary fields running in loops (see text below) or Minimal Coupling (MC)
assumption in the sense of [7, 8]. Nf is an enhancement factor of the loop-level operators, reflecting the
multiplicity of states running in a loop. Later on in Section III we will comment more on this point. The
power counting formula (II.1) only refers to the operators generated by the strong dynamics, hence does not
apply for instance to the elementary fields kinetic terms.

An important ingredient of the power counting is the assumptions about symmetry properties of the under-
lying theory. A simple example which will be useful in the following is a shift symmetry of the filed S, weakly
broken by an interaction with an elementary gauge field A. In such case any operator violating S ! S+const
has to involve the parameter which breaks the shift symmetry, i.e. the gauge field coupling strength, be
it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
assumed to be elementary. This type of explicit breaking, usually referred to as Partial Compositeness mech-
anism, is also responsible for generating the SM fermions masses. Hence the largest breaking of the Goldstone
symmetry is typically proportional to the top quark Yukawa coupling. A key parameter of CH models is a
ratio of the electroweak symmetry breaking scale v = 246 GeV to the strong sector global symmetry breaking
scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 43], hence
pointing at a certain level of tuning.

1) when < S > is >> f , (1 + S/f)F 2 is una↵ected while the other S couplings are dumped.
S >> f is the case in some well-known theories. Can it be implemented here? better suited for
weakly-coupled case (NDA for S potential predicts S ⇠ f and also predicts that S couples to
everything, hence < S > substitutes f)? are there implications for those well-known theories?

2) was it my problem before, when trying to use a tadpole for CH, that there was no way for
some enhancement?
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II. EFT FOR STRONGLY COUPLED UV COMPLETIONS

We start with the models which assume an existence of a new strongly coupled dynamics, which confines at
a certain scale f , not very far above the electroweak scale, and produces a set of composite resonances, one of
which is S. Such situation can generically occur in some theories attempting to address the gauge hierarchy
problem, such as for instance the Composite Higgs (CH) models [2, 3]. Following the idea presented in the
introduction, we will describe the e↵ect of the rest of strong dynamics using a version of naive dimensional
analysis (NDA) similar to those developed in [7, 8, 24], with a cuto↵ scale m⇢ and a coupling g⇢ ⇠ 1 � 4⇡,
related by m⇢ ⇠ g⇢f . m⇢ and g⇢ correspond to a typical mass and a coupling of the composite resonances.
Matching of these parameters to the parameters appearing in weakly coupled UV completions will be discussed
in Section III. Thus any operator generated by UV physics and involving S, the Higgs boson, SM fermions,
vectors or derivatives will have the following form
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where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
S, H, fermions, vector bosons or momenta insertions. Possible reasons for a loop suppression in the operator
include for instance need for elementary fields running in loops (see text below) or Minimal Coupling (MC)
assumption in the sense of [7, 8]. Nf is an enhancement factor of the loop-level operators, reflecting the
multiplicity of states running in a loop. Later on in Section III we will comment more on this point. The
power counting formula (II.1) only refers to the operators generated by the strong dynamics, hence does not
apply for instance to the elementary fields kinetic terms.

An important ingredient of the power counting is the assumptions about symmetry properties of the under-
lying theory. A simple example which will be useful in the following is a shift symmetry of the filed S, weakly
broken by an interaction with an elementary gauge field A. In such case any operator violating S ! S+const
has to involve the parameter which breaks the shift symmetry, i.e. the gauge field coupling strength, be
it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
assumed to be elementary. This type of explicit breaking, usually referred to as Partial Compositeness mech-
anism, is also responsible for generating the SM fermions masses. Hence the largest breaking of the Goldstone
symmetry is typically proportional to the top quark Yukawa coupling. A key parameter of CH models is a
ratio of the electroweak symmetry breaking scale v = 246 GeV to the strong sector global symmetry breaking
scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 43], hence
pointing at a certain level of tuning.

1) when < S > is >> f , (1 + S/f)F 2 is una↵ected while the other S couplings are dumped.
S >> f is the case in some well-known theories. Can it be implemented here? better suited for
weakly-coupled case (NDA for S potential predicts S ⇠ f and also predicts that S couples to
everything, hence < S > substitutes f)? are there implications for those well-known theories?

2) was it my problem before, when trying to use a tadpole for CH, that there was no way for
some enhancement?
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FIG. 1: Example of diagrams generating the SFµ⌫F
µ⌫ coupling at loop level, in terms of hypothetical hyperquark

constituents of S (on the left) and in terms of their bound states (on the right).

III. MATCHING TO LARGE-N THEORIES AND N-SITE MODELS

In this section we simplistically describe two well-known classes of models, which obey the power counting
rules presented in Section II. A reader not interested in technical details behind the formula (II.1) can skip
this section. The first class is confining SU(N) or SO(N) gauge theories with large N and a number of hyper-
fermion generations Nf . For this kind of theories one can identify a regime in which all orders in the gauge

coupling gS expansion of the amplitudes become of the same size, namely N g2
S

16⇡2 ⇠ 1. Hence the size of whole
infinite sums can be estimated from their scaling with N , which is the same as for the leading order diagram.
In each order of the gS expansion the leading diagrams are those which di↵er from the LO one by insertions
of gluon propagators, as the gluons carry two color indices and hence can bring maximal N -enhancement.
Assuming that this regime plays a dominant role in the dynamics of the bound states (hyperhadrons), one can
use the N -dependence to extract the quantitative information about the behaviour of di↵erent hyperhadron
states, including their masses and interaction strengths. The couplings of hypermeson states obey

g⇢ ' 4⇡p
N

(III.1)

while their mass m⇢ is independent on N [14–16]. From the chosen notation is obvious how these parameters
directly match on those of Eq. (II.1), and so do the power counting rules concerning insertions of external
fields, momenta, couplings and masses.

Any process whose diagram includes a closed fermionic line has to be suppressed by N with respect to

those which do not include it. This can be seen from the mentioned fact that in the regime N g2
S

16⇡2 ⇠ 1 the
dominant gluon loops do not bring any suppression, hence a loop of fermions, which carry one color index less,

is down by a factor of N . From the identification (III.1), a 1/N suppression equals to
g2
⇢

16⇡2 , corresponding to
a loop factor in the formula (II.1). An example of this suppression at work for QCD physics is the Zweig rule.
Analogous suppression can show up in the coupling of hypermeson S to gauge fields strengths if, for instance,
the hyperfermion constituents of S are SM-neutral, hence in order to couple S so SM gauge fields one needs
to produce a pair of other hyperfermion flavour, charged under SM. This example situation is represented
graphically on Fig. 1, note the analogy with a process induced by a loop of hypermesons charged under SM.

The closed fermionic lines can however be enhanced by a multiplicity of hyperfermions, hence a factor Nf

in Eq. (II.1). Staying within a region of applicability of large-N expansion, Nf < N , which also ensures
confinement, one can conclude that the relations for the hypermeson masses and couplings identified above
are not a↵ected by NF [17]. The Nf enhancement of fermionic loop does not have to be the case if the
loop involves flavour-breaking couplings. For instance, under assumption of partial compositeness for the top
quark, the coupling of the latter breaks the strong sector flavour symmetry. E.g. in the minimal composite
Higgs models the flavour group is SO(5), and strong sector operators in its fundamental representation couple
dominantly to the top quark, which fills only one (tR) or two (qL) components of the five needed to preserve
SO(5). This explains why the loop-induced processes involving yt, such as a mass of S when it is realized as
a PNGB, or SF 2 operator are just enhanced by the number of QCD colors and not the total multiplicity Nf .

The second example we want to consider is deconstructed (or N-site) models, which in addition will allow

Aµ

Aµ

S
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Nf ⇠ Nc
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where #/L is a number of loops required to break the shift symmetry in case it is broken by Partial

Compositeness (PC), #L stands for a number of loops required by the UV selection rules or the

shift symmetry breaking by anomalies, and #i corresponds to the number of insertions of external

fields or momenta. The power counting formula (2.10) only refers to the operators generated by

the strong dynamics, hence does not apply for instance to the elementary fields kinetic terms. This

power counting rule completes those developed in Refs [8, 20, 21] for the Composite Higgs in what

concerns an additional state S, and di↵ers in what concerns its generality, i.e. we have made certain

simplifications to make a more transparent connection to the physics relevant for our discussion.

After having defined the basic ingredients of the EFT we will comment on its validity. Clearly,

we will have to limit our EFT description to operators of a certain energy dimension. In order to

keep the e↵ect of other operators negligible, we need a sizeable separation between M and m⇢. As

we have seen the PNGB S can be su�ciently lighter than m⇢, while for a generic S the separation

can be a result of an accident or some unknown features of the underlying strong dynamics leading

to deviations from our power counting estimates. However we want to point out that in case of

observation of a new resonance of the type we are considering, the first data will not allow for a

precise determination of the resonance properties. Instead one will only be su�ciently sensitive to

the selection rules, which define the order of magnitude of di↵erent operator coe�cients. Hence

even with a not extremely large M -m⇢ separation our framework can allow to determine the main

features of the underlying theory and move to the construction of explicit UV completions of the

most appropriate type.

