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1Theoretical uncertainty in a Higgs decay

QCD Higgs decay to bb̄

Scalar Correlator

Optical Theorem
�(H ! bb̄) = Im⇧/mH

Leading order

• Correlator of two scalar currents
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2
) ⌘ i

Z
dx e

ipx
h⌦|T{j(x)j

†
(0)}|⌦i, j(x) = mq : qf (x)qf (x) :
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H ! bb̄
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QCD Higgs decay to bb̄

Scalar Correlator

• General perturbative expansion
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• Known up to fourth order

d0,1 = 1 d1,1 =
17

3
d2,1 = 42.032 d3,1 = 353.229 d4,1 = 3512.2

• Not a physical observable

Cristiane London (IFSC) Master’s Defense March 17, 2021 15 / 68

↵
0
s

↵
1
s

↵
2
s

QCD Higgs decay to bb̄

Scalar Correlator

Optical Theorem
�(H ! bb̄) = Im⇧/mH

Leading order

• Correlator of two scalar currents

⇧(p
2
) ⌘ i

Z
dx e

ipx
h⌦|T{j(x)j

†
(0)}|⌦i, j(x) = mq : qf (x)qf (x) :

Cristiane London (IFSC) Master’s Defense March 17, 2021 12 / 68

QCD Higgs decay to bb̄

Scalar Correlator

Master integrals method

After renormalization
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two-loop diagramtwo one-loop diagrams

+
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Scalar qq correlator

IFAE, May 2021
(massless limit)
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QCD Higgs decay to bb̄

Imaginary Part of the Scalar Correlator

• For µ2
= s = m

2
H and Nf = 5
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2-loop 3-loop 4-loop 5-loop

Braaten, Leveille 
Sakai 

Gorishny et al Chetyrkin Baikov, Chetyrkin, Kühn

NLO N2LO N3LO N4LO

Theoretical uncertainty in a Higgs decay

c5 = �8200± 308
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With this information we can estimate even higher orders using
Borel-Padé approximants

Estimated 6-loop (N5LO)
What about the theory e

rror?

DB, P Masjuan, C London, in preparation
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Decay (massless case)
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3Theoretical uncertainty in a Higgs decay

Results in QCD Final Results

Decay Width
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↵s uncertainty difference between PA estimates

H ! bb̄
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Decay

 Exact  Forecast

Truncation error vs. strong coupling error

IFAE, May 2021
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4Theoretical uncertainty in a Higgs decay

H ! bb̄
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Decay

Results in QCD Final Results

Decay Width

• Strong coupling and quark mass calcu-
lated using RunDec

• Lower-order terms depend more on the
renormalization scale

• Decay width already stable at fourth-
order

• N
4
LO term in agreement with the Borel

integral at the range [0.3, 3]mH
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Renormalization scale variation

At N4lO we already have a very stable perturbative series
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5Theoretical uncertainty in a Higgs decay

H ! bb̄
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Decay

Uncertainty is dominated by the masses and couplings

�↵s
⇠ 0.9%

�mb
⇠ 0.7%

�mH
⇠ 0.1%
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Overall picture is very consistent.

Discrepancies persist: 
uncertainty has been enlarged.

The PDG uncertainty 
was +/- 0.0007 in 2014

6

αs(MZ
2) = 0.1179 ± 0.0010
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low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)
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Event shapes give  
systematically lower results

Tensions in determinations  
from same data

Starting to be dominated 
by lattice 

PDG 2019 7
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1407 in αs larger than the error we obtained in Eq. (4.5).21 It is
1408 clear that the data show the existence of nonzero DVs and,
1409 while a first-principles derivation from QCD does not exist,
1410 the main features of a DV ansatz cannot be taken to be
1411 arbitrary. As already pointed out in Sec. II, a minimal set of
1412 assumptions, based on commonly accepted properties of
1413 QCD such as, e.g., Regge behavior, leads to the para-
1414 metrization (2.12) [24].
1415 In fact, we have quantitative information on this issue,

1416 from the fits involving IðwnÞ
exp ðs0Þwith n ¼ 2, 3, 4, because of

1417 the single pinch in w2, and the double pinch in w3;4, which
1418 suppress DVs at different rates. Comparing the values of
1419 αsðmτÞ in Eqs. (4.3) and (4.4) to the value in Eq. (4.1), we
1420 see that the central value of αsðmτÞ varies by no more than
1421 0.0004, i.e., 0.13% of the central value, to be compared
1422 with the 2.3% relative error in Eq. (4.5). Such variations are
1423 much smaller than we would expect were the larger DV
1424 contributions to the w0 sum rule to have been incorrectly
1425 represented by the DV ansatz Eq. (2.12).
1426 Running the result of Eq. (4.5) to the Z-mass scale using
1427 the standard self-consistent combination of five-loop run-
1428 ning [33,34] with four-loop matching [78,79] at the charm
1429 and bottom thresholds (2mcðmcÞ and 2mbðmbÞ, respec-
1430 tively, with MS masses from the PDG [55]) we obtain the
1431 corresponding nf ¼ 5 result

αsðmZÞ ¼ 0.1171$ 0.0010 ðnf ¼ 5; FOPTÞ: ð4:6Þ

14321433 With five-loop running and four-loop matching the uncer-
1434 tainty due to the running is very small. If we perform the
1435 matching at mcðmcÞ and mbðmbÞ we find a shift of just
1436 0.00009, which does not contribute to the final uncertainty.
1437 To conclude this section, we compare our new value of
1438 αsðmτÞ given in Eq. (4.5) with those obtained from analyses
1439 of the ALEPH data [8], the OPAL data [12], and from
1440 eþe− → hadrons below 2 GeV [80], where the latter was
1441 based on the combined electroproduction spectral data of
1442 Ref. [13]. These previously obtained values are

αsðmτÞ ¼ 0.325$ 0.018 ðOPALdataÞ;
αsðmτÞ ¼ 0.296$ 0.010 ðALEPHdataÞ;
αsðmτÞ ¼ 0.298$ 0.017 ðeþe− dataÞ: ð4:7Þ

