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It is likely that mass scale Λ of BSM particles is beyond kinematic reach of the LHC

If that is true, effective field theory (EFT) approach may be only way to collect partial 
information about BSM structure (much like Fermi theory taught us something about W 
and Z before they could be produced)

Even if new particles can be reached directly, EFT is useful and compact framework for 
practical calculations at E << Λ (much like we still use Fermi effective theory to 
calculate weak decays of particles with m << mZ)  

Fantastic Beasts and Where To Find Them
CMS

Imaginary  

Λ
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SM EFT
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SM EFT Approach to BSM
Much as in SM, relativistic QFT with linearly realized SU(3)xSU(2)xU(1) local 
symmetry spontaneously broken by VEV of Higgs doublet field

Mass scale Λ of new particles separated from characteristic energy scale E of 
experiment, Λ >> E, such that experimental observables can be expanded in 
powers of E/Λ

Basic assumptions

SM EFT Lagrangian  expanded in inverse powers of Λ, equivalently in operator dimension D 

X X X
Lepton number or B-L violating, 

hence too small to probed at present  
and near-future colliders

By assumption, 
subleading

to D=6

Generated by integrating out 
heavy particle with mass scale Λ
In large class of BSM models, 

describe leading effects of new physics
on collider observables at E << Λ
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Framework general enough to describe leading effects of a large class (though not 
all!) of BSM scenarios

Theoretical correlations between signal and background and different signal 
channels taken into account 

Very easy to recast SM EFT results as constraints on specific BSM models 

SM EFT is consistent QFT, so that calculations and predictions can be systematically 
improved (higher-loops, higher order terms in EFT expansion if needed). In 
particular, SM EFT is renormalizable at each order in 1/Λ expansion

Some tools to assess validity of 1/Λ expansion 

Advantages of SM EFT 
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Chapter II.2. EFT Formalism 289

Table 99: Four-fermion operators in the SILH basis. They are the same as in the Warsaw basis [614], except that
the operators [O``]1221, [O``]1122, [Ouu]3333 are absent by definition. In this table, e, u, d are always right-handed
fermions, while ` and q are left-handed. A flavour index is implicit for each fermion field. For complex operators
the complex conjugate operator is implicit.

(L̄L)(L̄L) and (L̄R)(L̄R)

O``
1
v2 (¯̀�µ`)(¯̀�µ`)

Oqq
1
v2 (q̄�µq)(q̄�µq)

O0
qq

1
v2 (q̄�µ�iq)(q̄�µ�iq)

O`q
1
v2 (¯̀�µ`)(q̄�µq)

O0
`q

1
v2 (¯̀�µ�i`)(q̄�µ�iq)

Oquqd
1
v2 (q̄ju)✏jk(q̄kd)

O0
quqd

1
v2 (q̄jT au)✏jk(q̄kT ad)

O`equ
1
v2 (¯̀je)✏jk(q̄ku)

O0
`equ

1
v2 (¯̀j�µ⌫e)✏jk(q̄k�µ⌫u)

O`edq
1
v2 (¯̀je)(d̄qj)

(R̄R)(R̄R)

Oee
1
v2 (ē�µe)(ē�µe)

Ouu
1
v2 (ū�µu)(ū�µu)

Odd
1
v2 (d̄�µd)(d̄�µd)

Oeu
1
v2 (ē�µe)(ū�µu)

Oed
1
v2 (ē�µe)(d̄�µd)

Oud
1
v2 (ū�µu)(d̄�µd)

O0
ud

1
v2 (ū�µT au)(d̄�µT ad)

(L̄L)(R̄R)

O`e
1
v2 (¯̀�µ`)(ē�µe)

O`u
1
v2 (¯̀�µ`)(ū�µu)

O`d
1
v2 (¯̀�µ`)(d̄�µd)

Oeq
1
v2 (q̄�µq)(ē�µe)

Oqu
1
v2 (q̄�µq)(ū�µu)

O0
qu

1
v2 (q̄�µT aq)(ū�µT au)

Oqd
1
v2 (q̄�µq)(d̄�µd)

O0
qd

1
v2 (q̄�µT aq)(d̄�µT ad)

v ! v(1 + �v), gs ! gs(1 + �gs), g ! g(1 + �g), g0 ! g0(1 + �g0),

� ! �(1 + ��), h ! (1 + �1)h + �2h
2/v + �3h

3/v2, (II.2.5)

where the free parameters �i are O(⇤�2) in the EFT expansion. Note that the non-linear transformation
of the Higgs boson field does not generate any new interaction terms at O(⇤�2) in the effective La-
grangian that cannot be generated by D=6 operators.II.5 In addition, one is free to add to the Lagrangian
a total derivative and/or interactions terms that vanish by equations of motion. These redefinitions of
course do not change the physical predictions or symmetries of the theory. However, they allow one to
bring the theory to a more convenient form to perform practical calculations.II.6 We will use this freedom
to demand that the mass eigenstate Lagrangian has the following features:

#1 All kinetic and mass terms are diagonal and canonically normalized. In particular, higher-derivative
kinetic terms are absent.

#2 The non-derivative photon and gluon interactions with fermions are the same as in the SM.
#3 Tree-level relations between the electroweak parameters and input observables are the same as the

SM ones in Eq. (II.2.4).
#4 Two-derivative self-interactions of the Higgs boson (e.g. h@µh@µh) are absent.
#5 In the Higgs boson interactions with gauge bosons, the derivative does not act on the Higgs (e.g.,

there is no @µhV⌫Vµ⌫ terms).
#6 For each fermion pair, the coefficient of the vertex-like Higgs interaction terms

⇣

2h
v + h2

v2

⌘

Vµf̄�µf

is equal to the vertex correction to the respective Vµf̄�µf interaction.

II.5For example, applied to the h4 self-interaction term in the SM Lagrangian, it generates h5 and h6 self-interactions at
O(⇤�2), which are also generated by the O6 operator in the SILH basis. Rather than applying the non-linear transformation,
one can equivalently use the equations of motion for the Higgs boson field.

II.6Editor footnote: Another point of view is expressed in Section II.2.3, where it is argued that this kind of transformations
make one-loop calculations harder to develop.

Many possible D=6 operators!

Giudice et al  hep-ph/0703164
Contino et al 1303.3876 

Full set has 2499 distinct operators, 
including flavor structure and CP conjugates

Alonso et al 1312.2014, Henning et al 1512.03433
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The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1p
2v2

, ↵ =
g2g02

4⇡(g2 + g02)
, mZ =

p

g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.

Table 97: Bosonic D=6 operators in the SILH basis.