2.2 Matching to Large-N Theories

In this and the following subsections we give a short overview of the two well-known approaches

used to describe the behaviour of bound states of strongly coupled dynamics, which lead to the

power counting rule (2.10) and allow to understand it better. The first approach is to use a 1/N

expansion of the amplitudes in confining SU(N) or SO(N) gauge theories with large N , containing

Nf quark flavours transforming in the fundamental representation of a gauge group (we will call

the new states quarks and gluons for simplicity and will never refer to SM quarks or gluons in this

section). The bound states, which we are interested in, form when the coupling between the quarks

and gluons gS becomes strong, so that the perturbative expansion in gS can not be used for their

description. Nevertheless one can identify a strongly coupled regime in which the amplitudes acquire

a well-defined scaling with N , which can be used to estimate their relative size. This happens for a

certain value of gS , namely when it satisfies

N
g2S

16⇡2

⇠ 1 , (2.11)

hence one has to rely on the assumption that this regime plays the dominant role in the dynamics

of the bound states. Let us consider a specific example of meson-like bound states (which can

correspond to H and S) to understand how the 1/N expansion works. In this case adding an
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Figure 1. Example of diagrams generating S|H|2 and S|DµH|2 couplings (left diagram) and SFµ⌫Fµ⌫

coupling at loop level in terms of hypothetical hyperquark constituents of S (center) and in terms of their
bound states (right).

additional gluon line to the diagram containing one quark and one antiquark (which form a meson)

brings exactly the factor N
g2S

16⇡2 ⇠ 1 with respect to the initial diagram without an extra gluon. This

means that all the diagrams with any number of additional gluon propagator insertions have at most

the same size as the leading order diagram, hence their sum has to have the same scaling with N as

the LO contribution, which can be easily estimated. Using this features one can estimate the size

of di↵erent n-point functions [22–24], e↵ectively summing over the infinite series of expansion in gS ,

and reconstruct the power counting formula (2.1) for the interaction of meson-like states, given that

the identification

g⇢ =
4⇡p
N

(2.12)

for the meson-meson coupling strength is made. One can also show that the mass of mesons m⇢

is independent on N . Notice that glueballs and barions behave di↵erently and our power counting

applies to mesons only.

Any process whose diagram includes a closed quark line has to be suppressed by N with respect

to those which do not include it. This can be seen from the mentioned fact that in the regime

N
g2S

16⇡2 ⇠ 1 additional gluon loops do not bring any suppression, hence a loop of quarks, which carry

one color index less, is down by a factor of N . From the identification (2.12), a 1/N suppression

equals to
g2⇢

16⇡2 , corresponding to a loop factor in the formula (2.10). An example of this suppression

at work for QCD physics is the Zweig rule. Analogous suppression can show up for instance in the

coupling S|H|2 if S and H consist of di↵erent types of quarks (see left graph on Fig. 1). The diagram

describing their interactions has to contain two closed fermionic lines, i.e. one more with respect to

the diagram describing interactions of one type of mesons, e.g. S3.

The closed fermionic lines can however be enhanced by a multiplicity of quarks, hence a factor

Nf in Eq. (2.10). Staying within a region of applicability of large-N expansion, Nf < N , which also

ensures confinement, one can conclude that the scalings of meson masses and couplings (2.12) with

N identified above are not a↵ected by Nf [25]. As an example let us consider the coupling of S to

SM gauge fields strengths when the quark constituents of S are SM-neutral. In order to couple S to

SM gauge fields one needs to produce a pair of other quark flavour, charged under SM. This brings

a 1/N suppression but at the same time an enhancement by a number of quark flavours running in

this additional loop. This example is represented graphically on the central graph of Fig. 1, note

the analogy with a process induced by a loop of mesons charged under SM (right graph of Fig. 1).
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⇠ 1/N

⇠ Nf/N

mass hierarchy in non-PNGB S case:In case of non-PNGB generic S for the mass hierarchy one would naturally expect

generic S: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ : 1 : 1 . (2.7)

This last estimate tells us that in order to make our EFT work, S has to be accidentally lighter than

the cuto↵ m⇢, with the degree of tuning ⇠ M2/m2

⇢ defining the accuracy of our approach.

Anomaly-Mediated Shift Symmetry Breaking

The PC-induced breaking of the PNGB S shift symmetry is however not the only possibility and

moreover it is not strictly necessary. Indeed, since S, unlike H, is not essential for the generation of

the masses of SM fermions, it does not have to couple to them. For instance the shift symmetry of

the CP-odd S can be violated by anomalies associated to the SM gauge fields or the gauge fields of

the new strong interactions
Nfg2X
(4⇡)2

S

f
Xµ⌫X̃

µ⌫ , (2.8)

where Xµ⌫ is a gauge field strength tensor and Nf is an anomaly coe�cient roughly corresponding

to the number of strong sector fermion flavours generating the anomaly. The anomalous interactions

with the SM gauge fields (2.8) however can not generate a su�ciently large S mass [18]. In order

to make S heavier than the Higgs boson one could either again invoke the PC breaking, or assume

that M comes from the anomaly related to the new strong dynamics. In the latter case in analogy

with ⌘0 of QCD [19], we obtain M2 ' (Nf/N)m2

⇢, where N is a number of colors of the underlying

strong dynamics. Using the relation 1/N ⇠ g2⇢/(4⇡)
2, predicted for large-N theories (see the next

section), the expression for the S mass can be rewritten as M2 ' (Nfg2⇢/(4⇡)
2)m2

⇢, so the estimate

for the mass hierarchy in this case is

PNGB S with anom. breaking: m2

h : M2 : m2

⇢ ⇠ Ncy2t
(4⇡)2

⇠ :
Nfg2⇢
(4⇡)2

: 1 . (2.9)

The discussed coe�cients of the S couplings to gauge bosons and for the mass term di↵er from the

generic estimates of Eqs. (2.1), (2.3) g2A/g
2

⇢Aµ⌫Ãµ⌫S/f and m2

⇢S
2 by a factor Nfg2⇢/(4⇡)

2, which

we thus include in our power counting rule as a suppression related to anomalous breaking. Notice

that Nf factors appearing in di↵erent anomalous couplings and in the expression for the mass are

in general independent.

UV Selection Rules

So far we have discussed selection rules connected to symmetry breaking. In addition to this some

of the operators can appear suppressed even without a transparent relation to the EFT symmetries.

Two types of such a suppression present in large-N and N-site theories will be described in the

following two sections. They can a↵ect the couplings of S to the SM gauge bosons or the Higgs

field, leading to an additional loop factor Nfg2⇢/(4⇡)
2 where Nf is an e↵ective number of composite

flavours.
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II. EFT FOR STRONGLY COUPLED UV COMPLETIONS

We start with the models which assume an existence of a new strongly coupled dynamics, which confines at
a certain scale f , not very far above the electroweak scale, and produces a set of composite resonances, one of
which is S. Such situation can generically occur in some theories attempting to address the gauge hierarchy
problem, such as for instance the Composite Higgs (CH) models [2, 3]. Following the idea presented in the
introduction, we will describe the e↵ect of the rest of strong dynamics using a version of naive dimensional
analysis (NDA) similar to those developed in [7, 8, 24], with a cuto↵ scale m⇢ and a coupling g⇢ ⇠ 1 � 4⇡,
related by m⇢ ⇠ g⇢f . m⇢ and g⇢ correspond to a typical mass and a coupling of the composite resonances.
Matching of these parameters to the parameters appearing in weakly coupled UV completions will be discussed
in Section III. Thus any operator generated by UV physics and involving S, the Higgs boson, SM fermions,
vectors or derivatives will have the following form

m2
⇢f

2

"
(Nf )

g2⇢
(4⇡)2

##L 
g

g⇢

�#g

S

f

�#S

H

f

�#H
"

q

m1/2
⇢ f

##q 
gA

m⇢

�#A


p

m⇢

�#p

(II.1)

m2
⇢f

2

"
Nf

g2⇢
(4⇡)2

##L 
y2t

(4⇡)2

� 
g

g⇢

�#g

S

f

�#S

H

f

�#H

yq q̄q

m2
⇢f

�#q̄q

gA

m⇢

�#A


p

m⇢

�#p

(II.2)

where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
S, H, fermions, vector bosons or momenta insertions. Possible reasons for a loop suppression in the operator
include for instance need for elementary fields running in loops (see text below) or Minimal Coupling (MC)
assumption in the sense of [7, 8]. Nf is an enhancement factor of the loop-level operators, reflecting the
multiplicity of states running in a loop. Later on in Section III we will comment more on this point. The
power counting formula (II.1) only refers to the operators generated by the strong dynamics, hence does not
apply for instance to the elementary fields kinetic terms.

An important ingredient of the power counting is the assumptions about symmetry properties of the under-
lying theory. A simple example which will be useful in the following is a shift symmetry of the filed S, weakly
broken by an interaction with an elementary gauge field A. In such case any operator violating S ! S+const
has to involve the parameter which breaks the shift symmetry, i.e. the gauge field coupling strength, be
it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
assumed to be elementary. This type of explicit breaking, usually referred to as Partial Compositeness mech-
anism, is also responsible for generating the SM fermions masses. Hence the largest breaking of the Goldstone
symmetry is typically proportional to the top quark Yukawa coupling. A key parameter of CH models is a
ratio of the electroweak symmetry breaking scale v = 246 GeV to the strong sector global symmetry breaking
scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 43], hence
pointing at a certain level of tuning.