14431444 Previously, we quoted a weighted average of the two
1445 τ-based values in Eq. (4.7), of the ALEPH-based and
1446 OPAL-based results, αsðmτÞ ¼ 0.303$ 0.009, as our best
1447 determination from τ decays. This value and the values

1448shown in Eq. (4.7) are in good agreement with our new,
1449more precise value in Eq. (4.5).
1450A direct comparison with other recent determinations of
1451αs from τ decays [4,9] is problematic because they are all
1452based on the truncated OPE strategy, which was shown in
1453Refs. [25,26] to be contaminated by uncontrolled system-
1454atic effects arising mainly from the neglect of unknown
1455higher-order terms in the OPE in Refs. [4–6,9]. The values
1456of Refs. [4,9] are also highly correlated, since they are
1457based on the same general strategy and the same ALEPH
1458dataset. We note that the values of Refs. [4,9] are signifi-
1459cantly larger than ours αsðmZÞ ¼ 0.1199$ 0.0015, from
1460Ref. [4] and αsðmZÞ ¼ 0.1197$ 0.0015, from Ref. [9].

1461V. CONCLUSION

1462The determination of the strong coupling from hadronic
1463τ decays has the potential to provide one of the most precise
1464values among the many determinations from different
1465methods that have appeared in the literature. It thus makes
1466sense to aim for a determination from the combined
1467experimental information available, and this is what we
1468set out to do in this paper. This led us to construct a new
1469nonstrange vector, isovector spectral function, which is
1470presented in Table I and Fig. 5.
1471In order to construct this spectral function, we combined
1472the τ → π−π 0ντ, τ → 2π−πþπ 0ντ and τ → π−3π 0ντ exper-
1473imental data available from the ALEPH and OPAL col-
1474laborations, using the method employed before in Ref. [13].
1475The sum of these contributions constitutes 98% of the
1476spectral function as measured by branching fraction.
1477Details of the contributions from the remaining exclusive
1478channels, a number of which were estimated using Monte-
1479Carlo, were not provided by ALEPH or OPAL. We have
1480replaced the estimates for these residual-mode contribu-
1481tions using recent τ results for theK−K0 mode and the large
1482amount of data now available, via CVC, from electro-
1483production experiments for the remaining residual modes,
1484with conservative estimates of the systematic errors asso-
1485ciated with this approach. As measured by the spectral
1486moments shown in Table II, this leads to a more accurate
1487determination of the spectral function ρud;VðsÞ, especially
1488in the upper part of the τ kinematic range. This is a
1489consequence of the fact that electroproduction data are
1490not kinematically limited near the τ mass. We emphasize
1491that the inclusive spectral function which results is a sum of
1492s-dependent exclusive-mode contributions, all of which are
1493now obtained from experiment and none of which require
1494Monte-Carlo input any more.
1495One of the most important applications of this new
1496combined dataset is a determination of the strong coupling
1497αs at the τ mass scale. We employed previously developed
1498methods using finite-energy sum rules to extract a new
1499estimate of the MS value of αsðmτÞ from these data, which,
1500when evolved to the Z mass scale, produces a five-flavor

21Contrary to claims in the literature, use of the truncated-OPE
strategy (which ignores DVs, as well as certain higher dimension
OPE contributions) in sum-rule fits to moments of the sum of the
V and A spectral functions can lead to systematic effects of order
10% in αsðmτÞ [25].
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21

↵(PDG)
s (mZ) = 0.1179± 0.0010
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8The strong coupling in 2021 

αs(MZ
2) = 0.1179 ± 0.0010
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sensitivity to QCD corrections. 
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Sum rules

⇧µ⌫(q) = i

Z
d4x eiqxh0|T{Jµ(x)J⌫(0)†}|0i

<latexit sha1_base64="g1OGwrdf/q0q3BAy5IXDRztuku8="></latexit>

Vector correlator with massive quarks

1 Introduction

Precise and reliable determinations of the charm and bottom quark masses are an important
input for a number of theoretical predictions, such as Higgs branching ratios to charm and
bottom quarks or for the corresponding Yukawa couplings [1, 2]. They also affect the
theoretical predictions of radiative and inclusive B decays, as well as rare kaon decays. For
example, the inclusive semileptonic decay rate of B mesons depends on the fifth power of
the bottom quark mass. These weak decays provide crucial methods to determine elements
of the CKM matrix, which in turn are important for testing the validity of the Standard
Model, as well as for indirect searches of new physics. In this context, having a reliable
estimate of uncertainties for the quark masses is as important as knowing their precise
values [3]. Due to confinement quark masses are not physical observables. Rather, they are
scheme-dependent parameters of the QCD Lagrangian which have to be determined from
quantities that strongly depend on them.

One of the most precise tools to determine the charm and bottom quark masses
is the QCD sum rule method, where weighted averages of the normalized cross section
Re+e�! qq̄+X , with q = c, b,

M
V

n =

Z
ds

sn+1
Re+e�! qq̄+X(s) , Re+e�! qq̄+X(s) =

�e+e�! qq̄+X(s)

�e+e�!µ+µ�(s)
, (1.1)

can be related to moments of the quark vector current correlator ⇧V [4, 5]:

M
V, th
n =

12⇡2
Q

2
q

n!

dn

dsn
⇧V (s)

���
s=0

, j
µ(x) = q̄(x)�µq(x) ,

�
gµ⌫ s� qµq⌫

�
⇧V (s) = � i

Z
dx eiqx h 0 |T jµ(x)j⌫(0)| 0 i . (1.2)

Here Qq is the quark electric charge and
p
s =

p
q2 is the e

+
e
� center-of-mass en-

ergy. Given that the integration over the experimental R-ratio extends from the quark
pair threshold up to infinity but experimental measurements only exist for energies up to
around 11GeV, one relies on using theory input for energies above that scale (which we
call the “continuum” region). For the charm moments, the combination of all available
measurements is actually sufficient to render the experimental moments essentially inde-
pendent of uncertainties one may assign to the theory input for the continuum region [6].
For the bottom moments, the dependence on the continuum theory input is very large,
and the dependence of the low-n experimental moments on unavoidable assumptions about
the continuum uncertainty can be the most important component of the error budget, see
e.g. [7]. In fact, the use of the first moment M

V

1 to determine the bottom mass appears to
be excluded until more experimental data becomes available for higher energies.

