# Plans for this week

- MWPC: wire stretching today
- Analysis of DNA setup data
- Measurement of light at end of 30 m fiber
- Look into charge readout options of gas detectors (AGET/DREAM chips)
- Clarify if workshop available to contribute to ND T2K upgrade
- Finish Master course on Monday

## **Alternative Idea**

Put LED with Kaputschinsky driver directly in front of SMA feedthrough to shine on fibers inside the cryostat



### First Tests without Fiber



- Measured power released with Kaputschinsky
- Result: 11.5 nW
- Amazing result: E(465 nm)=430\*10\*\*-21 J => 11.5 nW correspond to 27 billion photons
- 1 kHz pulsing => each pulse 27 million photons which will directly go to fiber bundle
  next step measure no of photons at end of 30 m fiber

Advantages of this approach:

- much cheaper than laser approach
- no safety issues at CERN

Question: Do we really need a reference sensor?





#### Photodiode with protection

#### **Tests with Fiber and Powermeter**



 Fixing of fiber end

 and not optimal

 Image: Control of the provided of the p



- Measured power should correspond to about 30.000 photons per pulse (10 ns) assuming 0.01 nW
- reduction by factor 1000 compared to direct pulsing without fiber
- Seems Still a factor 100 reduction possible and needed to get photon range of 0 to about 250 photons per pulse



#### Tests with Fiber and PMT



- powermeter detects light, about 0.03 pW
- geometry obvious not optimal
- reference sensor in alternative approach should be feasible if desired









- PMT sees clearly the light from the end of the fiber
- Single photons at around 6.9 V bias voltage on the LED
- With powermeter was necessary to go to 18 V to get a signal
- Signal at 18 V smaller than expected, probably of the order of 1000 pe
  - electronic effect?
  - difference in Qeff powermeter and PMT?
  - mistake and photon estimation?
  - mis-calibration of powermeter?
- delay of 220 ns between trigger and PMT pulse expected (60-80 ns delay without 30 m fiber and fiber should add roughly "100 ns \* n" from the refractive index of the fiber
- pulse width at end of fiber around 12 ns

#### ESKA<sup>™</sup> High-performance Plastic Optical Fiber: SK-10

Manufactured by Mitsubishi Rayon Co., Ltd.

Marketed and sold by Mitsubishi International Corporation

| Structure                   |                                      |         |  |  |
|-----------------------------|--------------------------------------|---------|--|--|
| Core Material               | Polymethyl-Methacrylate Resin (PMMA) |         |  |  |
| Cladding Material           | Fluorinated Polymer                  |         |  |  |
| Core Refractive Index       | 1.49                                 |         |  |  |
| Numerical Aperture          | 0.5                                  |         |  |  |
| Refractive Index<br>Profile | (Step Index)                         |         |  |  |
| Attenuation (db/m)          | 0.3                                  |         |  |  |
| Approximate Weight<br>(g/m) | 0.06                                 |         |  |  |
|                             | Unit                                 | Typical |  |  |
| Core Diameter               | μm                                   | 240     |  |  |
| Overall Diameter            | µm 250                               |         |  |  |
| Fiber Diameter<br>Tolerance | +/- 9.2%                             | •       |  |  |

| Packaging              |                 |
|------------------------|-----------------|
| Spool Length (m)       | 12,000          |
| N weight on spool (kg) | 1.4             |
| Spool Weight (kg)      | 0.68            |
| Carton Size            | 286 X 286 X 130 |
| Carton G Weight (kg)   | 1.6             |
| Fiber Code             | SK              |
| Cable Code             | SH1001          |
| Master Carton          | 12 Spools       |