1) when < S > is >> f , (1 + S/f)F 2 is una↵ected while the other S couplings are dumped.
S >> f is the case in some well-known theories. Can it be implemented here? better suited for
weakly-coupled case (NDA for S potential predicts S ⇠ f and also predicts that S couples to
everything, hence < S > substitutes f)? are there implications for those well-known theories?

2) was it my problem before, when trying to use a tadpole for CH, that there was no way for
some enhancement?

- same loop factor with respect to                             as in large-N

Automatic implementation of Minimal Coupling, suppressing the operatorsselection rules in particular leads to realisation of the Minimal Coupling (MC) in the sense defined

in [20]. The couplings of neutral matter fields to the on-shell gauge bosons of the type SGµ⌫Gµ⌫ ,

SWµ⌫Wµ⌫ , SBµ⌫Bµ⌫ , |H|2Gµ⌫Gµ⌫ , |H|2�µ⌫�µ⌫ , (DµH)†�i(D⌫H)W iµ⌫ , (DµH)†(D⌫H)Bµ⌫ can not

be generated at tree level in N-site models and hence carry g2⇢/(4⇡)
2 suppression. Part of the

couplings listed above, namely of the type SX2 and |H|2X2, are expected to be loop-level even

without MC if S and the Higgs are PNGB’s. Notice that unlike the 1/N “loop” suppression of

large-N theories, the MC loop suppression in N-site models is not optional and comes automatically.

2.4 Constructing the E↵ective Lagrangian

In the e↵ective field theory obtained after integrating out the UV degrees of freedom one generically

expects to have all kinds of operators compatible with the gauge and approximate global symmetries

and their breaking patterns. We will assume that the degrees of freedom of the EFT are chosen

such that all the associated symmetries are manifest, and hence our power counting (2.10) directly

applies to all the EFT operators. It would however be impractical to perform physical analysis

working with the full set of possible operators, given that they typically contain a subset which can

be re-expressed in terms of the others by use of integration by parts and field redefinitions. Our goal

here will be to find the minimal set of operators obeying the power counting (2.10), to which the full

set can be reduced. The main obstacle on this way is the fact that certain manipulations with the

e↵ective operators leading to the reduction of their total amount also lead to an explicit breaking

of the power counting. In other words, if we simply eliminate all the redundant operators without

paying attention to the size of the corrections induced to the remaining ones, the resulting operator

coe�cients may not follow the power counting and the presence of the symmetries may become

hidden in the correlations between di↵erent coe�cients and hence can not be reflected by using

some kind of power counting. This problem will become clear in the following part of this section

where we construct a set of operators capturing the leading interactions of the new spin-zero state S

with the Standard Model fields. The S interactions with all of the SM fields can be described by the

operators with an energy dimension five or smaller (unless S features some additional symmetries

which we do not consider), hence we will only consider them.

We will first discuss the case of a scalar S. Let us start by analysing the set of dimension-five

operators containing S, H and two derivatives

O
1

= 1

f |DµH|2S O
2

= i
f (H

†DµH)@µS + h.c. O
3

= 1

f @µ|H|2@µS

O
4

= 1

f (H
†2H)S + h.c. O

5

= 1

f |H|22S O
6

= 1

f2|H|2S
(2.16)

We will now show case by case which of the operators (2.16) can be eliminated without breaking

the power counting.

O
3

, O
5

, O
6

After integration by parts any of these three operators can be transformed into

other, and all have the same symmetry breaking properties, i.e. invariance under S ! S+ c but not

under h ! h + c. Hence we can safely eliminate any pair of them, which we choose to be O
3

and

O
6

, and the remaining operator size will be estimated correctly by the power counting.
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Power Counting Rule
At this point we can summarize the power counting in a single expression

m2

⇢f
2


Ncy2t
(4⇡)2

�
#/L

"
Nfg2⇢
(4⇡)2

#
#L 

yq q̄q

m2

⇢f

�
#q̄q


gAA

m⇢

�
#A


S

f

�
#S


H

f

�
#H


@µ
m⇢

�
#@

, (2.10)

where #/L is a number of loops required to break the shift symmetry in case it is broken by Partial

Compositeness (PC), #L stands for a number of loops required by the UV selection rules or the

shift symmetry breaking by anomalies, and #i corresponds to the number of insertions of external

fields or momenta. The power counting formula (2.10) only refers to the operators generated by

the strong dynamics, hence does not apply for instance to the elementary fields kinetic terms. This

power counting rule completes those developed in Refs [8, 20, 21] for the Composite Higgs in what

concerns an additional state S, and di↵ers in what concerns its generality, i.e. we have made certain

simplifications to make a more transparent connection to the physics relevant for our discussion.

After having defined the basic ingredients of the EFT we will comment on its validity. Clearly,

we will have to limit our EFT description to operators of a certain energy dimension. In order to

keep the e↵ect of other operators negligible, we need a sizeable separation between M and m⇢. As

we have seen the PNGB S can be su�ciently lighter than m⇢, while for a generic S the separation

can be a result of an accident or some unknown features of the underlying strong dynamics leading

to deviations from our power counting estimates. However we want to point out that in case of

observation of a new resonance of the type we are considering, the first data will not allow for a

precise determination of the resonance properties. Instead one will only be su�ciently sensitive to

the selection rules, which define the order of magnitude of di↵erent operator coe�cients. Hence

even with a not extremely large M -m⇢ separation our framework can allow to determine the main

features of the underlying theory and move to the construction of explicit UV completions of the

most appropriate type.

2.2 Matching to Large-N Theories

In this and the following subsections we give a short overview of the two well-known approaches

used to describe the behaviour of bound states of strongly coupled dynamics, which lead to the

power counting rule (2.10) and allow to understand it better. The first approach is to use a 1/N

expansion of the amplitudes in confining SU(N) or SO(N) gauge theories with large N , containing

Nf quark flavours transforming in the fundamental representation of a gauge group (we will call

the new states quarks and gluons for simplicity and will never refer to SM quarks or gluons in this

section). The bound states, which we are interested in, form when the coupling between the quarks

and gluons gS becomes strong, so that the perturbative expansion in gS can not be used for their

description. Nevertheless one can identify a strongly coupled regime in which the amplitudes acquire

a well-defined scaling with N , which can be used to estimate their relative size. This happens for a

certain value of gS , namely when it satisfies

N
g2S

16⇡2

⇠ 1 , (2.11)

hence one has to rely on the assumption that this regime plays the dominant role in the dynamics

of the bound states. Let us consider a specific example of meson-like bound states (which can

correspond to H and S) to understand how the 1/N expansion works. In this case adding an
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that after integrating out S at tree level from dimension >5 lagrangian 
there will be no contributions to dim-6  SILH operators.

L(S+H)
5 L(H)

6

‣ We assume that we start with an EFT, containing all the possible 
operators (including redundant), in which all the discussed 
symmetries and suppression rules are explicit, i.e. the operators obey 
the power counting. We want to reduce this set to a set which

1) contains no redundancies
2) follow the power counting

S ! 1
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‣ Already the first assumption is not trivial 

counter-example from SILH:

Notice that a similar situation occurs when one constructs the SILH basis for the dimension-six

operators for the Composite Higgs boson. The Higgs shift-symmetry preserving operator Tr[DµU(DµU)†]

(2.15), giving rise to the Higgs kinetic term, also produces two operators |H|2|DµH|2 and @µ|H|2@µ|H|2.
Each of the latter breaks h ! h + c, but the specific linear combination of them coming from

Tr[DµU(DµU)†] is shift invariant. Then by order-one shift-symmetry breaking field redefinition

H ! H(1+�|H|2/f) the operator |H|2|DµH|2 is removed, while @µ|H|2@µ|H|2 remains in the SILH

basis with an unsuppressed coe�cient. At the level of dimension-six operators this field redefini-

tion however does not generate any SILH power counting breaking, besides the one associated to

@µ|H|2@µ|H|2. It is also important to notice that in the considered example two operators of the full

initial operators set arising in the EFT break the power counting estimates even before any manip-

ulations were applied to them. We however do not expect that a similar situation, contradicting our

starting assumption, can occur at the level of dimension-five operators involving S which we listed

in Eq. (2.16).

In case if S is a PNGB with the same properties as the Higgs expressing O
1

in terms of O
4,5

poses no problem since the former has to be loop suppressed. Afterwards O
4,5 can be eliminated by

redefinitions (2.18) with loop suppressed ↵S,H , without introducing power counting breaking.

O
2

This operator can be safely removed by the gauge fields redefinition and expressed through

the operators of the type @µSq̄�µq.

We conclude that one of the operators with derivatives, |DµH|2S, can not be removed if S and

H are of a di↵erent origin, i.e. S is a generic composite resonance, or a PNGB with a larger breaking

size than that of the Higgs. In the following, when considering the operators of the type Sn|H|2m, we

will see that one of the field redefinitions (2.18) remaining not used in this case can still be utilized

to decrease the overall amount of the operators to the minimal one.

Sn|H|2m Elimination of operators of this type can also lead to the power counting breaking for

two reasons. The first reason is that by applying equations of motion (e.o.m.) to the PNGB S or

H (which is equivalent to the field redefinitions) one unavoidably generates the h shift symmetry

breaking term containing the derivatives and not carrying the loop suppression factor. For example

for the operator S|H|2 we get

y2t
16⇡2

m2

⇢

f
S|H|2 ! 1

f
SH†2H or

1

f
2S|H|2. (2.22)

This result is explained by the fact that any part of S|H|2 to which we apply the equations of motion

has to enter e.o.m. with a loop suppression, but the kinetic terms of H or S, necessarily entering

the e.o.m., are always unsuppressed, and hence will induce the operators in the r.h.s. of Eq. (2.22).