Alternatively one can also consider moments of the pseudoscalar current correlator to
extract the heavy quark masses. Experimental information on the pseudoscalar correlator
⇧P is not available in a form useful for quark mass determinations, but for the charm quark
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1 Introduction

The strong coupling ↵s is the central quantity governing quantum chromodynamics (QCD).
It is a key parameter to all observables computed in perturbation theory relevant for facilities
such as the LHC or future e

+
e
� colliders, which have an extensive program for determining

top-quark and Higgs-boson properties such as their masses and couplings. It also plays a
central role in flavor physics and in the determination of the masses of charmonium and
bottomonium bound states. This parameter is also crucial for searches of physics beyond
the Standard Model since it largely determines the size of the associated background. For
a review on recent progress see e.g. Refs. [1, 2].

A powerful method to determine parameters related to the strong interactions such as
quark masses and ↵s are QCD sum rules based on weighted integrals of the total hadronic
cross section Rqq̄ (with q = c, b)

Rqq̄(s) =
3s

4⇡↵2
�e+e�! qq̄+X(s) '

�e+e�! qq̄+X(s)

�e+e�!µ+µ�(s)
. (1.1)
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1 Introduction

The strong coupling ↵s is the central quantity governing quantum chromodynamics (QCD).
It is a key parameter to all observables computed in perturbation theory relevant for facilities
such as the LHC or future e

+
e
� colliders, which have an extensive program for determining

top-quark and Higgs-boson properties such as their masses and couplings. It also plays a
central role in flavor physics and in the determination of the masses of charmonium and
bottomonium bound states. This parameter is also crucial for searches of physics beyond
the Standard Model since it largely determines the size of the associated background. For
a review on recent progress see e.g. Refs. [1, 2].

A powerful method to determine parameters related to the strong interactions such as
quark masses and ↵s are QCD sum rules based on weighted integrals of the total hadronic
cross section Rqq̄ (with q = c, b)

Rqq̄(s) =
3s

4⇡↵2
�e+e�! qq̄+X(s) '

�e+e�! qq̄+X(s)

�e+e�!µ+µ�(s)
. (1.1)
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Re(s)

Im(s)

(once subtracted) dispersion relation

Rqq̄ = 12⇡Im⇧(q2)
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Many experiments devoted to R(s) mainly because of muon g-2

⇧(q2) =
q2

12⇡2

Z 1

sth

Rqq̄(s)

s(s� q2 + i✏)
<latexit sha1_base64="Nf8WNHbF/uXpUd6QlQ4AvnEadKo="></latexit>
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Sum rules 10

(once subtracted) dispersion relation

⇧(q2) =
q2

12⇡2

Z 1

sth

Rqq̄(s)

s(s� q2 + i✏)
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Using analyticity and unitarity (dispersion relation): sum rules

TheoryExperimentParticularly important for our work are the inverse moments, MV,n
q , of Rqq̄(s) defined as

M
V,n
q =

Z
ds

sn+1
Rqq̄(s) . (1.2)

Using analyticity and unitarity, these can be related to the coefficients of the Taylor expan-
sion of the quark vector-current correlator around s = 0, which can be computed rigorously
in perturbative QCD for n not too large.

A shortcoming of using moments M
V,n
q is that, while the integration in Eq. (1.2) over

the normalized cross section extends all the way to infinity, experimental data are limited
to a finite energy range. If the energy of the last measured cross section is sufficiently large,
one can safely use the theoretical prediction for the R-ratio in perturbation theory as a
substitute (the region is sometimes referred to as the continuum), applying some penalty
to reduce the model dependence. For the charm cross section the data above threshold
spans over a wide range of energies such that even for n = 1 the computed moment is fairly
insensitive to how the continuum is treated [3]. On the other hand, bottom moments with
low values of n do depend strongly on the continuum such that M

V,1
b cannot be used for

any competitive determination of the bottom-quark mass [4, 5] — a situation that could
change if data at larger energies became available. Here, since we are interested in a precise
extraction of ↵s, the continuum contribution must be treated carefully, in a way that avoids
any possible contamination of the extracted values.

An interesting alternative which does not suffer from problems related to the contin-
uum are moments of the pseudo-scalar quark-current correlator, which can be accurately
computed in lattice QCD [6] — although, so far, precise simulations exist only for the charm
quark. Interestingly, the 0-th moment of this correlator is physical,1 and quite insensitive
to the charm-quark mass, which makes it an ideal candidate to determine ↵s. On the other
hand, it has been shown that the perturbative series of the pseudo-scalar moments (at least
for n > 0) displays a quite poor convergence [5].

The moments M
X,n
q are governed by the typical scale mq/n & ⇤QCD. This is easy to

understand since large values of n have more weight in the narrow resonances such that
a non-relativistic treatment becomes necessary. For small values of n one can compute
the theoretical moments in perturbative QCD supplemented by non-perturbative power
corrections parametrized in terms of local condensates. This framework is known as the
operator product expansion (OPE) [7, 8]. It turns out that the perturbative term overly
dominates the series (even more so for the bottom quark) and the leading (gluon) condensate
is introduced mainly as an estimate of the size of non-perturbative corrections. This method
goes under the name of relativistic quarkonium sum rules.

