

IFAE Pizza Seminar

Institut de Fisica d'Altes Energies

A High Granularity Timing Detector for the Phase II Upgrade of the ATLAS experiment

Evangelos – Leonidas Gkougkousis

IFAE PIXEL GROUP

Barcelona – October 18th, 2017

Overview

Introduction	Introduction and HL-HLC		
	• CERN, experiments and timeline		
	• $\mu = 200$ pileup conditions		
	Pileup efficiency		
Motivation	HGTD Motivation		
	 Time-Pileup rejection 		
	Important EW channels		
HGTD System	The Detector design		
	• Geometry		
Sensor	Sensors		
Development	 Technology - LGADs 		
	 Design and testing 		
	Test Beam Results		
	Radiation Hardness		
ASJC _S	• Electronics and assembly		
Conclusions	Conclusions and Outlook		

Introduction

CERN and LHC

- 8.3 T superconductive magnets
- 26.7 km circumference
- 25 ns bunch spacing (50 ns Run 1)
 - 4 main experiments (ATLAS, CMS, ALICE, LHCb)

Phase 2 Upgrade, towards HL-LHC

Planning and timeline LHC / HL-LHC Plan

E. L. Gkougkousis

•HL-HLC Conditions

HL-LHC Conditions

Luminosity

- ✓ Phase I: $< 2.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} (300 \text{ fb}^{-1})$
- ✓ Phase-II : 5 7.5×10^{34} cm⁻²s⁻¹ (4000 fb⁻¹)

Conditions

- ✓ 14 TeV beam 6000 primary tracks per event
- \checkmark No. of collisions per crossing from 34 to 200 at 150 ps in 50 mm space
- ✓ Extended tracking up to $|\eta| < 4.0$

HL-HLC Conditions

HL-LHC Conditions

Luminosity

- ✓ Phase I: $< 2.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} (300 \text{ fb}^{-1})$
- ✓ Phase-II : 5 7.5×10^{34} cm⁻²s⁻¹ (4000 fb⁻¹)

Conditions

- ✓ 14 TeV beam 6000 primary tracks per event
- \checkmark No. of collisions per crossing from 34 to 200 at 150 ps in 50 mm space

HL-HLC Conditions

Calorimeter and Pileup efficiency

- EM calorimeter noise increases by an order of magnitude
- Pileup rejection is impacted at high η

Energy Resolution

<u> = 200

- Energy resolution in the EM calorimeter heavily degrades for the low P_T (>20GeV) regions towards the end caps
- \checkmark Up to 20% reduction on the energy resolution for the interesting 20 - 50 GeV P_T region

Noise [MeV

10⁴

 10^{3}

 10^{2}

10

ATLAS

Simulation

25 ns bunch spacing

\s = 14 TeV. μ = 30

[%]

 $\sigma((E_{rec}-E_{true})/E_{true})$

20

EM

EM3

Tile

🛨 Tile2

Tile3

Gap

З.

η

ηI

Timing Motivation

Pileup Rejection

- ✓ High probability of vertices in close proximity
- ✓ Time information ~30psec helps pileup rejection
- ✓ Pileup distribution extremely peaked at forward $1.8 < |\eta| < 3.2$ where tracker not completely implemented
- ✓ Track confirmation rejection at 2% for central region but degrades towards end caps

Normalized Number of Particles

Timing Motivation

Pileup Rejection

Physics Motivation

Important EW channels

- ✓ Better pileup rejection permits lowering jet P_T thresholds (30 GeV for Endcap)
- ✓ Lowering P_T thresholds allows estending accessible phase space
- Largest potential in hadronic final state VBF channels (also offline), preferentially forward peaked:

 $H \rightarrow bb, H \rightarrow Inv., HH \rightarrow bbbb$

- Physics searches
 - \blacktriangleright Higgs to $\tau\tau$ channel (Pilar Casado)
 - > Coupling probing: $H \rightarrow aa \rightarrow \gamma \gamma \gamma j j, bbH(\rightarrow \gamma \gamma)$

Trigger	SD value	physics
di-y	25-25 GeV	di-photon
di-τ	40-30 GeV	Η→ττ
4-jet	75 GeV	H→bb, HH→4b
$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	200 GeV	H→Inv.