Analogous problem will appear if one attempts to eliminate any operator of the type Sn|H|2m.

Hence we are only left with a possibility to use the S e.o.m. when S is a generic scalar, since

in that case the e.o.m. will contain unsuppressed terms of the type Sn which can be rewritten

without absorbing the loop suppression in front of Sn|H|2m. However with a generic S one can run

into a di↵erent problem related to the tuning of the S mass, which is necessarily present. Since the

coe�cient of the operator S2 brings the main contribution to the physical S mass M (which can

be seen from the resulting basis we choose (2.24), (2.25)), it has to be tuned down with respect to

the power counting estimate in the same way as M . For instance if we apply the S e.o.m. to the
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2.3 Matching to Multisite Models

The multisite models are often used as a weakly coupled description of the lowest laying composite

resonances [21, 26], inspired by 5-dimensional realization of the Composite Higgs [1] and the idea of

dimensional deconstruction [27]. In this section we give a general overview of the relation between

the two-site models and the power counting rules developed in Section 2.2.1. Two concrete examples

of two-site models will be discussed later in Section 4.

Two-site models consists of two separate sites in a theory space, each featuring separately a

copy of an approximate global symmetry G, which we call G
1

and G
2

, and containing certain sets

of gauge and matter fields. G
1

⇥ G
2

is spontaneously broken to the diagonal subgroup G
diag

. The

goldstone bosons � of the spontaneous breaking are encoded into the unitary matrix U = exp[i�/f ],

which transforms under G
1

⇥G
2

rotations as

U ! g
1

Ug†
2

. (2.13)

The Goldstone matrix U , being set to its VEV, hUi = 1, leaves unbroken only G
diag

, corresponding

to transformations with g
1

= g
2

. The field content of the first site is that of the SM without the

Higgs, and the SM gauge symmetry group G
SM

is realized as a subgroup of G
1

. Since G
SM

⇢ G
1

, the

SM fields form only incomplete multiplets of G
1

and hence break it. This mimics the explicit weak

breaking of the strong sector global symmetry G ! G
SM

by the elementary fields. The second site

features a gauge symmetry H ⇢ G
2

with the typical size of gauge couplings g⇢ � g
SM

. Therefore

the second site plays a role of the strong sector with a spontaneous G ! H breaking. Since H

is gauged and broken by a condensate hUi, the gauge bosons of the second site ⇢µ acquire a mass

m⇢ ⇠ g⇢f . The � components corresponding to the H generators can be absorbed by the H gauge

bosons and disappear from the spectrum. The remaining Goldstone bosons associated to the G/H

coset contain the Higgs field and, possibly, S.

The crucial assumptions about the 2-site model include, besides the choice of the G and H

symmetry groups, the embedding of the SM third family quarks in the incomplete multiplets of the

group G. Once they are specified, the elementary fermions of the first site can be coupled to the

composite partners  of the second site

L
mix

= yLf q̄LU R + yRf t̄RU L + h.c. , (2.14)

where qL = (tL, bL) and tR are SM quarks, embedded in some G representation5. This La-

grangian realizes the Partial Compositeness paradigm and leads to the top quark Yukawa Lagrangian

L
Yukawa

� yLyRf
m 

q̄LHtR where m is the typical mass of the composite fermions. At the same time,

since the interactions (2.14) couple the Goldstones to the G ! G
SM

and G ! H breaking sources,

they will generate the loop-level scalar potential V [yL, yR,m ] for the Higgs and for S if it appears

as a PNGB as well. The Goldstone symmetry-preserving interactions will appear from the kinetic

term of the U field

L
kin,� =

f2

2
Tr[DµU(DµU)†] , (2.15)

5In this case we have explicitly assumed that elementary fermions are embedded into fundamental representation

of G, while for other choices one may need to have a di↵erent form of mixing, as will be seen in Section 4.
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Notice that a similar situation occurs when one constructs the SILH basis for the dimension-six

operators for the Composite Higgs boson. The Higgs shift-symmetry preserving operator Tr[DµU(DµU)†]

(2.15), giving rise to the Higgs kinetic term, also produces two operators |H|2|DµH|2 and @µ|H|2@µ|H|2.
Each of the latter breaks h ! h + c, but the specific linear combination of them coming from

Tr[DµU(DµU)†] is shift invariant. Then by order-one shift-symmetry breaking field redefinition

H ! H(1+�|H|2/f) the operator |H|2|DµH|2 is removed, while @µ|H|2@µ|H|2 remains in the SILH

basis with an unsuppressed coe�cient. At the level of dimension-six operators this field redefini-

tion however does not generate any SILH power counting breaking, besides the one associated to

@µ|H|2@µ|H|2. It is also important to notice that in the considered example two operators of the full

initial operators set arising in the EFT break the power counting estimates even before any manip-

ulations were applied to them. We however do not expect that a similar situation, contradicting our

starting assumption, can occur at the level of dimension-five operators involving S which we listed

in Eq. (2.16).

In case if S is a PNGB with the same properties as the Higgs expressing O
1

in terms of O
4,5

poses no problem since the former has to be loop suppressed. Afterwards O
4,5 can be eliminated by

redefinitions (2.18) with loop suppressed ↵S,H , without introducing power counting breaking.

O
2

This operator can be safely removed by the gauge fields redefinition and expressed through

the operators of the type @µSq̄�µq.

We conclude that one of the operators with derivatives, |DµH|2S, can not be removed if S and

H are of a di↵erent origin, i.e. S is a generic composite resonance, or a PNGB with a larger breaking

size than that of the Higgs. In the following, when considering the operators of the type Sn|H|2m, we

will see that one of the field redefinitions (2.18) remaining not used in this case can still be utilized

to decrease the overall amount of the operators to the minimal one.

Sn|H|2m Elimination of operators of this type can also lead to the power counting breaking for

two reasons. The first reason is that by applying equations of motion (e.o.m.) to the PNGB S or

H (which is equivalent to the field redefinitions) one unavoidably generates the h shift symmetry

breaking term containing the derivatives and not carrying the loop suppression factor. For example

for the operator S|H|2 we get

y2t
16⇡2

m2

⇢

f
S|H|2 ! 1

f
SH†2H or

1

f
2S|H|2. (2.22)

This result is explained by the fact that any part of S|H|2 to which we apply the equations of motion

has to enter e.o.m. with a loop suppression, but the kinetic terms of H or S, necessarily entering

the e.o.m., are always unsuppressed, and hence will induce the operators in the r.h.s. of Eq. (2.22).

Analogous problem will appear if one attempts to eliminate any operator of the type Sn|H|2m.

Hence we are only left with a possibility to use the S e.o.m. when S is a generic scalar, since

in that case the e.o.m. will contain unsuppressed terms of the type Sn which can be rewritten

without absorbing the loop suppression in front of Sn|H|2m. However with a generic S one can run

into a di↵erent problem related to the tuning of the S mass, which is necessarily present. Since the

coe�cient of the operator S2 brings the main contribution to the physical S mass M (which can

be seen from the resulting basis we choose (2.24), (2.25)), it has to be tuned down with respect to

the power counting estimate in the same way as M . For instance if we apply the S e.o.m. to the
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counter-example from SILH:
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resonances [21, 26], inspired by 5-dimensional realization of the Composite Higgs [1] and the idea of

dimensional deconstruction [27]. In this section we give a general overview of the relation between

the two-site models and the power counting rules developed in Section 2.2.1. Two concrete examples

of two-site models will be discussed later in Section 4.

Two-site models consists of two separate sites in a theory space, each featuring separately a

copy of an approximate global symmetry G, which we call G
1

and G
2

, and containing certain sets

of gauge and matter fields. G
1

⇥ G
2

is spontaneously broken to the diagonal subgroup G
diag

. The

goldstone bosons � of the spontaneous breaking are encoded into the unitary matrix U = exp[i�/f ],

which transforms under G
1

⇥G
2

rotations as

U ! g
1

Ug†
2

. (2.13)

The Goldstone matrix U , being set to its VEV, hUi = 1, leaves unbroken only G
diag

, corresponding

to transformations with g
1

= g
2

. The field content of the first site is that of the SM without the

Higgs, and the SM gauge symmetry group G
SM

is realized as a subgroup of G
1

. Since G
SM

⇢ G
1

, the

SM fields form only incomplete multiplets of G
1

and hence break it. This mimics the explicit weak

breaking of the strong sector global symmetry G ! G
SM

by the elementary fields. The second site

features a gauge symmetry H ⇢ G
2

with the typical size of gauge couplings g⇢ � g
SM

. Therefore

the second site plays a role of the strong sector with a spontaneous G ! H breaking. Since H

is gauged and broken by a condensate hUi, the gauge bosons of the second site ⇢µ acquire a mass

m⇢ ⇠ g⇢f . The � components corresponding to the H generators can be absorbed by the H gauge

bosons and disappear from the spectrum. The remaining Goldstone bosons associated to the G/H

coset contain the Higgs field and, possibly, S.