A lot of progress has been made in the lattice community for determining QCD pa-
rameters from the pseudo-scalar correlator since the pioneering work of Ref. [6], in which
the charm-quark mass and the strong coupling were extracted (the former with high ac-
curacy). Focusing on ↵s, the follow-up paper by HQPCD [9] already claimed half-percent
accuracy at the Z-boson mass with a value very close to the world average, while Refs. [10]

1The first two Taylor coefficients are UV divergent already at O(↵0
s), when no renormalization has been

applied yet. We label moments such that n = 0 corresponds to the third Taylor coefficient.
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2 Theoretical input

In this section we discuss the theoretical description of inverse moments of the vector and
pseudo-scalar quark-currents, as well as the ratios formed from these that we exploit in the
present work. The moments of Eq. (1.2) can be related, using analyticity and unitarity, to
the Taylor coefficients of the expansion of ⇧V

q at s = 0 as

M
V, n
q =

12⇡2
Q

2
q

n!

dn

dsn
⇧V

q (s)
���
s=0

, (2.1)

with
p
s =

p
p2, the e+e� center-of-mass energy [7, 8], Qq the quark electric charge, q = c, b,

and �
g
µ⌫

s� p
µ
p
⌫
�
⇧V

q (s) = � i

Z
dx ei p·x

⌦
0
��T j

µ
q (x)j

⌫
q (0)

�� 0
↵
, (2.2)

where j
µ
q (x) = q̄(x)�µq(x).

Using the notation of Ref. [5], we define the pseudo-scalar quark-current correlator as

⇧P
q (s) = i

Z
dx ei p·x

⌦
0
��T j

P
q (x)j

P
q (0)

�� 0
↵
, (2.3)

with j
P
q (x) = 2mq i q̄(x)�5q(x); here we will only consider pseudo-scalar moments of the

charm-quark current (q = c). The additional mass factor in the pseudo-scalar current (as
compared to the vector case) makes it formally scheme and scale independent. Moments
analogous to those of Eq. (2.1) can be defined as

M
P,n
q =

12⇡2
Q

2
q

n!

dn

dsn
Pq(s)

���
s=0

, (2.4)

where we introduced the combination

Pq(s) =
⇧P

q (s)�⇧P
q (0)� (⇧P

q )
0(0) s

s2
. (2.5)

The theoretical quantities that will be used in this article to determine ↵s are mass
insensitive and dimensionless. For the case of the pseudo-scalar correlator one can use the
0-th moment, which has mass dimension zero by itself, and depends on the quark mass only
logarithmically starting at O(↵2

s). This moment is an observable, in the sense that it does
not need an ultraviolet subtraction to become finite, being formally renormalization-scale
and scheme independent (although it still retains a residual µ dependence at any finite
order in perturbation theory). The 0-th moment of the vector correlator cannot be related
to any experimentally measurable quantity. It is related to the subtraction that renders the
sum rule finite, and is therefore scheme and scale dependent.

One can, however, work with ratios of roots of the n > 0 moments, such that the
mass dependence almost completely disappears. The quantities we are interested in are the
ratios of consecutive roots of moments. Specifically, we define the following mass-insensitive
quantities

R
X,n
q ⌘

�
M

X,n
q

� 1
n

�
M

X,n+1
q

� 1
n+1

, (2.6)

– 4 –

We restrict the sum rules to n  4. Typical scale mq/n.
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Sum rules

Use fixed-order perturbation theory for n ⇠ 1:

Mtheory
n =

12ı2

n!

„
d

dq2

«n h
q + + + + : : :

i

q2=0

• Exact three-loop results up to n = 30
[Chetyrkin, Kühn, Steinhauser 1995]

[Boughezal, Czakon, Schutzmeier 2006; Maier, Maierhöfer, Marquard 2007]

• Exact four-loop results up to n = 4
[Chetyrkin, Kühn, Sturm 2006; Boughezal, Czakon, Schutzmeier 2006]

[Maier, Maierhöfer, Marquard, Smirnov 2008–2009; Maier, Marquard 2017]

• Approximate four-loop results up to n = 10
[Hoang, Mateu, Zebarjad 2008; Kiyo, Maier, Maierhöfer, Marquard 2009; Greynat, Masjuan, Peris 2011]

Next: n = 1 at five loops

6 / 12

MV,n
q =

12⇡2Q2
q

n!
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i 0 1 2 3

R
V,1
c 1.5776 1.8639 �2.1994 0.47189

R
V,2
c 1.0449 0.60030 0.34040 �2.2041

R
V,3
c 0.98700 0.35944 0.53745 �0.77974

Table 1. Perturbative coefficients r
V,n
i for the ratios of the charm vector-current correlator. We

show only terms which do not involve logarithms of ratios of scales.

where X = V refers to vector-current moments while X = P to pseudo-scalar ones. This
type of ratio of moments was originally introduced for the pseudo-scalar correlator [10, 11];
here we extend their use to the vector-current as well. They are the central objects of our
analyses.

2.1 Perturbative contribution

The analytic expressions for the perturbative b⇧X
q (s) functions are known for any value of

s/m
2 to O(↵1

s) accuracy, [13]. As such, moments to arbitrarily high order can be computed
expanding the analytic results around p

2 = 0. The O(↵2
s) contribution to the first n = 30

moments has been computed in [14–18].2 At O(↵3
s), analytic computations exist only for

n = 1 [20–22], n = 2, n = 3, and n = 4 [19, 23, 24]. At this order, values for n > 4 have
been estimated using semi-analytical procedures [25–28].

We write the perturbative vacuum polarization function for vector (X = V ) and
pseudo-scalar (X = P ) currents expanded around s = 0 as

b⇧X
q (s) =

1

12⇡2Q2
q

1X

n=0

s
n
M̂

X,n
q . (2.7)

To have a common notation for both currents we use ⇧P
q (q

2) = Pq(q2), where Pq is the
twice-subtracted pseudo-scalar correlator defined in Eq. (2.4).3

In full generality, different renormalization scales can be employed for the mass and the
coupling in the perturbative expansion of the moments. We denote those renormalization
scales µm and µ↵, respectively. As shown in Refs. [3, 5], in order to properly assess the size
of perturbative uncertainties, it is important to vary these two scales independently. For the
discussion carried out in this section, however, it is sufficient, for the time being, to set both
scales to the quark mass µm = µ↵ = mq, employing the shorthand notation mq ⌘ mq(mq).
With this choice, the logarithms are resummed and the perturbative expansion of the
moments in powers of ↵s takes the following simple form

M̂
X,n
q =

1

(2mq)2n

X

i=0


↵s(mq)

⇡

�i
c
X,n
i . (2.8)

2In Ref. [19] the three-loop vector correlator has been obtained numerically for any value of s/m2 to
arbitrary precision.