Bosonic CP-even

OH
1

2v2

⇥

@µ(H†H)
⇤2

OT
1

2v2

⇣

H† !DµH
⌘2

O6 � �
v2 (H†H)3

Og
g2
s

m2
W

H†H Ga
µ⌫Ga

µ⌫

O�
g02

m2
W

H†H Bµ⌫Bµ⌫

OW
ig

2m2
W

⇣

H†�i !DµH
⌘

D⌫W i
µ⌫

OB
ig0

2m2
W

⇣

H† !DµH
⌘

@⌫Bµ⌫

OHW
ig

m2
W

�

DµH†�iD⌫H
�

W i
µ⌫

OHB
ig0

m2
W

�

DµH†D⌫H
�

Bµ⌫

O2W
1

m2
W

DµW i
µ⌫D⇢W i

⇢⌫

O2B
1

m2
W

@µBµ⌫@⇢B⇢⌫

O2G
1

m2
W

DµGa
µ⌫D⇢Ga

⇢⌫

O3W
g3

m2
W

✏ijkW i
µ⌫W j

⌫⇢W
k
⇢µ

O3G
g3
s

m2
W

fabcGa
µ⌫Gb

⌫⇢G
c
⇢µ

Bosonic CP-odd

eOg
g2
s

m2
W

H†H eGa
µ⌫Ga

µ⌫

eO�
g02

m2
W

H†H eBµ⌫Bµ⌫

eOHW
ig

m2
W

�

DµH†�iD⌫H
�

fW i
µ⌫

eOHB
ig

m2
W

�

DµH†D⌫H
�

eBµ⌫

eO3W
g3

m2
W

✏ijk
fW i

µ⌫W j
⌫⇢W

k
⇢µ

eO3G
g3
s

m2
W

fabc
eGa

µ⌫Gb
⌫⇢G

c
⇢µ

The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.

One example of non-redundant set, 
so-called SILH basis
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.

Vertex

[OH`]ij
i

v2
¯̀
i�µ`jH† !DµH

[O0
H`]ij

i
v2

¯̀
i�k�µ`jH†�k !DµH

[OHe]ij
i

v2 ēi�µējH† !DµH

[OHq]ij
i

v2 q̄i�µqjH† !DµH

[O0
Hq]ij

i
v2 q̄i�k�µqjH†�k !DµH

[OHu]ij
i

v2 ūi�µujH† !DµH

[OHd]ij
i

v2 d̄i�µdjH† !DµH

[OHud]ij
i

v2 ūi�µdjH̃†DµH

Yukawa and Dipole

[Oe]ij

p
2mei

mej

v3 H†H ¯̀
iHej

[Ou]ij

p
2mui

muj

v3 H†Hq̄i
eHuj

[Od]ij

p
2mdi

mdj

v3 H†Hq̄iHdj

[OeW ]ij
g

m2
W

p
2mei

mej

v
¯̀
i�kH�µ⌫ejW k

µ⌫

[OeB ]ij
g0

m2
W

p
2mei

mej

v
¯̀
iH�µ⌫ejBµ⌫

[OuG]ij
gs

m2
W

p
2mui

muj

v q̄iH̃�µ⌫T aujGa
µ⌫

[OuW ]ij
g

m2
W

p
2mui

muj

v q̄i�kH̃�µ⌫ujW k
µ⌫

[OuB ]ij
g0

m2
W

p
2mui

muj

v q̄iH̃�µ⌫ujBµ⌫

[OdG]ij
gs

m2
W

p
2mdi

mdj

v q̄iH�µ⌫T adjGa
µ⌫

[OdW ]ij
g

m2
W

p
2mdi

mdj

v q̄i�kH�µ⌫djW k
µ⌫

[OdB ]ij
g0

m2
W

p
2mdi

mdj

v q̄iH�µ⌫djBµ⌫

II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
µ ! (1 + �W )W±

µ , Zµ ! (1 + �Z)Zµ, Aµ ! (1 + �A)Aµ + �AZZµ,
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Corrections to Higgs self-
couplings

Corrections to SM Z and W 
boson couplings to fermions 
(so-called vertex corrections) 

Corrections to SM Higgs 
couplings to matter and new 
tensor structures of these 
interactions

Corrections to triple and 
quartic gauge couplings and 
new tensor structures of 
these interactions  

Contact 4-fermion 
interactions

... and much more 

Observable effects of D=6 operators

One flavor (I = 1 . . . 3) Two flavors (I < J = 1 . . . 3)
[O``]IIII =

1
2(
¯̀
I �̄µ`I)(¯̀I �̄µ`I) [O``]IIJJ = (¯̀I �̄µ`I)(¯̀J �̄µ`J)

[O``]IJJI = (¯̀I �̄µ`J)(¯̀J �̄µ`I)
[O`e]IIII = (¯̀I �̄µ`I)(ecI�µēcI) [O`e]IIJJ = (¯̀I �̄µ`I)(ecJ�µēcJ)

[O`e]JJII = (¯̀J �̄µ`J)(ecI�µēcI)
[O`e]IJJI = (¯̀I �̄µ`J)(ecJ�µēcI)

[Oee]IIII =
1
2(e

c
I�µēcI)(e

c
I�µēcI) [Oee]IIJJ = (ecI�µēcI)(e

c
J�µēcJ)

Table 1: The full set of lepton flavor conserving 4-lepton operators in the D=6 EFT Lagrangian.

Here, �m parametrizes the relative correction to the W boson mass that may arise in the presence
of D=6 operators. By construction, there is no correction to the Z boson mass: a possible shift
due to D=6 operators has been absorbed into the definition of the electroweak parameters gL, gY
and v. For the sake of our analysis we need to define the interactions of leptons with the SM gauge
fields in the e↵ective Lagrangian:

Lv``
e↵ = �eAµ(ēI �̄µeI + ecI�µē

c
I) +

gLp
2

⇥

W+
µ ⌫̄I �̄µ(1 + �gWeI

L )eI + h.c.
⇤

+
q

g2L + g2YZµ

⇥


⌫̄I �̄µ

✓

1

2
+ �gZeI

L + �gW `I
L

◆

⌫I + ēI �̄µ

✓

�1

2
+ s2✓ + �gZeI

L

◆

eI + ecI�µ

�

s2✓ + �gZeI
R

�

ēcI

�

,

(3)

Here, the e↵ects of D = 6 operators are parameterized by the vertex corrections �g. All �g’s
in Eq. (3) are independent parameters, which in general may depend on the lepton flavor. By
construction, there is no vertex corrections to photon interactions. The parameters �g can be
related by a linear transformation to Wilson coe�cients of D=6 operators in any particular basis,
see Ref. [31] for a map to popular bases used in the literature. Therefore, �g’s are O(⇤�2) in the
EFT expansion. Note that the vertex corrections to neutrino interactions with Z in Eq. (3) are
expressed by the other vertex corrections: �gZ⌫I

L = �gZeI
L + �gWeI

L . This relation is a consequence
of the linearly realized SM gauge symmetry and the absence of operators with D > 6 in the
Lagrangian, and holds independently of the basis of D=6 operators employed in Eq. (1).