The crucial assumptions about the 2-site model include, besides the choice of the G and H

symmetry groups, the embedding of the SM third family quarks in the incomplete multiplets of the

group G. Once they are specified, the elementary fermions of the first site can be coupled to the

composite partners  of the second site

L
mix

= yLf q̄LU R + yRf t̄RU L + h.c. , (2.14)

where qL = (tL, bL) and tR are SM quarks, embedded in some G representation5. This La-

grangian realizes the Partial Compositeness paradigm and leads to the top quark Yukawa Lagrangian

L
Yukawa

� yLyRf
m 

q̄LHtR where m is the typical mass of the composite fermions. At the same time,

since the interactions (2.14) couple the Goldstones to the G ! G
SM

and G ! H breaking sources,

they will generate the loop-level scalar potential V [yL, yR,m ] for the Higgs and for S if it appears

as a PNGB as well. The Goldstone symmetry-preserving interactions will appear from the kinetic

term of the U field

L
kin,� =

f2

2
Tr[DµU(DµU)†] , (2.15)

5In this case we have explicitly assumed that elementary fermions are embedded into fundamental representation

of G, while for other choices one may need to have a di↵erent form of mixing, as will be seen in Section 4.
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ulations were applied to them. We however do not expect that a similar situation, contradicting our

starting assumption, can occur at the level of dimension-five operators involving S which we listed

in Eq. (2.16).

In case if S is a PNGB with the same properties as the Higgs expressing O
1

in terms of O
4,5

poses no problem since the former has to be loop suppressed. Afterwards O
4,5 can be eliminated by

redefinitions (2.18) with loop suppressed ↵S,H , without introducing power counting breaking.

O
2

This operator can be safely removed by the gauge fields redefinition and expressed through

the operators of the type @µSq̄�µq.

We conclude that one of the operators with derivatives, |DµH|2S, can not be removed if S and

H are of a di↵erent origin, i.e. S is a generic composite resonance, or a PNGB with a larger breaking

size than that of the Higgs. In the following, when considering the operators of the type Sn|H|2m, we

will see that one of the field redefinitions (2.18) remaining not used in this case can still be utilized

to decrease the overall amount of the operators to the minimal one.

Sn|H|2m Elimination of operators of this type can also lead to the power counting breaking for

two reasons. The first reason is that by applying equations of motion (e.o.m.) to the PNGB S or

H (which is equivalent to the field redefinitions) one unavoidably generates the h shift symmetry

breaking term containing the derivatives and not carrying the loop suppression factor. For example

for the operator S|H|2 we get

y2t
16⇡2

m2

⇢

f
S|H|2 ! 1

f
SH†2H or

1

f
2S|H|2. (2.22)

This result is explained by the fact that any part of S|H|2 to which we apply the equations of motion

has to enter e.o.m. with a loop suppression, but the kinetic terms of H or S, necessarily entering

the e.o.m., are always unsuppressed, and hence will induce the operators in the r.h.s. of Eq. (2.22).

Analogous problem will appear if one attempts to eliminate any operator of the type Sn|H|2m.

Hence we are only left with a possibility to use the S e.o.m. when S is a generic scalar, since

in that case the e.o.m. will contain unsuppressed terms of the type Sn which can be rewritten

without absorbing the loop suppression in front of Sn|H|2m. However with a generic S one can run

into a di↵erent problem related to the tuning of the S mass, which is necessarily present. Since the

coe�cient of the operator S2 brings the main contribution to the physical S mass M (which can

be seen from the resulting basis we choose (2.24), (2.25)), it has to be tuned down with respect to

the power counting estimate in the same way as M . For instance if we apply the S e.o.m. to the
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• In SILH basis the 1st operator is eliminated by a (shift-breaking) 
field redefinition,

which does not lead to extra power counting breaking at the level 
of dim-6 operators

• At dim-5 level in H+S case one does not expect to generate 
correlated operators

H ! H + ↵|H|2H
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Constructing the Operator Basis
‣ This problem can reappear while eliminating the redundant 
operators.
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‣ Generic S, operators with 2 derivatives, H and S

selection rules in particular leads to realisation of the Minimal Coupling (MC) in the sense defined

in [20]. The couplings of neutral matter fields to the on-shell gauge bosons of the type SGµ⌫Gµ⌫ ,

SWµ⌫Wµ⌫ , SBµ⌫Bµ⌫ , |H|2Gµ⌫Gµ⌫ , |H|2�µ⌫�µ⌫ , (DµH)†�i(D⌫H)W iµ⌫ , (DµH)†(D⌫H)Bµ⌫ can not

be generated at tree level in N-site models and hence carry g2⇢/(4⇡)
2 suppression. Part of the

couplings listed above, namely of the type SX2 and |H|2X2, are expected to be loop-level even

without MC if S and the Higgs are PNGB’s. Notice that unlike the 1/N “loop” suppression of

large-N theories, the MC loop suppression in N-site models is not optional and comes automatically.

2.4 Constructing the E↵ective Lagrangian

In the e↵ective field theory obtained after integrating out the UV degrees of freedom one generically

expects to have all kinds of operators compatible with the gauge and approximate global symmetries

and their breaking patterns. We will assume that the degrees of freedom of the EFT are chosen

such that all the associated symmetries are manifest, and hence our power counting (2.10) directly

applies to all the EFT operators. It would however be impractical to perform physical analysis

working with the full set of possible operators, given that they typically contain a subset which can

be re-expressed in terms of the others by use of integration by parts and field redefinitions. Our goal

here will be to find the minimal set of operators obeying the power counting (2.10), to which the full

set can be reduced. The main obstacle on this way is the fact that certain manipulations with the

e↵ective operators leading to the reduction of their total amount also lead to an explicit breaking

of the power counting. In other words, if we simply eliminate all the redundant operators without

paying attention to the size of the corrections induced to the remaining ones, the resulting operator

coe�cients may not follow the power counting and the presence of the symmetries may become

hidden in the correlations between di↵erent coe�cients and hence can not be reflected by using

some kind of power counting. This problem will become clear in the following part of this section

where we construct a set of operators capturing the leading interactions of the new spin-zero state S

with the Standard Model fields. The S interactions with all of the SM fields can be described by the

operators with an energy dimension five or smaller (unless S features some additional symmetries

which we do not consider), hence we will only consider them.

We will first discuss the case of a scalar S. Let us start by analysing the set of dimension-five

operators containing S, H and two derivatives

O
1

= 1

f |DµH|2S O
2

= i
f (H

†DµH)@µS + h.c. O
3

= 1

f @µ|H|2@µS

O
4

= 1

f (H
†2H)S + h.c. O

5

= 1

f |H|22S O
6

= 1

f2|H|2S
(2.16)

We will now show case by case which of the operators (2.16) can be eliminated without breaking

the power counting.

O
3

, O
5

, O
6

After integration by parts any of these three operators can be transformed into

other, and all have the same symmetry breaking properties, i.e. invariance under S ! S+ c but not

under h ! h + c. Hence we can safely eliminate any pair of them, which we choose to be O
3

and

O
6

, and the remaining operator size will be estimated correctly by the power counting.
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2 suppression. Part of the

couplings listed above, namely of the type SX2 and |H|2X2, are expected to be loop-level even

without MC if S and the Higgs are PNGB’s. Notice that unlike the 1/N “loop” suppression of

large-N theories, the MC loop suppression in N-site models is not optional and comes automatically.
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In the e↵ective field theory obtained after integrating out the UV degrees of freedom one generically

expects to have all kinds of operators compatible with the gauge and approximate global symmetries

and their breaking patterns. We will assume that the degrees of freedom of the EFT are chosen

such that all the associated symmetries are manifest, and hence our power counting (2.10) directly

applies to all the EFT operators. It would however be impractical to perform physical analysis

working with the full set of possible operators, given that they typically contain a subset which can

be re-expressed in terms of the others by use of integration by parts and field redefinitions. Our goal
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set can be reduced. The main obstacle on this way is the fact that certain manipulations with the

e↵ective operators leading to the reduction of their total amount also lead to an explicit breaking
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coe�cients may not follow the power counting and the presence of the symmetries may become

hidden in the correlations between di↵erent coe�cients and hence can not be reflected by using

some kind of power counting. This problem will become clear in the following part of this section

where we construct a set of operators capturing the leading interactions of the new spin-zero state S

with the Standard Model fields. The S interactions with all of the SM fields can be described by the

operators with an energy dimension five or smaller (unless S features some additional symmetries

which we do not consider), hence we will only consider them.
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3

and
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6
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• H shift symmetry preserving        can be expressed  as two 
correlated shift breaking  operators

O
1

, O
4

, O
5

The importance of the symmetry breaking structure can be seen when considering

the operator O
1

, which can also be expressed in terms of other operators

O
1

=
1

2
(O

5

�O
4

) , (2.17)

but one immediately sees that the two operators in the r.h.s. break the Higgs shift symmetry, unlike

the one they originate from. This poses a problem if S is a generic composite state because the

operator O
1

, not carrying in this case any loop suppression, after using the equality (2.17) gives rise

to two operators breaking the Higgs shift symmetry with unsuppressed coe�cients, in contradiction

to our power counting. In general this type of problems is also expected to arise in a theory with

both S and H being PNGB’s, but with a di↵erent size of shift symmetry breaking. The fact that

h ! h + c breaking is suppressed will now be encoded into a correlation of O
4

and O
5

coe�cients

defined by Eq.(2.17). If we proceed further in this direction, the operators O
4

and O
5

generated by

O
1

can be eliminated by the field redefinitions

H ! H

✓
1 +

↵H

f
S

◆
, S ! S +

↵S

f
|H|2 (2.18)

which give the following modifications of the kinetic and mass terms

�LH
kin

= �↵HO
4

+ . . . , �LH
mass

= 2↵H
f µ2S|H|2 + . . . , (2.19)

