Non-thermal DM, Not WIMPs Phenomenology of FIMPs Bryan Zaldívar (Annecy)

27/10/17, Bellaterra

Outline

- Motivation to go outside WIMPs
- Basics of FIMPs
- Phenomenology of FIMPs
 - LHC
 - Direct Detection
 - Astrophysics
- Conclusions

Compelling evidence of DM

B.Zaldivar, IFAE, 10-2017

What do we (don't) know about DM?

We know...

- Its abundance in the universe
- Non relativistic
- Its gravitational interactions
- Long-lived enough
- Electrically neutral enough

We don't know...

- if it is fundamental particle
- its properties (spin, mass)
- if it has non-gravitational interactions (with itself or with Standard Model)
- thermal relic (chemical equilibrium with SM)
- when it was produced

Many questions to be answered!!

Motivation

WIMP dark matter and its situation to-date

- Weakly Interacting Massive Particle

(order electroweak couplings)


```
"infrarred" dominated process
```

Rich phenomenology!

Motivation

WIMP dark matter and its situation to-date Indirect Detection

B.Zaldivar, IFAE, 10-2017

Motivation

WIMP dark matter and its situation to-date: No (conclusive) signals so far

The streetlight effect is a type of observational bias where people only look for whatever they are searching by looking where it is easiest

"I'm searching for my keys."

the rest of this talk

Light portal $M < 2m_{\chi} < T_{RH}$	Intermediate portal $2m_{\chi} < M < T_{RH}$	Heavy portal $2m_{\chi} < T_{RH} < M$
$\sigma \sim \frac{\lambda_v^2 \lambda_\chi^2}{s}$	$\sigma \sim \lambda_v^2 \lambda_\chi^2 \frac{M}{\Gamma} \delta(s - M^2)$	$\sigma \sim \lambda_v^2 \lambda_\chi^2 \frac{s}{M^4}$
$Y \propto \lambda_v^2 \lambda_\chi^2 \frac{M_{Pl}}{m_\chi}$	$Y \propto \lambda_v^2 \lambda_\chi^2 \frac{M_{Pl}}{\Gamma}$	$Y \propto \lambda_v^2 \lambda_\chi^2 M_{Pl} \frac{T_{RH}^3}{M^4}$

B.Zaldivar, IFAE, 10-2017

Searching strategies

FIMPs at the LHC

FIMPs at the LHC

(*) Two choices to increase coupling to $\,\sim 10^{-9}$

- Increase mass-ratio as much as possible
- Change production time lapse / cosmological history

(*) Note that the "MATHUSLA" proposal could make it with much less 'cooking'

[Chou, Curtin, Lubatti, 1606.06298]

Option #1: Increasing mass-ratio

Topology: displaced leptons or detector-stable charged particles

e.g. $M_{H^{\pm}} \gtrsim 400(200)$ GeV for $m_{\rm DM} = 100(10)$ keV

Option #2: Modifying cosmological history

not necessary...(work in progress)

Shaded region	Decay length	Signature from LOSP	Neutral	Charged
Dark green	$10^{-2} \text{cm} < \tau_B < 10^2 \text{cm}$	Displaced vertices	\checkmark	\checkmark
Light green	$10^2 {\rm cm} < \tau_B < 10^4 {\rm cm}$	Displaced jets/leptons	\checkmark	\checkmark
Light blue	$10^4 \mathrm{cm} < \tau_B$	Stopped particle decays	Х	\checkmark

 Table 1: Displaced Collider Signals

B.Zaldivar, IFAE, 10-2017

Classification(i)

$$\mathcal{L} \supset g(Y \cdot b) \chi$$
 $g \ll 1$

Y : decaying particle b : SM particle χ : DM candidate

i) $SU(2)_L$ representation of b ii) spins of, say, χ and YCriteria:

1) b is a lepton singlet (thus Y is singlet)

e.g.
$$\mathcal{L} \supset gEe_R\chi$$
 (probably the simplest implementation of
LLP + freeze-in)
 $pp \rightarrow E^+E^-$
 $E^{\pm} \rightarrow e^{\pm}\chi$

Signal: charged LLPs (e.g. displaced electron + MET)

2) b is a quark (singlet or doublet)

The lightest Y state (LLP) should hadronise (R-hadron) Signal: $R \rightarrow \text{jet} + \text{MET}$

Classification(ii)

$$\mathcal{L} \supset g(Y \cdot b)\chi$$

3) b is a lepton doublet, χ is a scalar

4) b is a lepton doublet, χ is a fermion

 $Y = (H^+, H^0 + iA^0)$

- can mix with the SM Higgs in the scalar potential,
- ΔM_Y can have either sign

 $\begin{array}{c|c} \Delta M_Y > 0 & \text{same pheno as before} \\ \hline \Delta M_Y < 0 & Y^{\pm} \rightarrow \ell^{\pm} \chi & \text{only possible decay mode,} \\ & \text{LLP decaying to high pT lepton + MET} \end{array}$

Freeze-in DM produced by slow decays of Y^{\pm} and Y^{0}

Classification(iii)

5) b is the SM Higgs, χ is a fermion (~ higgsino-bino)

 $pp \to Y^+Y^- \mid Y^\pm \to W^\pm \chi_2$

 $\begin{array}{c|c} \hline \rightarrow Y^{\pm}\chi_2 & \chi_2 \rightarrow h\chi_1 \\ \hline \rightarrow \chi_2\chi_2 & \rightarrow Z\chi_1 \end{array}$

 χ and Y^0 mix (very little) after EW symmetry breaking

$$\sin\theta = \frac{gv}{m_{Y^0}}$$

Neutral LLP decaying to MET + $b\overline{b}, jj, \ell^+\ell^-$

6) b is the SM Higgs, χ is a scalar (Yalso scalar)

$$\frac{\Delta M_Y > 0}{\Delta M_Y < 0} \qquad \begin{array}{c|c} Y^0 \to (h, Z)\chi & \text{Neutral LLP} \\ \hline \chi & \chi^{\pm} \to W^{\pm}\chi & \text{Charged LLP} \end{array}$$

Other search strategies

Direct Detection of FIMPs

At first sight hopeless, but...

$$\sigma_{\chi e}(q) = \frac{1}{\pi} \frac{g_{\rm SM}^2 g_{\rm DM}^2 \mu_{\chi e}^2}{(M^2 + q^2)^2}$$

(scattering off electrons bounded in atoms)

If
$$M^2 \ll q^2$$
:
 $\sigma_{\chi e}(q) \approx \frac{1}{\pi} \frac{g_{\rm SM}^2 g_{\rm DM}^2 \mu_{\chi e}^2}{q^4}$

 ${\it q}$ can be sufficiently small to compensate the smallness of the couplings

Essig, Mardon, Volansky, 1108.5383

Dark Sectors 2016, 1608.08632

(

Self-Interactions of FIMPs

Bernal, Chu, Garcia-Cely, Hambye, Zaldivar, 1510.08063

*Self.Int.DM as mechanism to solve small-scale problems of CDM

a) 0.2 b/GeV
$$\lesssim \sigma/m \lesssim 20$$
 b/GeV

(simulations) Galactic scales, $v \sim 10 \text{ km/s}$

b)
$$\sigma/m \lesssim \mathcal{O}(2 \text{ b/GeV})$$

(observations, Gravit. Lensing) Cluster scales, $v \sim 1000 \text{ km/s}$

Conclusions

- FIMP dark matter has **much richer** phenomenology than naïve expectations
- FIMPs are a natural (and feasible) interpretation of LLP searches at the LHC