May. 2001

#### pplications: Sensing

SK grade fibers are typically used for sensing temperatures, speed, liquidity levels and positioning. In addition, medical and general illumination are popular applications

| Performance                      |                                  | Criteria for Acceptance and/or Test Conditions                    | Unit  | Values |   |
|----------------------------------|----------------------------------|-------------------------------------------------------------------|-------|--------|---|
| Temperature F                    | Range                            | No deterioration in optical properties *                          | °C    | -55 70 |   |
| Operating Ten<br>Conditions of P | nperature Under<br>High Humidity | No deterioration in optical properties [95% RH] **                | °C    | =<80   |   |
| Optical<br>Properties            | Transmission Loss                | 650nm collimated light (standard conditions) [10 -<br>1m cutback] | dB/km | =<300  | D |
| Mechanical                       | Minimum Bend<br>Radius           | Loss increment =< 0.5dB [Quarter bend]                            | 11111 |        |   |
| istics                           | Tensile Strength                 | Tensile force at yield point [JIS C 6861]                         | N     | =>3    |   |

Notes: Performance tested in conditions cooler than 25°C unless otherwise indicated \* Attenuation change <10% after 1000 hours

" Attenuation change <10% after 1000 hours, except when due to absorbed water

Possible improvements discussed with CIEMAT:

- current fiber has 0.3 dB/m (650 nm)
  => 9 dB over 30 m => at least 90% loss of the light inside the fiber
- Other fibers used by Miniboone has 10 times less attenuation and that at 470 nm => only 20% loss
- current fibers 200 um diameter => using 400 or 600 um fiber could increase coupling efficiency by factor 4 to 9
- or use 15 m optical fiber from top to bottom (with low attenuation) and <10 m long multi-fibers on the bottom => also advantage from construction point of view

• modify Kaputschinsky to provide more light from LED or use green LED with 8 times more luminosity



- larger capacity => more current and longer pulses
- larger inductivity => longer oscillation and with smaller amplitude
- new Kaputschinsky ordered from workshop to test these ideas

## **Other Stuff**

- WA105: Compromise found for delay of construction of 666 => if confirmed this Friday might give other 3 months to take final decision
- WA105/DUNE: Meeting tomorrow at CIEMAT to discuss plans for DUNE
- MWPC: Sebastian/Alicia (PR) stretched 40 wires during one afternoon => gives hope that it is not too much work to do full detector
- T2K ND Upgrade: Meeting with Juli this morning to discuss possibility to participate in prototype construction:
  - Juli available for Design second half of 2017
  - Worskhop still free for first half of 2018
- Lab: Linde installs N2, air, vacuum and tubes for our gas system today
- Done with IWORID proceedings

| Jinst                                |                            |          |             | Editor       |            |           |
|--------------------------------------|----------------------------|----------|-------------|--------------|------------|-----------|
| Thorsten Lux                         |                            |          |             |              |            |           |
| State of prep                        | rints   Referee statistic: | and mana | agement   M | y keywords   | New featur | es        |
|                                      | ready for publication      | rejected | withdrawn   | not suitable | published  | reassigne |
| preprints J pendi                    | ng                         |          |             |              |            |           |
|                                      | State                      | e of pre | prints      |              |            |           |
| New submissions                      |                            |          |             |              |            | 0         |
| Being refereed                       |                            |          |             |              |            | 0         |
| I will review                        |                            |          |             |              |            | 0         |
| Waiting for Editor's decision        |                            |          |             |              |            | 0         |
| Back to author(s) for major revision |                            |          |             |              |            | 0         |
| Back to author(s) for minor revision |                            |          |             | 0            |            |           |
| Resubmitted after major revision     |                            |          |             |              | 0          |           |
| Resubmitted after minor revision     |                            |          |             |              | 0          |           |

#### Plans for next weeks

- Analysis of DNA setup data + improvements of setup
- Look into charge readout options of gas detectors (AGET/DREAM chips)
- Test new Kaputschinsky + modify it
- Put laser in RF mode and repeat fiber tests with laser (since Andrea is on vacation next week)
- Prepare talk about light readout of WA105 for protoDUNE DP review (24/25<sup>th</sup> of April at CERN)





- black box with light source outside of cryostat
- 2 fibers going to cryostat
- each splitting into 20 micro fibers (~200  $\mu$ m thick)
- either directly on top of cryostat or at bottom of cryostat