�LS
kin

= �↵SO5

+ . . . , �LS
mass

= �↵S
f M2S|H|2 + . . . , (2.20)

where µ2 is a mass parameter of the Higgs field and . . . stand for higher order operators. Hence

by choosing ↵S and ↵H to be the coe�cients of O
5

and O
4

respectively these operators can be

eliminated. In return one receives modifications of the remaining operators, e.g. S|H|2 gets shifted

by ✓
�↵S

M2

f
+ 2↵H

µ2

f

◆
S|H|2 , (2.21)

and if S in not a PNGB we have ↵SM2/f . m2

⇢/f , which disagrees with the power counting estimate

for h shift breaking operators. The Higgs shift symmetry is now hidden in the correlation among the

di↵erent coe�cients, and can not be reconstructed by making order of magnitude power counting

estimates. For instance if we start our analysis with the basis where O
1,4,5 are already eliminated

and assume that the operator S|H|2 has a coe�cient of the size ⇠ (M2/f) without keeping track of

all the correlations, we would obtain an excessive ⇠ (v/f) mixing of S and a physical Higgs boson,

which in fact has to be loop suppressed. As a consequence we will overestimate the impact of S on

the Higgs physics. If instead we assume a loop suppressed coe�cient for the operator S|H|2, then
we would underestimate the physical e↵ects originally triggered by the operator O

1

, e.g. S ! hh

decay rate. Analogous problem will appear in the higher order operators (S|H|4, S2|H|2, . . . ) and

can be traced back to the field redefinitions (2.18), which explicitly break the h shift symmetry by

order one when ↵S,H ⇠ 1. We hence conclude that elimination of the operator O
1

(as was done

e.g. in [29]) would not allow to apply our power counting to the basis operators if S is a generic

scalar. Instead we will use the equality (2.17) to rewrite O
5

in terms of O
4

and O
1

, while O
4

can

be eliminated using one of the field redefinitions (2.18).
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with the Standard Model fields. The S interactions with all of the SM fields can be described by the
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the power counting.
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After integration by parts any of these three operators can be transformed into

other, and all have the same symmetry breaking properties, i.e. invariance under S ! S+ c but not

under h ! h + c. Hence we can safely eliminate any pair of them, which we choose to be O
3

and
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6

, and the remaining operator size will be estimated correctly by the power counting.
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and assume that the operator S|H|2 has a coe�cient of the size ⇠ (M2/f) without keeping track of

all the correlations, we would obtain an excessive ⇠ (v/f) mixing of S and a physical Higgs boson,

which in fact has to be loop suppressed. As a consequence we will overestimate the impact of S on

the Higgs physics. If instead we assume a loop suppressed coe�cient for the operator S|H|2, then
we would underestimate the physical e↵ects originally triggered by the operator O
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decay rate. Analogous problem will appear in the higher order operators (S|H|4, S2|H|2, . . . ) and

can be traced back to the field redefinitions (2.18), which explicitly break the h shift symmetry by

order one when ↵S,H ⇠ 1. We hence conclude that elimination of the operator O
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(as was done
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• the coefficients of           now break the power counting

O1
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S|H|2
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• both can be eliminated by H and S e.o.m., generating e.g.

⇠ M2

f
S|H|2

Constructing the Operator Basis

• If we assign the unsuppressed coefficient              to the operator 
which affects the Higgs physics, not keeping track of all the 
correlations, the impact on Higgs physics will be overestimated

M2/f

• If, instead, we enforce this coefficient to be loop suppressed, we 
will underestimate the processes initially mediated by |DµH|2S

•                can not be eliminated in case of generic S. Hence one 
field redefinition is not used and one redundancy remains.

|DµH|2S
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‣ Another type of problems for PNGB S, with operators 
with H and S without derivatives

• applying S or H e.o.m. we generate unsuppressed shift symmetry 
breaking

• because of the generic form of e.o.m.

Notice that a similar situation occurs when one constructs the SILH basis for the dimension-six

operators for the Composite Higgs boson. The Higgs shift-symmetry preserving operator Tr[DµU(DµU)†]

(2.15), giving rise to the Higgs kinetic term, also produces two operators |H|2|DµH|2 and @µ|H|2@µ|H|2.
Each of the latter breaks h ! h + c, but the specific linear combination of them coming from

Tr[DµU(DµU)†] is shift invariant. Then by order-one shift-symmetry breaking field redefinition

H ! H(1+�|H|2/f) the operator |H|2|DµH|2 is removed, while @µ|H|2@µ|H|2 remains in the SILH

basis with an unsuppressed coe�cient. At the level of dimension-six operators this field redefini-

tion however does not generate any SILH power counting breaking, besides the one associated to

@µ|H|2@µ|H|2. It is also important to notice that in the considered example two operators of the full

initial operators set arising in the EFT break the power counting estimates even before any manip-

ulations were applied to them. We however do not expect that a similar situation, contradicting our

starting assumption, can occur at the level of dimension-five operators involving S which we listed

in Eq. (2.16).

In case if S is a PNGB with the same properties as the Higgs expressing O
1

in terms of O
4,5

poses no problem since the former has to be loop suppressed. Afterwards O
4,5 can be eliminated by

redefinitions (2.18) with loop suppressed ↵S,H , without introducing power counting breaking.

O
2

This operator can be safely removed by the gauge fields redefinition and expressed through

the operators of the type @µSq̄�µq.

We conclude that one of the operators with derivatives, |DµH|2S, can not be removed if S and

H are of a di↵erent origin, i.e. S is a generic composite resonance, or a PNGB with a larger breaking

size than that of the Higgs. In the following, when considering the operators of the type Sn|H|2m, we

will see that one of the field redefinitions (2.18) remaining not used in this case can still be utilized

to decrease the overall amount of the operators to the minimal one.

Sn|H|2m Elimination of operators of this type can also lead to the power counting breaking for

two reasons. The first reason is that by applying equations of motion (e.o.m.) to the PNGB S or

H (which is equivalent to the field redefinitions) one unavoidably generates the h shift symmetry

breaking term containing the derivatives and not carrying the loop suppression factor. For example

for the operator S|H|2 we get

y2t
16⇡2

m2

⇢

f
S|H|2 ! 1

f
SH†2H or

1

f
2S|H|2. (2.22)

This result is explained by the fact that any part of S|H|2 to which we apply the equations of motion

has to enter e.o.m. with a loop suppression, but the kinetic terms of H or S, necessarily entering

the e.o.m., are always unsuppressed, and hence will induce the operators in the r.h.s. of Eq. (2.22).

Analogous problem will appear if one attempts to eliminate any operator of the type Sn|H|2m.

Hence we are only left with a possibility to use the S e.o.m. when S is a generic scalar, since

in that case the e.o.m. will contain unsuppressed terms of the type Sn which can be rewritten

without absorbing the loop suppression in front of Sn|H|2m. However with a generic S one can run

into a di↵erent problem related to the tuning of the S mass, which is necessarily present. Since the

coe�cient of the operator S2 brings the main contribution to the physical S mass M (which can

be seen from the resulting basis we choose (2.24), (2.25)), it has to be tuned down with respect to

the power counting estimate in the same way as M . For instance if we apply the S e.o.m. to the
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y2t
(4⇡)2

Sm|H|n +⇤S + · · · = 0
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H (which is equivalent to the field redefinitions) one unavoidably generates the h shift symmetry

breaking term containing the derivatives and not carrying the loop suppression factor. For example

for the operator S|H|2 we get

y2t
16⇡2

m2

⇢

f
S|H|2 ! 1

f
SH†2H or

1

f
2S|H|2. (2.22)

This result is explained by the fact that any part of S|H|2 to which we apply the equations of motion

has to enter e.o.m. with a loop suppression, but the kinetic terms of H or S, necessarily entering

the e.o.m., are always unsuppressed, and hence will induce the operators in the r.h.s. of Eq. (2.22).

Analogous problem will appear if one attempts to eliminate any operator of the type Sn|H|2m.

Hence we are only left with a possibility to use the S e.o.m. when S is a generic scalar, since

in that case the e.o.m. will contain unsuppressed terms of the type Sn which can be rewritten

without absorbing the loop suppression in front of Sn|H|2m. However with a generic S one can run

into a di↵erent problem related to the tuning of the S mass, which is necessarily present. Since the

coe�cient of the operator S2 brings the main contribution to the physical S mass M (which can

be seen from the resulting basis we choose (2.24), (2.25)), it has to be tuned down with respect to

the power counting estimate in the same way as M . For instance if we apply the S e.o.m. to the
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operators for the Composite Higgs boson. The Higgs shift-symmetry preserving operator Tr[DµU(DµU)†]

(2.15), giving rise to the Higgs kinetic term, also produces two operators |H|2|DµH|2 and @µ|H|2@µ|H|2.
Each of the latter breaks h ! h + c, but the specific linear combination of them coming from

Tr[DµU(DµU)†] is shift invariant. Then by order-one shift-symmetry breaking field redefinition

H ! H(1+�|H|2/f) the operator |H|2|DµH|2 is removed, while @µ|H|2@µ|H|2 remains in the SILH

basis with an unsuppressed coe�cient. At the level of dimension-six operators this field redefini-

tion however does not generate any SILH power counting breaking, besides the one associated to
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‣resulting basis

• CP odd S

• CP even generic S

• CP even PNGB S

operator S|H|2 we obtain

y2t
16⇡2

m2

⇢

f
S|H|2 ! y2t

16⇡2

1

f

m2

⇢

M2

2S|H|2 + . . . (2.23)

i.e. the resulting operators coe�cients are enhanced by the degree of tuning of the S mass m2

⇢/M
2 7.