The main focus of this paper is on the lepton-flavor conserving 4-lepton operators in Eq. (1)
summarized in Table 2. Overall, there is 3 ⇥ 3 + 3 ⇥ 6 = 27 such operators. Three of those,
denoted [O`e]IJJI , are complex, in which case the corresponding Wilson coe�cient is complex,
and the Hermitian conjugate operator is included in Eq. (1). The goal of this paper is to derive
simultaneous constraints on the Wilson coe�cients of (as many as possible) 4-lepton operators and
the leptonic vertex corrections in Eq. (3). In our framework, the remaining parameter introduced
above - the W mass correction �m in Eq. (2) - is related to the leptonic vertex corrections and one
4-lepton operators [31]:

�m =
�gWe

L + �gWµ
L

2
� [c``]1221

4
. (4)

Again, this relation is a consequence of the linearly realized SM gauge symmetry and the absence
of operators with dimensions greater than 6. It also ensures that the Fermi constant GF measured
in muon decays is given at tree-level by GF = 1/

p
2v2. This way, the tree-level relations between

4

Important: correlations 
between different 

parameters describing 
deviations from SM
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At first sight, working with a theory with 2499 parameters seems hopeless

However, typically a much smaller set of operators relevant for given process. This 
is especially true if EFT corrections are calculated at tree level only

Moreover, using constraints from previous experiments (e.g. from low-energy 
precision experiments) may further reduce number of parameters relevant for 
given experimental observable 

Less generally, imposing flavor symmetries greatly reduces (by O(100)) number of 
independent dimension-6 coefficients 

Importance of convenient parametrization of space of dimension-6 operators that 
makes explicit directions that are very well constrained and those that are  
poorly constrained

Importance of global fits to make full use of experimental constraints

SM EFT in practice
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Bird’s eye view of dimension-6 space 

EWPT

Flavo
r

Higgs

Warsaw or SILH 
Basis

x

y

z

x’

y’

e.g. 

contributes both 
to Higgs couplings and 
to W/Z mass difference 

stron
gly c

onstr
ained

somewhat constrained

re
la
tiv

el
y 

un
co

ns
tr

ain
ed
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EFT primaries
To characterize dimension-6 parameter space, more transparent to rotate 
basis and use linear combination of Wilson coefficients that map directly 

to particular “measurable” couplings in mass eigenstate Lagrangian 

SILH or Warsaw or another set
of 2499 Wilson coefficients of 

dimension-6 operators 

Set of 2499 couplings in mass eigenstate 
Lagrangian describing independent 
deformations of SM Lagrangian

Linear
transformation

Gupta et al 1405.0181 

Bosonic

2f Vertex 

2f Yukawa

2f Dipole  

4-fermion

EWPT constrained

Higgs constrained

Flavor constrained
Dipoles

4-fermion

LHCHXSWG 1610.07922
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Z coupling to charged leptons constrained at 0.1% level, W couplings to leptons 
constrained at 1% level. Some couplings to quarks (bottom, charm) also constrained 
at 1% level 

Some couplings very weakly constrained in a model-independent way, in particular 
Z couplings to light quarks (though their combination affecting *total* hadronic Z-
width is strongly constrained) 

Pole observables - constraints
All diagonal vertex corrections except for δgWqR and δgZtR 

 simultaneously constrained in a completely  model-independent way

Efrati,AA,Soreq
1503.07872

Next, we derive the constraints on the δg’s when all of them are simultaneously present and
a-priori unrelated by the UV theory. Minimizing our χ2 function with respect to δg we obtain the
following central values and 1σ errors:

[δgWe
L ]ii =




−1.00± 0.64
−1.36± 0.59
1.95± 0.79



× 10−2, (4.5)

[δgZe
L ]ii =




−0.26± 0.28
0.1± 1.1
0.16± 0.58



× 10−3, [δgZe
R ]ii =




−0.37± 0.27
0.0± 1.3
0.39± 0.62



× 10−3, (4.6)

[δgZu
L ]ii =




−0.8± 3.1
−0.16± 0.36
−0.28± 3.8



× 10−2, [δgZu
R ]ii =




1.3± 5.1
−0.38± 0.51

×



× 10−2, (4.7)

[δgZd
L ]ii =




−1.0± 4.4
0.9± 2.8
0.33± 0.16



× 10−2, [δgZd
R ]ii =




2.9± 16
3.5± 5.0
2.30± 0.82



× 10−2. (4.8)

The corresponding 20× 20 correlation matrix is given in Appendix B.
As for the off diagonal couplings, we find:

√
|[δgZe

L ]12|2 + |[δgZe
R ]12|2 < 1.2× 10−3,

√
|[δgZe

L ]13|2 + |[δgZe
R ]13|2 < 4.3× 10−3,

√
|[δgZe

L ]23|2 + |[δgZe
R ]23|2 < 4.8× 10−3, (4.9)

where the measured central value of the Z width is used and

√
|[δgZu

L ]13|2 + |[δgZu
R ]13|2 + |[δgZu

L ]23|2 + |[δgZu
R ]23|2 < 1.6× 10−2

(
Γt

1.35GeV

)1/2

, (4.10)

at the 95% CL. Here we take ΓSM
t # 1.35GeV for mt = 173 GeV [53].

Using the above central values δg0, uncertainties δgσ and the correlation matrix ρ one can
reconstruct the dependence of the global χ2 function on the vertex corrections:

χ2 =
∑

ij

[δg − δg0]iσ
−2
ij [δg − δg0]j , (4.11)

where σ−2
ij = [[δgσ]iρij [δgσ]j]−1. In specific extensions of the SM, the vertex corrections will be

functions of a (typically smaller) number of the model parameters. In this case, the global χ2

function can be minimized with respect to the new parameters, and thus limits on this particular
model can be obtained. This way our results can be used to obtain the constraints on any specific
UV model.

From our results for the vertex corrections, Eq. (4.5)–Eq. (4.8), we learn the following:

• Globally, the fit is in a very good agreement with the SM, corresponding to the p-value of
order 40%.

9
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All leptonic couplings constrained at per-
mille level, all quark couplings constrained at 
1% level or better 

Pole constraints - flavor blind
Efrati,AA,Soreq

1503.07872

Thursday, February 16, 17



There’s 27 lepton-flavor conserving 4-lepton operators, 3 of which are complex, 
however not all are currently probed by experiment

Using e+e- -> ll scattering in LEP-2, low-energy neutrino scattering on electrons, 
W mass measurement, low-energy parity violating Moller scattering, and muon 
and tau decays 

All these observables depend also on leptonic vertex corrections, so combination 
with previous pole constraints is necessary

Off-Pole constraints on 4-lepton observables
One flavor (I = 1 . . . 3) Two flavors (I < J = 1 . . . 3)

[O``]IIII =
1
2(
¯̀
I �̄µ`I)(¯̀I �̄µ`I) [O``]IIJJ = (¯̀I �̄µ`I)(¯̀J �̄µ`J)

[O``]IJJI = (¯̀I �̄µ`J)(¯̀J �̄µ`I)
[O`e]IIII = (¯̀I �̄µ`I)(ecI�µēcI) [O`e]IIJJ = (¯̀I �̄µ`I)(ecJ�µēcJ)

[O`e]JJII = (¯̀J �̄µ`J)(ecI�µēcI)
[O`e]IJJI = (¯̀I �̄µ`J)(ecJ�µēcI)

[Oee]IIII =
1
2(e

c
I�µēcI)(e

c
I�µēcI) [Oee]IIJJ = (ecI�µēcI)(e

c
J�µēcJ)

Table 1: The full set of lepton flavor conserving 4-lepton operators in the D=6 EFT Lagrangian.