18 / 10 / 2017

E. L. Gkougkousis

Timing Principles

Concepts and notions

Time Resolution $\sigma_{tot}^2 = \sigma_{elec.}^2 + \sigma_{Landau}^2$

Fast time resolution:

- ✓ Maximize slope (large fast signals)
- ✓ Correct time walk with Constant fraction discriminator
- ✓ Minimize noise to minimize jitter
- ✓ Thin silicon sensors with internal gain

Silicon Technologies

Planar Pixels

- ✓ Standard Lithography
- \checkmark Limitations on pitch size
- ✓ High Power dissipation

3D pixels

- ✓ Thinner drift volume
- ✓ Radiation Hardness
- ✓ Complicated fabrication

CMOS Sensors

- ✓ Integrated electronics
- ✓ Commercial process

Low Gain Avalanche Diodes (LGAD)

- ✓ Signal amplification
- ✓ Invented at CNM, initially considered for tracking by IFAE
- ✓ Proposed fro timing by UCSC

Institut de

d'Altes Energies

Low Gain Avalanche Diodes (LGAD)

- ✓ Most promising technology
- ✓ Secondary implant introducing moderate gain
- ✓ HPK, CNM, FBK produced sensors

INSTR17

E. L. Gkougkousis

• Max. ($\eta = 4.2$) after 2000 fb⁻¹ ~ 4.5x10¹⁵ n_{eq}/cm² (mid cycle replacement)

Electronics

ASIC prototype

Chip Layout with wire ASiC bump bonded to $2x^2$ bonds in the periphery array in multiple points

	Detector	1 mm pad	3 mm pad
	Power con.	800 µA	3.2 mA
	V _{in} (Q _{in} /C _d)	2.5 mV	0.625 mV
	Sim. V _{out}	21 mV	17.7 mV
	Noise	0.44 mV	0.66 mV
	S/N	48	27
Inner Layers	Jitter (at G = 10)	23 ps	40 ps
Large Radius	Jitter (at G = 20)	11.5 ps	20 ps

ATLAS LGAD Timing Integrated ReadOut Chip (ALTiRoC)

- TSMC 130nm CMOS Technology
- ➢ 3.4 x 3.4 mm total area
- > 300µm substrate thickness
- Directly bonds to 2 x 2 arrays
- Four readout channels dedicated for 2 pf/channel, 10 pf/channel and 20 pf/channel sensors
- Channel area 200 x 100 μm
- Integrated Preamplifiers, ToT and CFD
- Bonding and bump deposition successfully performed at IFAE

Sensor

18 / 10 / 2017

E. L. Gkougkousis

Assembl

Electronics

ASIC prototype

© E. Cavallaro, S. Grinstein (IFAE)

IFAE 90Sh

E. L. Gkougkousis

Implications

Important mid-points

Pixel Group Responsibilities

HGTD Module Assembly Bump bonding and UBM deposition

Group member roles

Gkougkousis Vagelis Joern Lange

Raimon Casanova Mohr

HGTD Test Beam coordinator HGTD Sensor co-coordinator IDR Editor Member of the ALTiRoC design team

Sensor RnD and Candidate for production

- Multi-pad sensor arrays
- Gallium and Carbon doped wafers for improved radiation hardness
- Fill factor variations to improve geometrical efficiency
- Edge implantation variations (JTE)

Schedule

Important mid-points

- > September 2017:
- December 2017:
- ➢ February 2018:
- March April 2019:
- ➢ February 2020:
- March April 2021:
- March 21- January 24:
- ➢ January − April 2024:
- ➤ August September 24:
- December January 25:
- ➤ January March 2025:

Released IDR on ATLAS review with positive feedback				
https://cds.cern.ch/record/2276098/files/ATL-COM-LARG-2017-029.pdf				
LHC committee review				
Official LHCC approval				
End of Sensor, ASIC, electronics and services RnD				
End of Mechanics and assembly RnD				
Sensor, ASIC and mechanics preproduction and prototype assembly				
Modules production, loading and testing				
Services installation				
Installation HGTD-A				
Installation HGTD-C				
Commissioning				

IFAE is playing a leading role in the R&D ativiites of HGTD and, if approved aims to contribute to HGTD with sensors (from CNM), module assembly and testing

Conclusions and Outlook

Sensors, ASIC, Integration and Radiation Hardness

So far....