Therefore the only two operators of the type Sn|H|2m which can be eliminated without problems

with the tuning or PNGB suppression as in the previous case are S2|H|2 and S3|H|2. This can

be done by applying e.o.m. to S2 or S3 since the coe�cients of S2 or S3 in the S equation of

motion are neither expected to be tuned, nor are loop suppressed. The S field redefinition allowing

to eliminate one of the two mentioned operators is precisely the one of Eq. (2.18), which remained

unused because the operator |DµH|2S can not be excluded for a generic S.

We can now complete the discussion of dimension-five operators. The remaining operators of the

form @µSq̄�µq, @µS@µSS can be removed by the fermion and S field redefinitions without breaking

the power counting. The minimal set of operators up to dimension five following the power counting

in all the discussed scenarios for S can be chosen to be

SX2 S2,4 Sq̄Hq S2|H|2 (2.24)

S3,5 S|DµH|2 S|H|2 S3|H|2 S|H|4 (2.25)

where X2 stands for Xi
µ⌫X

i µ⌫ or 1/2✏µ⌫⇢�Xi µ⌫Xi ⇢� ⌘ Xi
µ⌫X̃

i µ⌫ with X = G,W,B corresponding

to SU(3)c, SU(2)L and U(1)Y gauge field strengths. The presence of the canonically normalized

kinetic term for S is understood. For definiteness we assume that the vacuum expectation value of

S is zero when hhi = 0. Since we will assume a CP conservation, CP-even S will only couple to

Xi
µ⌫X

i µ⌫ and CP-odd S only to Xi
µ⌫X̃

i µ⌫ .

Part of the operators (2.24), (2.25) can be removed depending on the assumptions about S. A

basis for a CP-odd S will only contain the couplings of Eq. (2.24). In the case of a CP-even S the

basis will include all but one operator from the lists (2.24) and (2.25). The operator which can be

removed without power counting breaking is S|DµH|2 for a PNGB S, while for a generic S it is

S2|H|2 or S3|H|2. In the following for definiteness we will remove the operator S2|H|2.
As a final remark it is important to mention that the operations leading to the construction

of the given bases do not violate any of the UV selection rules identified for the Large-N and

Multisite models, namely the possible loop suppression of S-H and S-gauge bosons couplings. Their

preservation trivially follows from the fact that all the modifications related to the field redefinitions

that were used for S and H fields are loop suppressed, while the redefinitions of the gauge bosons

and fermions are never relevant in this respect.

3 Scenarios for Composite H + S

We now present a description of several minimal scenarios for composite H+S, using the operatorial

basis and power counting rules developed in Section 2. Each of the scenarios is intended to capture

7Notice that analogous enhancement would not happen in case of applying the PNGB H e.o.m. since the physical

Higgs mass, which has to be tuned as was discussed in Section 2, receives several di↵erent contributions, e.g. direct

UV contribution encoded into the |H|2 operator, but also the IR one from the loop involving the top Yukawa ytq̄LHtR,

hence generically the coe�cient of |H|2 at S mass scale is not expected to be tuned.
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Table 1. Estimated size of the dimension-5 operators involving S corresponding to the scenarios described
in the text. We do not list the operators for the inert scalar and pseudo-scalar since they are trivially
obtained from the generic ones multiplying them by a loop factor Nfg2⇢/(4⇡)

2. X = G,W,B corresponds to

SU(3)c, SU(2)L and U(1)Y gauge field strengths, X2 stands for either Xi
µ⌫X

i µ⌫ (for scalar S) or Xi
µ⌫

eXi µ⌫

(pseudo-scalar S) while gX is a corresponding SM gauge coupling, q̄q is a bilinear of SM fermions and yq is

a corresponding SM Higgs Yukawa coupling. For PNGB pseudo-scalar with anomaly breaking N (X)
f are the

coe�cients of anomalies associated to SM fields while Ñf is a number of hyperquarks. The empty entries
correspond to the operators which are either redundant or not expected to be generated in a given scenario.

(S|DµH|2, S|H|2) and to the SM fermions (Sq̄Hq). In Appendix B we give the expressions for the

S production cross sections and decay widths induced by the operators listed above.

(H2 � v2) structure?

anything else to say on the pheno? pair production when single production is

suppressed by Z2?

3.2 Implications for Low-Energy Physics

In this section we examine the e↵ects of strong dynamics on the Higgs boson phenomenology at

the level of dimension-6 operators, after integrating out the state S. First of all we notice that the

operators with a pseudo-scalar S will not contribute neither at tree nor at one loop level to the

low-energy dimension-6 operators, hence we will only consider the scalar S scenarios in the reminder

of this section. As was already pointed out, integrating out S at tree level from the operators of

the basis of Table 1 would increase their dimension at least by 1 for each external S field, with

the minimal increase corresponding to a substitution S ! |H|2. This means that the operators

OH3

, O
4

and O
5

will not contribute at dimension-6 at all. The operators OH2

, OH4

and O
3

will

only contribute to the |H|3 operator of the Higgs potential. The form of the resulting corrections

to the Higgs potential together with its derivation is given in Appendix C, while in this section

our main focus will be on the operators which can a↵ect the Higgs couplings with other SM fields.
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• The Higgs physics can be affected as well, due to the mixing
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• Higgs-scalar S mixing affects Higgs phenomenology. We concentrate on 
the effects which can be dominated by S and supersede the SILH effects

• Generic CH effects lead to 

2

II. EFT FOR STRONGLY COUPLED UV COMPLETIONS

We start with the models which assume an existence of a new strongly coupled dynamics, which confines at
a certain scale f , not very far above the electroweak scale, and produces a set of composite resonances, one of
which is S. Such situation can generically occur in some theories attempting to address the gauge hierarchy
problem, such as for instance the Composite Higgs (CH) models [2, 3]. Following the idea presented in the
introduction, we will describe the e↵ect of the rest of strong dynamics using a version of naive dimensional
analysis (NDA) similar to those developed in [7, 8, 20], with a cuto↵ scale m⇢ and a coupling g⇢ ⇠ 1 � 4⇡,
related by m⇢ ⇠ g⇢f . m⇢ and g⇢ correspond to a typical mass and a coupling of the composite resonances.
Matching of these parameters to the parameters appearing in weakly coupled UV completions will be discussed
in Section III. Thus any operator generated by UV physics and involving S, the Higgs boson, SM fermions,
vectors or derivatives will have the following form

m2
⇢f

2

"
(Nf )

g2⇢
(4⇡)2

##L 
g

g⇢

�#g

S

f

�#S

H

f

�#H
"

g⇢q

m3/2
⇢

##q 
gA

m⇢

�#A


p

m⇢

�#p

(II.1)

where #L stands for a number of loops at which the operator is generated, #g for a number of weak (SM)
couplings associated to the elementary states running in the loops, and #S,H,q,A,p for a number of external
S, H, fermions, vector bosons or momenta insertions. Possible reasons for a loop suppression in the operator
include for instance need for elementary fields running in loops (see text below) or Minimal Coupling (MC)
assumption in the sense of [7, 8]. Nf is an enhancement factor of the loop-level operators, reflecting the
multiplicity of states running in a loop. Later on in Section III we will comment more on this point. The
power counting formula (II.1) only refers to the operators generated by the strong dynamics, hence does not
apply for instance to the elementary fields kinetic terms.

An important ingredient of the power counting is the assumptions about symmetry properties of the under-
lying theory. A simple example which will be useful in the following is a shift symmetry of the filed S, weakly
broken by an interaction with an elementary gauge field A. In such case any operator violating S ! S+const
has to involve the parameter which breaks the shift symmetry, i.e. the gauge field coupling strength, be
it associated to the explicit insertions of external fields (#A 6= 0), or to the A fields running in the loops
(#g 6= 0, #L 6= 0). We will present a detailed classification of the symmetry properties related to S in the
next section. As for the Higgs boson, we will concentrate on a well motivated option where it is realized as a
pseudo-Nambu-Goldstone boson (PNGB). For detailed reviews of composite PNGB Higgs we refer the reader
for instance to Ref.s [4–6]. In brief, the Higgs is assumed to arise as a Goldstone boson of a spontaneously
broken strong sector flavour symmetry, which is also weakly broken in an explicit way by the linear mixings
between the strong sector operators and the fermions and gauge bosons of the Standard Model, which are
assumed to be elementary. This type of explicit breaking, usually referred to as Partial Compositeness mech-
anism, is also responsible for generating the SM fermions masses. Hence the largest breaking of the Goldstone
symmetry is typically proportional to the top quark Yukawa coupling. A key parameter of CH models is a
ratio of the electroweak symmetry breaking scale v = 246 GeV to the strong sector global symmetry breaking
scale f , ⇠ = v2/f2, which defines the size of the Higgs couplings deformations with respect to the SM predic-
tions [10, 11]. ⇠ is naturally expected to be of order one, but is already restricted to ⇠ . 0.2 [12, 39], hence
pointing at a certain level of tuning.