Here, �m parametrizes the relative correction to the W boson mass that may arise in the presence
of D=6 operators. By construction, there is no correction to the Z boson mass: a possible shift
due to D=6 operators has been absorbed into the definition of the electroweak parameters gL, gY
and v. For the sake of our analysis we need to define the interactions of leptons with the SM gauge
fields in the e↵ective Lagrangian:
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e↵ = �eAµ(ēI �̄µeI + ecI�µē
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L
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s2✓ + �gZeI
R

�

ēcI

�

,

(3)

Here, the e↵ects of D = 6 operators are parameterized by the vertex corrections �g. All �g’s
in Eq. (3) are independent parameters, which in general may depend on the lepton flavor. By
construction, there is no vertex corrections to photon interactions. The parameters �g can be
related by a linear transformation to Wilson coe�cients of D=6 operators in any particular basis,
see Ref. [31] for a map to popular bases used in the literature. Therefore, �g’s are O(⇤�2) in the
EFT expansion. Note that the vertex corrections to neutrino interactions with Z in Eq. (3) are
expressed by the other vertex corrections: �gZ⌫I

L = �gZeI
L + �gWeI

L . This relation is a consequence
of the linearly realized SM gauge symmetry and the absence of operators with D > 6 in the
Lagrangian, and holds independently of the basis of D=6 operators employed in Eq. (1).

The main focus of this paper is on the lepton-flavor conserving 4-lepton operators in Eq. (1)
summarized in Table 2. Overall, there is 3 ⇥ 3 + 3 ⇥ 6 = 27 such operators. Three of those,
denoted [O`e]IJJI , are complex, in which case the corresponding Wilson coe�cient is complex,
and the Hermitian conjugate operator is included in Eq. (1). The goal of this paper is to derive
simultaneous constraints on the Wilson coe�cients of (as many as possible) 4-lepton operators and
the leptonic vertex corrections in Eq. (3). In our framework, the remaining parameter introduced
above - the W mass correction �m in Eq. (2) - is related to the leptonic vertex corrections and one
4-lepton operators [31]:

�m =
�gWe

L + �gWµ
L

2
� [c``]1221

4
. (4)

Again, this relation is a consequence of the linearly realized SM gauge symmetry and the absence
of operators with dimensions greater than 6. It also ensures that the Fermi constant GF measured
in muon decays is given at tree-level by GF = 1/

p
2v2. This way, the tree-level relations between

4

AA,Mimouni
1511.07434

One flavor (I = 1 . . . 3) Two flavors (I < J = 1 . . . 3)
[O``]IIII =

1
2(
¯̀
I �̄µ`I)(¯̀I �̄µ`I) [O``]IIJJ = (¯̀I �̄µ`I)(¯̀J �̄µ`J)

[O``]IJJI = (¯̀I �̄µ`J)(¯̀J �̄µ`I)
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[O`e]IJJI = (¯̀I �̄µ`J)(ecJ�µēcI)
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J�µēcJ)

Table 1: The full set of lepton flavor conserving 4-lepton operators in the D=6 EFT Lagrangian.

Here, �m parametrizes the relative correction to the W boson mass that may arise in the presence
of D=6 operators. By construction, there is no correction to the Z boson mass: a possible shift
due to D=6 operators has been absorbed into the definition of the electroweak parameters gL, gY
and v. For the sake of our analysis we need to define the interactions of leptons with the SM gauge
fields in the e↵ective Lagrangian:

Lv``
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summarized in Table 2. Overall, there is 3 ⇥ 3 + 3 ⇥ 6 = 27 such operators. Three of those,
denoted [O`e]IJJI , are complex, in which case the corresponding Wilson coe�cient is complex,
and the Hermitian conjugate operator is included in Eq. (1). The goal of this paper is to derive
simultaneous constraints on the Wilson coe�cients of (as many as possible) 4-lepton operators and
the leptonic vertex corrections in Eq. (3). In our framework, the remaining parameter introduced
above - the W mass correction �m in Eq. (2) - is related to the leptonic vertex corrections and one
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Off-Pole + Pole constraints combined

Full correlation matrix also calculated

Typical constraints at 1% level

Flat directions for electron-tau 
operators: no additional observables 
to break LEP-2 degeneracy

Minimizing the likelihood function I get the following global constraints:
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Higgs Basis - parameters
EFT parameters along EWPT unconstrained directions  

affecting LHC Higgs observables at leading order

Higgs couplings to 
gauge bosons

Higgs couplings to
fermions

Higgs couplings to
itself

Assuming Minimal Flavor Violation, and that 
parameters strongly constrained at LO by 

EWPT can be ignored, 
we have 10 CP-even and 6 CP-odd 

parameters to be constrained by LHC 
Higgs analyses

The dipole-type contact interactions of the Higgs boson are parametrized as:

Ldipole = � h

4v2

2

4gs
X

f2u,d

pmfimfj

v
f̄L,i�µ⌫T

a[dhGf ]ijfR,jG
a
µ⌫ + e

X

f2u,d,e

pmfimfj

v
f̄L,i�µ⌫ [dhAf ]ijfR,jAµ⌫

+
p
g2 + g02

X

f2u,d,e

pmfimfj

v
f̄L,i�µ⌫ [dhZf ]ijfR,jZµ⌫

+
p
2g

p
muimuj

v
d̄L,i�µ⌫ [dhWu]ijuR,jW

�
µ⌫ +

p
2g

pmdimdj

v
ūL,i�µ⌫ [dhWd]ijdR,jW

+
µ⌫

+
p
2g

p
meimej

v
⌫̄L,i�µ⌫ [dhWe]ijeR,jW

+
µ⌫

�
+ h.c.,

(3.22)

where dhAf , , dhZf , and dhWf are general complex 3 ⇥ 3 matrices. The coe�cients are simply
related to the corresponding dipole interactions in Eq. (3.10):

dhV f = dV f . (3.23)

Dimension-6 operators can also induce single Higgs couplings to more than 2 gauge bosons,
but we do not display them here.