3To simplify our nation, here and in what follows, we do not write explicitly the dependence on the
number of flavors nf since it can be deduced from the context.

– 5 –

Known up to O(↵3
s) for n  4
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The theoretical quantities that will be used in this article to determine αs are mass

insensitive and dimensionless. For the case of the pseudo-scalar correlator one can use the

0-th moment, which has mass dimension zero by itself, and depends on the quark mass

only logarithmically starting at O(α2
s). This moment is an observable, in the sense that it

does not need an ultraviolet subtraction to become finite, being formally renormalization-

scale and scheme independent (although it still retains a residual µ dependence at any

finite order in perturbation theory). The 0-th moment of the vector correlator, on the

contrary, cannot be related to any experimentally measurable quantity. It is related to the

subtraction that renders the sum rule finite, and is therefore scheme and scale dependent.

One can, however, work with ratios of roots of the n > 0 moments, such that the

mass dependence almost completely disappears. The quantities we are interested in are

the ratios of consecutive roots of moments. Specifically, we define the following mass-

insensitive quantities

RX,n
q ≡

(
MX,n

q
) 1

n

(
MX,n+1

q
) 1

n+1

, (2.6)

where X = V, P refers to vector and pseudo-scalar correlators, respectively. This type of

ratio of moments was originally introduced for the pseudo-scalar correlator [10, 11]; here we

extend their use to the vector-current as well. They are the central objects of our analyses.

2.1 Perturbative contribution

The analytic expressions for the perturbative Π̂X
q (s) functions are known exactly to O(α1

s)

accuracy [14]. (Hatted quantities should be understood as computed in pure perturbation

theory.) As such, moments to arbitrarily high values of n can be computed expanding the

analytic results around p2 = 0. The O(α2
s) contribution to the first n = 30 moments has

been computed in [15–19].2 At O(α3
s), analytic computations exist only for n = 1 [21–23],

n = 2, n = 3, and n = 4 [20, 24, 25]. At this order, values for n > 4 have been estimated

using semi-analytical procedures [26–29].

We write the perturbative vacuum polarization function for vector and pseudo-scalar

currents expanded around s = 0 as

Π̂X
q (s) =

1

12π2Q2
q

∞∑

n=0

snM̂X,n
q . (2.7)

To have a common notation for both currents we use ΠP
q (q

2) = Pq(q2), where Pq is the

twice-subtracted pseudo-scalar correlator defined in eq. (2.5).3

In full generality, different renormalization scales can be employed for the mass and

the coupling in the perturbative expansion of the moments. We denote those scales µm

and µα, respectively. As shown in refs. [3, 5], in order to properly assess the size of

perturbative uncertainties, it is important to vary them independently. However, for the

2In ref. [20] the three-loop vector correlator has been obtained numerically for any value of s/m2 to

arbitrary precision.
3To simplify our nation, here and in what follows, we do not write explicitly the dependence on the

number of flavors nf since it can be deduced from the context.

– 5 –

Small momentum expansion of the correlator

Also for scalar, pseudoscalar 
and axial correlators

IFAE, May 2021

summing logs with µ = m̄q(m̄q)
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to O(↵3
s), have a very weak dependence on the b-quark

mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rbb̄(s).

Let us start by discussing the perturbative expansion

for M (n)
b and the ratios RV,n

b . Using analyticity and uni-

tarity, the moments M (n)
b can be related to derivatives

of the vector bottom-quark current correlator. The the-
oretical counterpart to Eq. (2) reads [5, 6]

M (n)
b =

12⇡2Q2
q

n!

dn

dsn
⇧b(s)

���
s=0

, (4)

where Qq is the quark electric charge and the correlator
is formed from the quark currents as

�
gµ⌫s�pµp⌫

�
⇧b(s) =�i

Z
dx ei p·xh0|T jµb (x)j

⌫
b (0)|0i, (5)

with jµb (x) = b̄(x)�µb(x). The Taylor coe�cients of the
⇧b(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mb/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
b is written

in terms of two renormalization scales, µ↵, at which the
strong coupling is evaluated, and µm, where the quark-
mass is evaluated:

M (n)
q =

1

[2mb(µm)]2n

X

i=0

"
↵
(nf )
s (µ↵)

⇡

#i

(6)

⇥

iX

a=0

[i�1]X

b=0

c(n)i,a,b(nf ) ln
a

✓
µm

mb(µm)

◆
lnb

✓
µ↵

mb(µm)

◆
,

with [i � 1] ⌘ Max(i � 1, 0). The running mass mb(µm)
and coupling ↵s(µ↵) are calculated in the MS scheme
with the five-loop QCD � and � functions, respec-
tively [7–9]. (Henceforth we always have nf = 5 and
we will often omit the explicit nf dependence in ↵s and

c(n).) The leading logarithm in M (n)
b appears at order

↵s. Setting the two scales in Eq. (6) to the common
value µ↵ = µm = mb(mb) the logarithms are resummed

and the expansion of M (n)
b in this particular case exposes

the independent coe�cients c(n)i,0,0 which must be calcu-
lated in perturbation theory. Thanks to a tremendous

computational e↵ort, the coe�cients c(n)i,0,0 have been cal-
culated (analytically) for n = 1, 2, 3 and 4 [10–12] up to
order ↵3

s [ four loops, or next-to-next-to-next-to-leading
order (N3LO) ]. For n > 4 only estimates are available at
this order. The logarithms of Eq. (6) with the respective
coe�cients can be generated with the use of renormaliza-
tion group equations. Numerical values of the coe�cients

c(n)i,a,b can be found in Ref. [13]. The dependence of M (n)
b

on mb through the prefactor makes these moments ideal
for the extraction of the bottom-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads

RV,n
b =

X

i=0


↵s(µ↵)

⇡

�i
(7)

⇥

[i�1]X

k=0

[i�2]X

j=0

r(n)i,j,k ln
j

✓
µm

mb(µm)

◆
lnk

✓
µ↵

mb(µm)

◆
,

where now the first logarithm, which brings the depen-
dence on mb, appears only at ↵2

s. The ratios RV,n
b are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
b in ↵s and the use of renormalization

group equations. For instance, for RV,2
b at N3LO one

finds

RV,2
b = 0.82937 + 0.47645 as

+ (0.24518 + 1.8264L↵) a
2
s (8)

�
�
2.8544 + 3.6528Lm � 4.1826L↵ � 7.0012L2

↵

�
a3s,

where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mb(µm) ] and
Lm = ln[µm/mb(µm) ]. The leading ↵s correction to
RV,1

b is of about 4.5%, for RV,2
b it is 2.2%, and for RV,3

b it

is 1.4%. The perturbative contribution to RV,n
b is the first

term in its Operator Product Expansion (corresponding
to the identity operator). The leading non-perturbative
correction stems from the gluon condensate and is known
to O(↵s) [14]. In the case of bottom-quark moments, this
correction is tiny and hence taken into account only as
check that non-perturbative e↵ects are fully under con-
trol. We have included it into our analysis, but the e↵ect
is completely immaterial and will no longer be discussed
here. Our results are, therefore, overwhelmingly domi-
nated by perturbative QCD.
We turn now to the experimental determination of the

ratios RV,n
b . Our results are based on the obtention of

the inverse moments M (n)
b performed in Ref. [13] and

discussed in detail in that work. One must combine the
contribution from the first four narrow resonances with
the threshold data from BABAR [15]. The latter has to
be corrected for initial-state radiation and vacuum po-
larization e↵ects. An unfolding of the data is necessary,
which introduces correlations among the di↵erent data

points. This results in moments M (n)
b with strong corre-

lations. BABAR data are available only up to 11.2GeV.
The remainder contribution to the integral of Eq. (2) is
modeled with perturbation theory for Rbb̄(s), often re-
ferred to as the continuum contribution. Moments with
higher values of n are, by construction, less sensitive to
how the continuum is treated. In the case of quark-mass

2

to O(↵3
s), have a very weak dependence on the b-quark

mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rbb̄(s).

Let us start by discussing the perturbative expansion

for M (n)
b and the ratios RV,n

b . Using analyticity and uni-

tarity, the moments M (n)
b can be related to derivatives

of the vector bottom-quark current correlator. The the-
oretical counterpart to Eq. (2) reads [5, 6]

M (n)
b =

12⇡2Q2
q

n!

dn

dsn
⇧b(s)

���
s=0

, (4)

where Qq is the quark electric charge and the correlator
is formed from the quark currents as

�
gµ⌫s�pµp⌫

�
⇧b(s) =�i

Z
dx ei p·xh0|T jµb (x)j

⌫
b (0)|0i, (5)

with jµb (x) = b̄(x)�µb(x). The Taylor coe�cients of the
⇧b(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mb/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
b is written

in terms of two renormalization scales, µ↵, at which the
strong coupling is evaluated, and µm, where the quark-
mass is evaluated:

M (n)
q =

1

[2mb(µm)]2n

X

i=0

"
↵
(nf )
s (µ↵)

⇡

#i

(6)

⇥

iX

a=0

[i�1]X

b=0

c(n)i,a,b(nf ) ln
a

✓
µm

mb(µm)

◆
lnb

✓
µ↵

mb(µm)

◆
,

with [i � 1] ⌘ Max(i � 1, 0). The running mass mb(µm)
and coupling ↵s(µ↵) are calculated in the MS scheme
with the five-loop QCD � and � functions, respec-
tively [7–9]. (Henceforth we always have nf = 5 and
we will often omit the explicit nf dependence in ↵s and

c(n).) The leading logarithm in M (n)
b appears at order

↵s. Setting the two scales in Eq. (6) to the common
value µ↵ = µm = mb(mb) the logarithms are resummed

and the expansion of M (n)
b in this particular case exposes

the independent coe�cients c(n)i,0,0 which must be calcu-
lated in perturbation theory. Thanks to a tremendous

computational e↵ort, the coe�cients c(n)i,0,0 have been cal-
culated (analytically) for n = 1, 2, 3 and 4 [10–12] up to
order ↵3

s [ four loops, or next-to-next-to-next-to-leading
order (N3LO) ]. For n > 4 only estimates are available at
this order. The logarithms of Eq. (6) with the respective
coe�cients can be generated with the use of renormaliza-
tion group equations. Numerical values of the coe�cients

c(n)i,a,b can be found in Ref. [13]. The dependence of M (n)
b

on mb through the prefactor makes these moments ideal
for the extraction of the bottom-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads

RV,n
b =

X

i=0


↵s(µ↵)

⇡

�i
(7)

⇥

[i�1]X

k=0

[i�2]X

j=0

r(n)i,j,k ln
j

✓
µm

mb(µm)

◆
lnk

✓
µ↵

mb(µm)

◆
,

where now the first logarithm, which brings the depen-
dence on mb, appears only at ↵2

s. The ratios RV,n
b are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
b in ↵s and the use of renormalization

group equations. For instance, for RV,2
b at N3LO one

finds

RV,2
b = 0.82937 + 0.47645 as

+ (0.24518 + 1.8264L↵) a
2
s (8)