III. MATCHING TO LARGE-N THEORIES AND N-SITE MODELS

In this section we simplistically describe two well-known classes of models, which obey the power counting
rules presented in Section II. A reader not interested in technical details behind the formula (II.1) can skip
this section. The first class is confining SU(N) or SO(N) gauge theories with large N and a number of hyper-
fermion generations Nf . For this kind of theories one can identify a regime in which all orders in the gauge

coupling gS expansion of the amplitudes become of the same size, namely N g2
S

16⇡2 ⇠ 1. Hence the size of whole
infinite sums can be estimated from their scaling with N , which is the same as for the leading order diagram.
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Table 2. Contributions of a generic or PNGB scalar S to the dimension-6 operators in the SILH basis,
together with the contributions coming from the generic strong dynamics. Coe�cients for the inert scalar
can be obtained by multiplying with additional loop factors, as described in the text. �i are Pauli matrices.
ci are order-one coe�cients. The loop suppression factors in square brackets apply if we impose MC on the
Higgs sector.
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Figure 2. Regions in M
m⇢

- g⇢4⇡ plane where the contributions to the operators of Tab. 2 induced by a PNGB
(left from the red line) or a generic S (right from the red line) can become larger than those of the generic

strong dynamics. The red line corresponds to M2 = 3y2
t

(4⇡)2m
2
⇢, which we take as a lower bound on the generic

S mass and an upper bound on the PNGB S mass. The orange dashed line corresponds to tan ✓Sh = 1 (for
⇠ = 0.1) and to the left from this line the physical observables start being sensitive to interference of multiple
S-induced operators.

the generic compositeness contributions, induced by OH and Ot. Operators OH and Ot induce order-

⇠ Higgs boson field renormalization and the top quark Yukawa coupling distortion with respect to

the SM values. Hence one can expect that the e↵ective coupling of the Higgs to gluons and photons,
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the generic compositeness contributions, induced by OH and Ot. Operators OH and Ot induce order-

⇠ Higgs boson field renormalization and the top quark Yukawa coupling distortion with respect to

the SM values. Hence one can expect that the e↵ective coupling of the Higgs to gluons and photons,
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validity

•   SM top loop contribution to                 is modified by order      due to the Higgs 
compositeness effects in the operators        and       
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⇠ Higgs boson field renormalization and the top quark Yukawa coupling distortion with respect to

the SM values. Hence one can expect that the e↵ective coupling of the Higgs to gluons and photons,
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•         is dominated by effects of the generic S if                 i.e. in all the regime of 
validity

•   SM top loop contribution to                 is modified by order      due to the Higgs 
compositeness effects in the operators        and       

•   S effect becomes dominant for 

h ! gg

Og

Oq OH

M < m⇢

h ! gg ⇠

mediated by the top loop, resulting from these two operators will be an order-⇠ distortion of the SM

result, i.e.

⇠ g2X
(4⇡)2

⇠
h

v
X2 . (3.2)

Comparing it to the S-mediated direct contribution from Table 2, we conclude that the latter can

become dominant if M2/m2

⇢ . 3y2t /g
2

⇢ for a generic scalar or if M2/m2

⇢ . 9y4t /(4⇡g⇢)
2 for a PNGB

S, which translates into kM . 3y2t /g
2

⇢ for both cases.

OHW , OHB By comparing the coe�cients of Table 2 we conclude that the contribution of S

to the coe�cients of these two operators becomes comparable or larger than the generic estimates

when M2/m2

⇢ . 3y2t /g
2

⇢ and M2/m2

⇢ . 9y4t /(4⇡g⇢)
2 for a generic and PNGB S respectively, but only

if we assume that the Higgs is minimally coupled and corresponding loop factor g2⇢/(4⇡)
2 applies

to the generic estimates. There is however one subtlety. It seems natural to assume that once the

Higgs is coupled minimally, the same should apply to S, so we should change our estimate of SX2

coupling in the case of a generic S such that kg,W,B ! (g2⇢/(4⇡)
2) kg,W,B (hence we are in the inert

scalar scenario). No additional factors would be needed for a PNGB S since its LO coupling to

gauge bosons is already loop suppressed. After this modification we see that only the PNGB S can

give sizeable contributions to OHW and OHB. The main physical process sensitive to these two

operators is the h ! Z� decay.

Oq This operator can be sensitive to the presence of PNGB S in the regimeM2/m2

⇢ . 3y2t /(4⇡)
2,

i.e. for kM . 1. It a↵ects a variety of Higgs observables, including the partial widths of h ! qq,

h ! gg, h ! ��, h ! Z� which all receive contributions from top quark loops.

OH Also in this case only the PNGB S can give the contribution which is larger than that of

the generic strong dynamics, again with a requirement kM . 1. Given that this operator leads to

the Higgs wave function renormalization, it a↵ects all the Higgs decay and production channels. It

also controls the energy growth of the longitudinal gauge bosons scattering amplitudes.

Notice, that the large modifications of Higgs physics observables come at a price of a large mixing

between h and S, defined by tan ✓hS = kH1

3y2t
(4⇡)2

m2
⇢

M2
v
f . When the mixing approaches order one, the

interference between several BSM operators becomes sizeable and has to be accounted for when

computing their impact on physical observables. For instance, the Higgs-gluon coupling originating

from Og in the generic S scenario can be written as kg tan ✓hS
h
fGµ⌫Gµ⌫ and grows with tan ✓hS .

But after accounting for the h field renormalization induced by OH � tan ✓2hS(@µh)
2/2, the h-gluons

coupling becomes kg tan ✓hS(1 + tan ✓2hS)
�1/2 h

fGµ⌫Gµ⌫ , hence one achieves the expected result that

the coupling is proportional to sin ✓hS which saturates at 1.

The e↵ects of S typically lead to order-⇠ modifications of the discussed observables and distort

the pattern of deviations predicted by SILH. In Appendix D we present the full dependence of the

mentioned observables on the operator coe�cients listed in 2. The obtained conditions for sensitivity

of the di↵erent operators to S are summarized graphically on Fig. 2.

4 Specific models

4.1 SO(6) ⇥ U(1)0/SO(5) ⇥ U(1)0

Let us consider first a composite Higgs model based on the symmetry breaking pattern G/H =

SO(6)⇥ U(1)0/SO(5)⇥ U(1)0 [6]. The addition of a spectator group U(1)0 is required in order the
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together with the contributions coming from the generic strong dynamics. Coe�cients for the inert scalar
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Figure 2. Regions in M
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- g⇢4⇡ plane where the contributions to the operators of Tab. 2 induced by a PNGB
(left from the red line) or a generic S (right from the red line) can become larger than those of the generic

strong dynamics. The red line corresponds to M2 = 3y2
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(4⇡)2m
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⇢, which we take as a lower bound on the generic

S mass and an upper bound on the PNGB S mass. The orange dashed line corresponds to tan ✓Sh = 1 (for
⇠ = 0.1) and to the left from this line the physical observables start being sensitive to interference of multiple
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the generic compositeness contributions, induced by OH and Ot. Operators OH and Ot induce order-

⇠ Higgs boson field renormalization and the top quark Yukawa coupling distortion with respect to

the SM values. Hence one can expect that the e↵ective coupling of the Higgs to gluons and photons,
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•SILH gives estimates for the “generic” compositeness effects, hence S effects 
become enhanced when its mass deviate from the power counting  
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affects all the Higgs couplings
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Table 2. Contributions of a generic or PNGB scalar S to the dimension-6 operators in the SILH basis,
together with the contributions coming from the generic strong dynamics. Coe�cients for the inert scalar
can be obtained by multiplying with additional loop factors, as described in the text. �i are Pauli matrices.
ci are order-one coe�cients. The loop suppression factors in square brackets apply if we impose MC on the
Higgs sector.
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Figure 2. Regions in M
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- g⇢4⇡ plane where the contributions to the operators of Tab. 2 induced by a PNGB
(left from the red line) or a generic S (right from the red line) can become larger than those of the generic

strong dynamics. The red line corresponds to M2 = 3y2
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(4⇡)2m
2
⇢, which we take as a lower bound on the generic

S mass and an upper bound on the PNGB S mass. The orange dashed line corresponds to tan ✓Sh = 1 (for
⇠ = 0.1) and to the left from this line the physical observables start being sensitive to interference of multiple
S-induced operators.
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•SILH gives estimates for the “generic” compositeness effects, hence S effects 
become enhanced when its mass deviate from the power counting  

M2 = m2
⇢

M2 =
Ncy2t
(4⇡)2

m2
⇢

h ! Z�

h ! gg, h ! ��

h ! gg, h ! ��hq̄q,

affects all the Higgs couplings

•The PNGB S has the largest impact on the Higgs physics because of the larger 
expected mixing: both             and       are loop suppressed, hence the suppression 
cancels out from the mixing angle

S|H|2 S2

tan� ⇠ 1

•S effects get stronger for smaller S masses and lower  g⇢



Summary

We provided a simple description of a new composite scalar 
accompanying the composite Higgs, extending the SILH 
framework

We derived the relations between the patterns of S and H 
couplings and the structure of the underlying theory 

 The proposed strategy can be extended to higher order 
operators, theories with extra symmetries, light S scenarios



Thank you!