Higgs boson self-couplings and double Higgs couplings

The cubic Higgs boson self-coupling and couplings of two Higgs boson fields to matter play a role
in the EFT description of double Higgs production [31, 32]. The cubic Higgs boson self-coupling
is parametrized as

Lh,self = �(�+ ��3)vh
3. (3.24)

The relation between the cubic Higgs coupling correction and the Wilson coe�cients in the SILH
basis is given by

��3 = �

✓
c̄6 � 3

2
c̄H � 1

2
[c̄0H`]22

◆
. (3.25)

In accordance with the condition #4, the 2-derivative Higgs boson self-couplings have been traded
for other equivalent interactions and do not occur in the mass eigenstate Lagrangian. Self-
interactions terms with 4, 5, and 6 Higgs boson fields may also arise from dimension-6 operators,
but we do not display them here.

The interactions between two Higgs bosons and two other SM fields are parametrized as
follows:

Lhh = h2
⇣
1 + 2�c(2)z

⌘ g2 + g02

4
ZµZµ + h2

⇣
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2
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f ]ijfj,L + h.c.

i
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. (3.26)
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BSM corrections to Higgs couplings in mass eigenstate Lagrangian can be related 
by linear transformation to Wilson coefficients of any basis of D=6 operators

Unexpected dependence of fermionic operators due to rescaling of SM couplings

Corrections to Higgs and other SM couplings are O(1/Λ^2) in  EFT expansion.

Higgs couplings to matter

Example:
Higgs couplings 
expressed by 

SILH Wilson coefficients 

See 
LHCHXSWG-INT-2015-001

for full dictionary and other bases 
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(II.2.20)

where all the couplings above are real. The terms in the first two lines describe corrections to the SM
Higgs boson couplings to W and Z, while the remaining terms introduce Higgs boson couplings to gauge
bosons with a tensor structure that is absent in the SM Lagrangian. Note that, using equations of motion,
we could get rid of certain 2-derivative interactions between the Higgs and gauge bosons: hZµ@⌫Z⌫µ,
hZµ@⌫A⌫µ, and hW±

µ @⌫W⌥
⌫µ. These interactions would then be traded for contact interactions of the

Higgs, gauge bosons and fermions in Eq. (II.2.11). However, one of the defining features of our effective
Lagrangian is that the coefficients of the latter couplings are equal to the corresponding vertex correction
in Eq. (II.2.11). This form can be always obtained, without any loss of generality, starting from an arbi-
trary dimension-6 Lagrangian provided the 2-derivative hVµ@⌫V⌫µ are kept in the Lagrangian. Note that
we work in the limit where the neutrinos are massless and the Higgs boson does not couple to the neu-
trinos. In the EFT context, the couplings to neutrinos induced by dimension-5 operators are proportional
to neutrino masses, therefore they are far too small to have any relevance for LHC phenomenology.

The shifts of the Higgs boson couplings to W and Z bosons are related to the Wilson coefficients
in the SILH basis by

�cw = �1

2
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g2 � g02


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The two-derivative Higgs boson couplings to gauge bosons are related to the Wilson coefficients in the
SILH basis by
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c̃gg =
16

g2
c̃g,
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where all the couplings above are real. The terms in the first two lines describe corrections to the SM
Higgs boson couplings to W and Z, while the remaining terms introduce Higgs boson couplings to gauge
bosons with a tensor structure that is absent in the SM Lagrangian. Note that, using equations of motion,
we could get rid of certain 2-derivative interactions between the Higgs and gauge bosons: hZµ@⌫Z⌫µ,
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Higgs, gauge bosons and fermions in Eq. (II.2.11). However, one of the defining features of our effective
Lagrangian is that the coefficients of the latter couplings are equal to the corresponding vertex correction
in Eq. (II.2.11). This form can be always obtained, without any loss of generality, starting from an arbi-
trary dimension-6 Lagrangian provided the 2-derivative hVµ@⌫V⌫µ are kept in the Lagrangian. Note that
we work in the limit where the neutrinos are massless and the Higgs boson does not couple to the neu-
trinos. In the EFT context, the couplings to neutrinos induced by dimension-5 operators are proportional
to neutrino masses, therefore they are far too small to have any relevance for LHC phenomenology.
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The two-derivative Higgs boson couplings to gauge bosons are related to the Wilson coefficients in the
SILH basis by
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c̃gg =
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The relation between the cubic Higgs boson coupling correction and the Wilson coefficients in the SILH
basis is given by
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In accordance with the condition #4, the 2-derivative Higgs boson self-couplings have been traded for
other equivalent interactions and do not occur in the mass eigenstate Lagrangian. Self-interactions terms
with 4, 5, and 6 Higgs boson fields may also arise from dimension-6 operators, but we do not display
them here.

The interactions between two Higgs bosons and two other SM fields are parameterized as follows:
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⇣
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⇣
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h2
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. (II.2.30)

All double Higgs boson couplings arising from D=6 operators can be expressed by the single Higgs
boson couplings:

�c(2)
z = �cz, �c(2)

w = �cz + 3�m,

[y(2)
f ]ij = 3[�yf ]ije

i�ij � �cz �ij ,

c(2)
vv = cvv, c̃(2)

vv = c̃vv, v 2 {g, w, z, �},

c(2)
v⇤ = cv⇤, v 2 {w, z, �}. (II.2.31)

Other interaction terms with two Higgs bosons involve at least 5 fields: e.g the h2V 3 or h2ffV contact
interactions, and are not displayed here.

Other terms
In this section we have written down the interaction terms of mass eigenstates in the D=6 EFT La-
grangian which are most relevant for LHC Higgs phenomenology. They either enter the single and
double Higgs boson production at tree level, or they affect electroweak precision observables that are
complementary to Higgs boson couplings measurements. The remaining terms in the mass eigenstate
Lagrangian, which are not explicitly displayed in this chapter, are contained in Lother in Eq. (II.2.7).
They include 4-fermion terms, couplings of a single Higgs boson to 3 or more gauge bosons, quartic
Higgs and gauge boson self-interactions, dipole-like interactions of two gauge bosons and two fermions,
and interaction terms with 5 or more fields. For a future reference, we only comment on two 4-lepton
terms involving left-handed electrons and muons and the corresponding neutrinos:

L4` � 1

v2

⇥

[c``]1122(¯̀1�µ`1)(¯̀2�µ`2) + [c``]1221(¯̀1�µ`2)(¯̀2�µ`1)
⇤

. (II.2.32)

The coefficients of these 4-lepton terms are related to the Wilson coefficients in the SILH basis by

[c``]1122 =
2g02

g2
c̄2B � 2c̄2W ,
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Higgs Run-2 results coming!

For Higgs analyses, the energy 
gain from 8 to 13 TeV is less 
relevant than for heavy new 
physics searches: cross section 
increases only by factor of 2. 
Therefore, progress with respect 
to run-1 is less spectacular. 