�
�
2.8544 + 3.6528Lm � 4.1826L↵ � 7.0012L2

↵

�
a3s,

where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mb(µm) ] and
Lm = ln[µm/mb(µm) ]. The leading ↵s correction to
RV,1

b is of about 4.5%, for RV,2
b it is 2.2%, and for RV,3

b it

is 1.4%. The perturbative contribution to RV,n
b is the first

term in its Operator Product Expansion (corresponding
to the identity operator). The leading non-perturbative
correction stems from the gluon condensate and is known
to O(↵s) [14]. In the case of bottom-quark moments, this
correction is tiny and hence taken into account only as
check that non-perturbative e↵ects are fully under con-
trol. We have included it into our analysis, but the e↵ect
is completely immaterial and will no longer be discussed
here. Our results are, therefore, overwhelmingly domi-
nated by perturbative QCD.
We turn now to the experimental determination of the

ratios RV,n
b . Our results are based on the obtention of

the inverse moments M (n)
b performed in Ref. [13] and

discussed in detail in that work. One must combine the
contribution from the first four narrow resonances with
the threshold data from BABAR [15]. The latter has to
be corrected for initial-state radiation and vacuum po-
larization e↵ects. An unfolding of the data is necessary,
which introduces correlations among the di↵erent data

points. This results in moments M (n)
b with strong corre-

lations. BABAR data are available only up to 11.2GeV.
The remainder contribution to the integral of Eq. (2) is
modeled with perturbation theory for Rbb̄(s), often re-
ferred to as the continuum contribution. Moments with
higher values of n are, by construction, less sensitive to
how the continuum is treated. In the case of quark-mass
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i 0 1 2 3

R
V,1
c 1.5776 1.8639 �2.1994 0.47189

R
V,2
c 1.0449 0.60030 0.34040 �2.2041

R
V,3
c 0.98700 0.35944 0.53745 �0.77974

Table 1. Perturbative coefficients r
V,n
i for the ratios of the charm vector-current correlator. We

show only terms which do not involve logarithms of ratios of scales.

where X = V refers to vector-current moments while X = P to pseudo-scalar ones. This
type of ratio of moments was originally introduced for the pseudo-scalar correlator [10, 11];
here we extend their use to the vector-current as well. They are the central objects of our
analyses.

2.1 Perturbative contribution

The analytic expressions for the perturbative b⇧X
q (s) functions are known for any value of

s/m
2 to O(↵1

s) accuracy, [13]. As such, moments to arbitrarily high order can be computed
expanding the analytic results around p

2 = 0. The O(↵2
s) contribution to the first n = 30

moments has been computed in [14–18].2 At O(↵3
s), analytic computations exist only for

n = 1 [20–22], n = 2, n = 3, and n = 4 [19, 23, 24]. At this order, values for n > 4 have
been estimated using semi-analytical procedures [25–28].

We write the perturbative vacuum polarization function for vector (X = V ) and
pseudo-scalar (X = P ) currents expanded around s = 0 as

b⇧X
q (s) =

1

12⇡2Q2
q

1X

n=0

s
n
M̂

X,n
q . (2.7)

To have a common notation for both currents we use ⇧P
q (q

2) = Pq(q2), where Pq is the
twice-subtracted pseudo-scalar correlator defined in Eq. (2.4).3

In full generality, different renormalization scales can be employed for the mass and the
coupling in the perturbative expansion of the moments. We denote those renormalization
scales µm and µ↵, respectively. As shown in Refs. [3, 5], in order to properly assess the size
of perturbative uncertainties, it is important to vary these two scales independently. For the
discussion carried out in this section, however, it is sufficient, for the time being, to set both
scales to the quark mass µm = µ↵ = mq, employing the shorthand notation mq ⌘ mq(mq).
With this choice, the logarithms are resummed and the perturbative expansion of the
moments in powers of ↵s takes the following simple form

M̂
X,n
q =

1

(2mq)2n

X

i=0


↵s(mq)

⇡

�i
c
X,n
i . (2.8)

2In Ref. [19] the three-loop vector correlator has been obtained numerically for any value of s/m2 to
arbitrary precision.

3To simplify our nation, here and in what follows, we do not write explicitly the dependence on the
number of flavors nf since it can be deduced from the context.
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2 Theoretical input

In this section we discuss the theoretical description of inverse moments of the vector and
pseudo-scalar quark-currents, as well as the ratios formed from these that we exploit in the
present work. The moments of Eq. (1.2) can be related, using analyticity and unitarity, to
the Taylor coefficients of the expansion of ⇧V

q at s = 0 as

M
V, n
q =

12⇡2
Q

2
q

n!

dn

dsn
⇧V

q (s)
���
s=0

, (2.1)

with
p
s =

p
p2, the e+e� center-of-mass energy [7, 8], Qq the quark electric charge, q = c, b,

and �
g
µ⌫

s� p
µ
p
⌫
�
⇧V

q (s) = � i

Z
dx ei p·x

⌦
0
��T j

µ
q (x)j

⌫
q (0)

�� 0
↵
, (2.2)

where j
µ
q (x) = q̄(x)�µq(x).

Using the notation of Ref. [5], we define the pseudo-scalar quark-current correlator as

⇧P
q (s) = i

Z
dx ei p·x

⌦
0
��T j

P
q (x)j

P
q (0)

�� 0
↵
, (2.3)

with j
P
q (x) = 2mq i q̄(x)�5q(x); here we will only consider pseudo-scalar moments of the

charm-quark current (q = c). The additional mass factor in the pseudo-scalar current (as
compared to the vector case) makes it formally scheme and scale independent. Moments
analogous to those of Eq. (2.1) can be defined as

M
P,n
q =

12⇡2
Q

2
q

n!

dn

dsn
Pq(s)

���
s=0

, (2.4)

where we introduced the combination

Pq(s) =
⇧P

q (s)�⇧P
q (0)� (⇧P

q )
0(0) s

s2
. (2.5)

The theoretical quantities that will be used in this article to determine ↵s are mass
insensitive and dimensionless. For the case of the pseudo-scalar correlator one can use the
0-th moment, which has mass dimension zero by itself, and depends on the quark mass only
logarithmically starting at O(↵2

s). This moment is an observable, in the sense that it does
not need an ultraviolet subtraction to become finite, being formally renormalization-scale
and scheme independent (although it still retains a residual µ dependence at any finite
order in perturbation theory). The 0-th moment of the vector correlator cannot be related
to any experimentally measurable quantity. It is related to the subtraction that renders the
sum rule finite, and is therefore scheme and scale dependent.