Physics

- \checkmark Very promising results for pileup rejection in the high η region where VBF and exotics will benefit
- \checkmark High jet single purity for invisible searches

Sensors

- ✓ 26 ps time resolution for single 1mm² diodes
- $\checkmark~95\%$ uniformity with low inefficiencies in the inter-pad regions
- ✓ Operations up to 2e15 n_{eq} /cm², meeting the radiation hardness requirements
- \checkmark Any timing degradation due to early breakdown

Integration

✓ First ASIC prototypes successfully assembled at IFAE and tested in HGTD September CERN testbeam

Backup

•HGTD System

Performance

Muons

Electrons

- / 1TeV muons simulation
- ✓ 98.88% efficiency for 4 layers
- ✓ 0.044 MeV/muon at 150 µm
- \checkmark 50% of inefficiency from zones
 - \checkmark Z \rightarrow ee sample at $\mu = 200$
 - \checkmark 45 GeV P_T e and γ
 - ✓ 6mm radius EM clusters
- ✓ 70 HGTD cells per cluster
- ✓ Dynamic range of 50psec/MIP
- ✓ H(125GeV) → Inv. sample with jet $P_T = 72$ GeV
- ✓ Expected peak in time distribution
- \sim ~90% signal purity at $\Delta R < 0.1$

E. L. Gkougkousis

Physics motivation

Large eta studies – truth level

- > Truth level fractions for various samples
- Signal presents an increase of 18% in the high eta region
- Background also presents an increase but with less significance than the bbH signal

	Leading B	Subleading B	Both b
Pt> 10 GeV bbH	16.6%	20.3%	5.2%
Pt > 20 GeV bbH	14.3%	16.9%	4.2%
Pt>10 GeV bbγγ	10%	14%	3.0%
Pt>10GeV ZH	17.1%	19.8%	5.3%
Pt>10 GeV HH	4.2%	7.6%	1%
Pt>10GeV bbjj	11.9%	18.1%	2.2%

• Low Gain Avalanche Diodes

Single pad sensors

Pulses and timing analysis

Average Pulse Shapes

- Pulses corrected at 20% of SiPM pulse height, P_{max}>30mV
- Two W5 sensors at same bias, W12 sensor lower voltage
- 2kOhm (W5LGA31) sensor higher gain but slower raise time
- Higher doping sensor (W12) slower pulses due to lower electron drift velocity, lower gain

Single pad sensors

Pulses and timing analysis

100

Voltage (V)

150

200

- Rise time defined as 20-80%
- Noise estimated from Gaussian fit at sidebands (20% of preceding points)
- Signal defined as Landau fit of pulse maxima
- Jitter = τ/(S/N), where τ is rise time, SNR signal to noise
- For 2k, jitter close to 470k since has faster rise time but lower SNR

0

50

Four Chanel Boards

Setup and runs

- Pulses corrected at 20% of SiPM pulse height, 300 mV > P_{max} > 40mV, t_{max} cuts
- Ch2 appears to have greater maximum, though timing and jitter only show modest differences due to higher noise
- Ch2 pad was better aligned with beam and SiPM

•Four Chanel Boards

Cross-talks

- Small percentage of coincidence events between neighboring channels.
- Use P_{max} >30mV to define a "hit"
- %Xtalk events= (n₁₃)/(n₁+n₃-n₁₃) where n_i is the number of hits in ith channel, n₁₃ is number of coincidences

IN2P3 – Xtalk in 0.6% of events

pmax1:pmax3

W7HG22 - Xtalk in 0.2% of events

pmax1:pmax2

E. L. Gkougkousis

Four Chanel Boards

Timing Analysis

- Time resolution calculated by Gaussian fit to distribution of time differences at 20% of max pulse height on LGAD and SiPM.
- Cut at 40mV, 300mV on DUT
- Cut at 40mV, 600mV on SiPM
- Cuts on t_{max}, time of maximum on DUT

18 / 10 / 2017

E. L. Gkougkousis

Four Chanel Boards

Timing Analysis

- Rise time defined as 20-80%
- Noise estimated from Gaussian fit at the sidebands (20%)
- Signal defined as Landau fit of pulse maxima
- Jitter = τ/(S/N), where τ is rise time, SNR signal to noise
- HG22 is higher doping and has subsequently lower biasing and gain

Additional Results

Radiation hardness

- Preliminary results for AFP testbeam
- Irradiated fluence of 3e14/cm² at -20^oC presents comparable time resolution with uneradicated sensors
- 1e15/cm² breaks down before reaching the same field values as uneradicated one

More details at Joern's presentation: <u>https://indico.cern.ch/event/580875/contributions/2374877/attachments/1375420/2088359/Lange_LGADtimingResults_RD50_November2016.pdf</u>

Amplifiers

Impedance vs time

LHC Luminosity

Interactions per crossing for run 2