Nevertheless, already enough data 
analyzed to rediscover the Higgs 
boson at 13 TeV, and rates are 
measured with similar precision as 
in Run-1 

So far, Higgs rediscovered in γγ 
and ZZ decay channels, and 
interesting results also available 
for bb decays and  tth production 

Channel Production Run-1 ATLAS Run-2 CMS Run-2

�� ggh 1.10+0.23
�0.22 0.62+0.30

�0.29 [4] 0.77+0.25
�0.23 [5]

VBF 1.3+0.5
�0.5 2.25+0.75

�0.75 [4] 1.61+0.90
�0.80 [5]

Wh 0.5+1.3
�1.2 - -

Zh 0.5+3.0
�2.5 - -

V h - 0.30+1.21
�1.12 [4] -

tt̄h 2.2+1.6
�1.3 �0.22+1.26

�0.99 [4] 1.9+1.5
�1.2 [5]

Z� incl. 1.4+3.3
�3.2 - -

ZZ⇤ ggh 1.13+0.34
�0.31 1.34+0.39

�0.33 [4] 0.96+0.40
�0.33 [6]

VBF 0.1+1.1
�0.6 3.8+2.8

�2.2 [4] 0.67+1.61
�0.67 [6]

WW ⇤ ggh 0.84+0.17
�0.17 - -

VBF 1.2+0.4
�0.4 1.7+1.2

�0.9 -

Wh 1.6+1.2
�1.0 3.2+4.4

�4.2 -

Zh 5.9+2.6
�2.2 - -

tt̄h 5.0+1.8
�1.7 - -

incl. - - 0.3± 0.5 [7]

⌧+⌧� ggh 1.0+0.6
�0.6 - -

VBF 1.3+0.4
�0.4 - -

Wh �1.4+1.4
�1.4 - -

Zh 2.2+2.2
�1.8 - -

tt̄h �1.9+3.7
�3.3 - -

bb̄ VBF - �3.9+2.8
�2.9 [8] �3.7+2.4

�2.5 [9]

Wh 1.0+0.5
�0.5 - -

Zh 0.4+0.4
�0.4 - -

V h - 0.21+0.51
�0.50 [10] -

tt̄h 1.15+0.99
�0.94 2.1+1.0

�0.9 [11] �0.19+0.80
�0.81

µ+µ� incl. 0.1+2.5
�2.5 �0.8+2.2

�2.2 [13] -

multi-` cats. - 2.5+1.3
�1.1 [14] 2.3+0.9

�0.8 [15]

Table 3: The Higgs signal strength in various channels measured at the LHC. For the
Run-1, the Z� signal strength is a naive Gaussian combination of ATLAS [1] and CMS
[2] results, and all the remaining numbers are taken from the ATLAS+CMS combination
paper [3]. Correlations between di↵erent Run-1 measurements quoted in Fig. 27 of [3]
are taken into account.

[8] ATLAS Collaboration, Search for Higgs boson production via weak boson fusion
and decaying to bb̄ in association with a high-energy photon in the ATLAS
detector, .

[9] CMS Collaboration, VBF H to bb using the 2015 data sample, .

[10] ATLAS Collaboration, Search for the Standard Model Higgs boson produced in
association with a vector boson and decaying to a bb̄ pair in pp collisions at 13
TeV using the ATLAS detector, .

3
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In SM EFT,  assuming MFV,  only 9 CP-even parameters unconstrained by LEP affect 
Higgs signal strength observables  at LO. CP-odd parameters enter only at 
quadratic order and they are less relevant unless one studies certain differential 
distributions

All these 9 parameters are already constrained in a non-trivial way by LHC Run1 
and Run2 results 

Currently, some 2.5 sigma tension because of excess in observed tth production 
rate and deficit in observed higgs decay to bottom quarks

LO EFT parameter fits

+ full 9x9  
correlation matrix

Higgs Run1 Higgs Run1&2 Higgs+LEP-TGC Higgs+TGC

�cz -0.15 ±0.21 �0.10± 0.12 �0.059± 0.083 ±
czz 0.66± 0.60 �0.49± 0.34 0.09± 0.32 ±
cz2 �0.35± 0.41 0.18± 0.12 �0.05± 0.14 ±
c�� �0.0080± 0.0087 0.0077± 0.0076 �0.0021± 0.0070 ±
cz� �0.007± 0.058 �0.015± 0.076 �0.020± 0.062 ±
cgg �0.0056± 0.0025 �0.0042± 0.0009 �0.0043± 0.0010 ±
�yu 0.51± 0.37 0.22± 0.15 0.27± 0.14 ±
�yd �0.49± 0.31 �0.46± 0.20 �0.41± 0.17 ±
�ye �0.29± 0.32 �0.10± 0.13 �0.13± 0.14 ±
�z - - �0.054± 0.047 ±

Table 5: EFT Higgs fits. For the Higgs Run1 data I use the results collected in Table 3
together with the correlations quoted by the combination paper. For the Higgs Run2
data correlations are ignored for the time being.

Higgs Run1&2

�cz �0.13± 0.11

czz �0.56± 0.33

cz2 0.21± 0.12

c�� 0.0072± 0.0073

cz� �0.015± 0.074

cgg �0.0040± 0.0009

�yu 0.17± 0.13

�yd �0.51± 0.18

�ye �0.13± 0.13

Table 6: EFT Higgs fit using the Run1 and Run2 data in Table 3. For the Higgs Run1
data I use the correlations quoted by the combination paper. For the Higgs Run2 data
correlations are ignored for the time being.

5

AA, HDR

Channel Production Run-1 ATLAS Run-2 CMS Run-2

�� ggh 1.10+0.23
�0.22 0.62+0.30

�0.29 [4] 0.77+0.25
�0.23 [5]

VBF 1.3+0.5
�0.5 2.25+0.75

�0.75 [4] 1.61+0.90
�0.80 [5]

Wh 0.5+1.3
�1.2 - -

Zh 0.5+3.0
�2.5 - -

V h - 0.30+1.21
�1.12 [4] -

tt̄h 2.2+1.6
�1.3 �0.22+1.26

�0.99 [4] 1.9+1.5
�1.2 [5]

Z� incl. 1.4+3.3
�3.2 - -

ZZ⇤ ggh 1.13+0.34
�0.31 1.34+0.39

�0.33 [4] 0.96+0.40
�0.33 [6]

VBF 0.1+1.1
�0.6 3.8+2.8

�2.2 [4] 0.67+1.61
�0.67 [6]

WW ⇤ ggh 0.84+0.17
�0.17 - -

VBF 1.2+0.4
�0.4 1.7+1.2

�0.9 -

Wh 1.6+1.2
�1.0 3.2+4.4

�4.2 -

Zh 5.9+2.6
�2.2 - -

tt̄h 5.0+1.8
�1.7 - -

incl. - - 0.3± 0.5 [7]

⌧+⌧� ggh 1.0+0.6
�0.6 - -

VBF 1.3+0.4
�0.4 - -

Wh �1.4+1.4
�1.4 - -

Zh 2.2+2.2
�1.8 - -

tt̄h �1.9+3.7
�3.3 - -

bb̄ VBF - �3.9+2.8
�2.9 [8] �3.7+2.4

�2.5 [9]

Wh 1.0+0.5
�0.5 - -

Zh 0.4+0.4
�0.4 - -

V h - 0.21+0.51
�0.50 [10] -

tt̄h 1.15+0.99
�0.94 2.1+1.0

�0.9 [11] �0.19+0.80
�0.81

µ+µ� incl. 0.1+2.5
�2.5 �0.8+2.2

�2.2 [13] -

multi-` cats. - 2.5+1.3
�1.1 [14] 2.3+0.9

�0.8 [15]

Table 3: The Higgs signal strength in various channels measured at the LHC. For the
Run-1, the Z� signal strength is a naive Gaussian combination of ATLAS [1] and CMS
[2] results, and all the remaining numbers are taken from the ATLAS+CMS combination
paper [3]. Correlations between di↵erent Run-1 measurements quoted in Fig. 27 of [3]
are taken into account.

[8] ATLAS Collaboration, Search for Higgs boson production via weak boson fusion
and decaying to bb̄ in association with a high-energy photon in the ATLAS
detector, .

[9] CMS Collaboration, VBF H to bb using the 2015 data sample, .

[10] ATLAS Collaboration, Search for the Standard Model Higgs boson produced in
association with a vector boson and decaying to a bb̄ pair in pp collisions at 13
TeV using the ATLAS detector, .
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On deforming
SM EFT

Thursday, February 16, 17



Higgs boson in SM

Couplings to 
EW gauge 

bosons

Self-
Couplings

Couplings 
to fermions

Ensures unitarity of 
 VV->VV scattering

Ensures unitarity of 
 VV->ff  scattering

Ensures unitarity of 
 VV->hh scattering

(no Higgs)

What are Higgs
self-couplings for?
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Triple Higgs coupling in SM EFT

Couplings to 
EW gauge 

bosons

Self-
Couplings

Couplings 
to fermions

(no Higgs)

It is clear what goes wrong when 
self-couplings are modified in 

framework of SM EFT where SM 
Lagrangian is extended by 

higher-dimensional operators.
New scale M suppressing D>4 

operators sets maximum validity 
range Λ of SM EFT

E.g. hh→3h, or hh→4h scattering 
loses perturbative unitarity at scale Λ.

Important  feature: in SM EFT with |δλ3|<<1 validity range 
can be parametrically separated from TeV scale 4πv
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Triple Higgs coupling in SM EFT
By SM gauge invariance, there are higher-point vertices with Goldstone 

bosons, thus also scattering of longitudinal W and Z becomes non-unitary

Consider isospin-0 scattering VV→VVh, and VV→VVhh
Unitarity limit on inelastic channels follows from  

Assuming VV→VV amplitude dominated by s-wave at high energy:  

|��3| ⇤ [TeV] nbest ⇤SMEFT [TeV]
0.01 4.5 9 160
0.1 3.9 6 50
1 3.1 4 16
10 2.0 2 5.0
20 1.6 1 2.8
40 1.1 1 1.4

Table 3: The perturbative unitarity bound on the cut-o↵ scale ⇤ in the cubic-Higgs-
deformed SM. We show ⇤ set by the [GG]0hn ! [GG]0hn process for 4 di↵erent values
of |��3|, and also the value of n = nbest that gives the most stringent bound. We also
show the maximum ⇤ in the SM EFT framework where the corresponding ��3 is induced
by the dimension-6 operator |H|6, obtained by demanding perturbative unitarity of the
[GG]0h ! [GG]0h, [GG]0 ! [GG]0h and [GG]0 ! [GG]0h2 processes.

2.4 Summary

To summarize, here is the answer to the question we kicked o↵ with. The SM values
of the Higgs boson cubic and quartic self-couplings are unique to maintain perturbative
unitarity of the theory up to very high scales. If they are perturbed away from the SM,
there are exist tree-level amplitudes with a wrong UV asymptotics. Namely,

• If ��3 6= 0 then the tree-level amplitudes VLVL ! VLVLhn with n � 1 and VLVL !
V 2n
L with n � 2 asymptote to a constant in the UV;

• If ��4 6= 0 then the tree-level amplitudes VLVL ! hn with n � 3 and VLVL !
VLVLhn with n � 2 asymptote to a constant in the UV.

3 A UV picture

Is there any UV theory who’s low energy contains the square root non-analytic terms
in Eq. (2.1)? They certainly need to arise from integrating out particles whose masses
vanish in the limit v ! 0. I could come with the following examples.

3.1 Model A

Consider a modulus scalar field � coupled to the Higgs such that the scalar potential of
the system reads

V (H,�) = m2
H(H

†H) + �(H†H)2 +M�(H†H) +
↵M5

2�
. (3.1)

This is clearly non-renormalizable so strictly speaking I don’t have a UV completion of
the

p
H†H term. The above may or may not be embedded in a UV complete theory -

I’ll think about it later.

9

Actually, bounds from 
VVh→VVh better by 
O(1) numerical factor 

Demanding SM EFT valid
all the way up to M
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h^3-deformed SM
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Answer: multibody VLVL→(n×h)(m×VL) (and crossed) scattering with n+m>2 
loses perturbative unitarity around the scale Λ∼4πv∼3 TeV

Consider VLVL→hhh which depends on triple and other Higgs couplings.
Diagrams with one triple Higgs vertex contribute 

Triple Higgs vertex Longitudinal
polarization Propagator

In SM, various contributions that go like E^0 cancel against each other
so that full amplitude behaves as 1/E at high energy, 

consistently with perturbative unitarity
However, as soon as δλ3≠0, cancellation is no longer happening, 

and then tree level VLVL→hhh cross section explodes at high energies 

Perturbative unitarity of VLVL→hhh is lost at scale

hhWW
vertex

Here I address a different question: what goes wrong in a theory where only triple Higgs   
coupling is deformed away from SM and no other interactions are affected 

(in particular, there’s no h^5 or h^6 terms in the Lagrangian)
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h^3-deformed SM
Much as in SM EFT, one can derive this result via equivalence theorem

Given Lagrangian for Higgs boson h, one can always uplift 
it to manifestly gauge invariant form by replacing

Non-analytic terms lead to infinite series of n-point Goldstone and Higgs boson interactions 

Consequence: in deformed SM with δλ3≠0,  not only VV→3h, but also 
VV→n × h,  VV→ VV + n × h, ...., lose unitarity at some high-energy scale 
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multi-Higgs production in h^3-deformed SM
High-energy limit of scattering amplitude of isospin-0 
 longitudinal gauge 2-body state into multi-Higgs state

Unitarity limit

For small enough δλ3, stronger bound on Λ 
may be obtained from scattering with n>3

��3 n=3 n=nbest

P
n

0.01 13000 12.8 @ 20 12.0
0.1 1300 11.0 @ 15 10.1
1 130 8.9 @ 11 7.9
10 13.4 6.1 @ 6 4.9
40 3.3 3.3 @ 3 2.6

Table 4: The unitarity bound on the cut-o↵ scale ⇤ (in TeV) for 4 di↵erent values of
��3 set by the [GG]0 ! hn process. We show the value of ⇤ for n = 1, for n = nbest that
gives the most stringent bound, and using the sum of all channels with any number of
h in the final state.

(Mind the 2 symmetry factor, 1/2! due to using the isospin-0 state, and 1/n! due to n
identical Higgs bosons in the final state). The unitarity condition reads

1

2!n!

1X

n=3

Z
d⇧n|M([GG]0 ! hn)|2  2! ⇤ 8⇡. (D.3)

Each term in the sum puts the constraint on the cuto↵

⇤ . 4⇡v

 
32⇡
p
(n� 2)!v2p

27nm2
h��3

! 1
n�2

⇡ 4⇡v

(��3)
1

n�2

r
n� 2

e

✓
32⇡(2⇡(n� 2))1/4v2p

27nm2
h

◆ 1
n�2

.

(D.4)
The cuto↵ calculated for a few choices of ��3 is shown in Table 4 Numerically, the
unitarity constraints are a bit weaker than those deduced from V V ! V V hn and
V V hn ! V V hn scattering.

E SM EFT picture

As shown in the main body of this note, in the cubic-deformed SM the cuto↵ is para-
metrically ⇤ ⇡ 2⇡v

p| log(|��3|)|. On the other hand, in the SM EFT where the cubic
deformation comes from the dimension-6 operators |H|6/M2, the new scale M obviously
set the cut-o↵ ⇤ ⇠ 4⇡M = 4⇡v/

p|��3|. Thus, deforming Higgs self-interactions ad-hoc
leads to a completely di↵erent scaling of the cuto↵ with the deformation size than in
the honest-to-dog SM EFT. In particular, in the former case the cut-o↵ never exceeds
4⇡v ⇠ 3 TeV for deformations observable in practice, while in the latter case the cut-o↵
can be parametrically larger than the 4⇡v.

In this appendix I make this qualitative statement more quantitative by directly
computing the unitarity bound on ��3 in the SM EFT with the dimension-6 operator
O6 ⌘ |H|6/M2. To this end, I will consider the same processes that I used to set the
bounds in the cubic-deformed SM.

I consider the Lagrangian

L = LSM � c6
M2

(H†H)3. (E.1)

20
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multi-Higgs production in h^3-deformed SM

For small |δλ3|, cutoff approximately 

in practice, never parametrically above 4πv

|��3| ⇤ [TeV] nbest ⇤SMEFT [TeV]
0.01 4.5 9 160
0.1 3.9 6 50
1 3.1 4 16
10 2.0 2 5.0
20 1.6 1 2.8
40 1.1 1 1.4

Table 3: The perturbative unitarity bound on the cut-o↵ scale ⇤ in the cubic-Higgs-
deformed SM. We show ⇤ set by the [GG]0hn ! [GG]0hn process for 4 di↵erent values
of |��3|, and also the value of n = nbest that gives the most stringent bound. We also
show the maximum ⇤ in the SM EFT framework where the corresponding ��3 is induced
by the dimension-6 operator |H|6, obtained by demanding perturbative unitarity of the
[GG]0h ! [GG]0h, [GG]0 ! [GG]0h and [GG]0 ! [GG]0h2 processes.

2.4 Summary

To summarize, here is the answer to the question we kicked o↵ with. The SM values
of the Higgs boson cubic and quartic self-couplings are unique to maintain perturbative
unitarity of the theory up to very high scales. If they are perturbed away from the SM,
there are exist tree-level amplitudes with a wrong UV asymptotics. Namely,

• If ��3 6= 0 then the tree-level amplitudes VLVL ! VLVLhn with n � 1 and VLVL !
V 2n
L with n � 2 asymptote to a constant in the UV;

• If ��4 6= 0 then the tree-level amplitudes VLVL ! hn with n � 3 and VLVL !
VLVLhn with n � 2 asymptote to a constant in the UV.

3 A UV picture

Is there any UV theory who’s low energy contains the square root non-analytic terms
in Eq. (2.1)? They certainly need to arise from integrating out particles whose masses
vanish in the limit v ! 0. I could come with the following examples.

3.1 Model A

Consider a modulus scalar field � coupled to the Higgs such that the scalar potential of
the system reads

V (H,�) = m2
H(H

†H) + �(H†H)2 +M�(H†H) +
↵M5

2�
. (3.1)

This is clearly non-renormalizable so strictly speaking I don’t have a UV completion of
the

p
H†H term. The above may or may not be embedded in a UV complete theory -

I’ll think about it later.

9

Numerically, slightly better bounds from 
scattering with longitudinal W and Z
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SM EFT vs NH EFT
More generally: NH EFT = SM + non-analytic terms

Question: what are conditions on functions f(h) 
such that this Lagrangian is really SM EFT in disguise?  

One can always lift non-linear symmetry
to linearly realized SM gauge symmetry

by replacing

NH EFT Lagrangian belongs to SM EFT class when, 
after this replacement, Lagrangian is analytic at v=0
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SM EFT vs NH EFT
Example: matching to dimension-6 EFT 

NH EFT is dimension-6 SM EFT wheb f-functions have following form

This corresponds to dimension-6 Lagrangian  

Two-parameter redundancy on SM EFT, 
as H can rescaled, and one operator can be 

eliminated by field redefinition

2-parameter redundancy here, 
as one can always redefine h 

such that fh=1

If f functions are different polynomials 
(of the same order) then non-analytic 
terms appear on the H-side, resulting

in unitarity loss at scale 4πv
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SM EFT is currently a useful bookkeeping device to understand constraint on heavy 
BSM physics. Many dimension-6 operators are constrained in a model-independent way 
using low-energy, electroweak precision, LHC Higgs, and other experiments 

The h^3-deformed SM (the theory with the SM field content and interactions except 
for the triple Higgs boson coupling deformed away from the SM value) is similar to 
Higgsless theories in that it loses perturbative unitarity around the scale 4πv, even if 
the deformation is small. Same conclusions if the quartic Higgs coupling is deformed

Such set-up does not belong to the SM EFT class, and is not an effective theory 
obtained by integrating out heavy BSM particles. In fact, it corresponds to an effective 
theory where masses of integrated-out particles vanish in the limit of no electroweak 
symmetry breaking

Similar discussion applies for other Higgs couplings deformations that are not described 
by SM EFT

Summary
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