One can, however, work with ratios of roots of the n > 0 moments, such that the
mass dependence almost completely disappears. The quantities we are interested in are the
ratios of consecutive roots of moments. Specifically, we define the following mass-insensitive
quantities

R
X,n
q ⌘

�
M

X,n
q

� 1
n

�
M

X,n+1
q

� 1
n+1

, (2.6)
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2

to O(↵3
s), have a very weak dependence on the b-quark

mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rbb̄(s).

Let us start by discussing the perturbative expansion

for M (n)
b and the ratios RV,n

b . Using analyticity and uni-

tarity, the moments M (n)
b can be related to derivatives

of the vector bottom-quark current correlator. The the-
oretical counterpart to Eq. (2) reads [5, 6]

M (n)
b =

12⇡2Q2
q

n!

dn

dsn
⇧b(s)

���
s=0

, (4)

where Qq is the quark electric charge and the correlator
is formed from the quark currents as

�
gµ⌫s�pµp⌫

�
⇧b(s) =�i

Z
dx ei p·xh0|T jµb (x)j

⌫
b (0)|0i, (5)

with jµb (x) = b̄(x)�µb(x). The Taylor coe�cients of the
⇧b(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mb/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
b is written

in terms of two renormalization scales, µ↵, at which the
strong coupling is evaluated, and µm, where the quark-
mass is evaluated:

M (n)
q =

1

[2mb(µm)]2n

X

i=0

"
↵
(nf )
s (µ↵)

⇡

#i

(6)

⇥

iX

a=0

[i�1]X

b=0

c(n)i,a,b(nf ) ln
a

✓
µm

mb(µm)

◆
lnb

✓
µ↵

mb(µm)

◆
,

with [i � 1] ⌘ Max(i � 1, 0). The running mass mb(µm)
and coupling ↵s(µ↵) are calculated in the MS scheme
with the five-loop QCD � and � functions, respec-
tively [7–9]. (Henceforth we always have nf = 5 and
we will often omit the explicit nf dependence in ↵s and

c(n).) The leading logarithm in M (n)
b appears at order

↵s. Setting the two scales in Eq. (6) to the common
value µ↵ = µm = mb(mb) the logarithms are resummed

and the expansion of M (n)
b in this particular case exposes

the independent coe�cients c(n)i,0,0 which must be calcu-
lated in perturbation theory. Thanks to a tremendous

computational e↵ort, the coe�cients c(n)i,0,0 have been cal-
culated (analytically) for n = 1, 2, 3 and 4 [10–12] up to
order ↵3

s [ four loops, or next-to-next-to-next-to-leading
order (N3LO) ]. For n > 4 only estimates are available at
this order. The logarithms of Eq. (6) with the respective
coe�cients can be generated with the use of renormaliza-
tion group equations. Numerical values of the coe�cients

c(n)i,a,b can be found in Ref. [13]. The dependence of M (n)
b

on mb through the prefactor makes these moments ideal
for the extraction of the bottom-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads

RV,n
b =

X

i=0


↵s(µ↵)

⇡

�i
(7)

⇥

[i�1]X

k=0

[i�2]X

j=0

r(n)i,j,k ln
j

✓
µm

mb(µm)

◆
lnk

✓
µ↵

mb(µm)

◆
,

where now the first logarithm, which brings the depen-
dence on mb, appears only at ↵2

s. The ratios RV,n
b are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
b in ↵s and the use of renormalization

group equations. For instance, for RV,2
b at N3LO one

finds

RV,2
b = 0.82937 + 0.47645 as

+ (0.24518 + 1.8264L↵) a
2
s (8)

�
�
2.8544 + 3.6528Lm � 4.1826L↵ � 7.0012L2

↵

�
a3s,

where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mb(µm) ] and
Lm = ln[µm/mb(µm) ]. The leading ↵s correction to
RV,1

b is of about 4.5%, for RV,2
b it is 2.2%, and for RV,3

b it

is 1.4%. The perturbative contribution to RV,n
b is the first

term in its Operator Product Expansion (corresponding
to the identity operator). The leading non-perturbative
correction stems from the gluon condensate and is known
to O(↵s) [14]. In the case of bottom-quark moments, this
correction is tiny and hence taken into account only as
check that non-perturbative e↵ects are fully under con-
trol. We have included it into our analysis, but the e↵ect
is completely immaterial and will no longer be discussed
here. Our results are, therefore, overwhelmingly domi-
nated by perturbative QCD.
We turn now to the experimental determination of the

ratios RV,n
b . Our results are based on the obtention of

the inverse moments M (n)
b performed in Ref. [13] and

discussed in detail in that work. One must combine the
contribution from the first four narrow resonances with
the threshold data from BABAR [15]. The latter has to
be corrected for initial-state radiation and vacuum po-
larization e↵ects. An unfolding of the data is necessary,
which introduces correlations among the di↵erent data

points. This results in moments M (n)
b with strong corre-

lations. BABAR data are available only up to 11.2GeV.
The remainder contribution to the integral of Eq. (2) is
modeled with perturbation theory for Rbb̄(s), often re-
ferred to as the continuum contribution. Moments with
higher values of n are, by construction, less sensitive to
how the continuum is treated. In the case of quark-mass
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narrow resonances, supplemented with continuous data
for Rbb̄(s).

Let us start by discussing the perturbative expansion

for M (n)
b and the ratios RV,n

b . Using analyticity and uni-

tarity, the moments M (n)
b can be related to derivatives

of the vector bottom-quark current correlator. The the-
oretical counterpart to Eq. (2) reads [5, 6]

M (n)
b =

12⇡2Q2
q

n!

dn

dsn
⇧b(s)

���
s=0

, (4)

where Qq is the quark electric charge and the correlator
is formed from the quark currents as

�
gµ⌫s�pµp⌫

�
⇧b(s) =�i

Z
dx ei p·xh0|T jµb (x)j

⌫
b (0)|0i, (5)

with jµb (x) = b̄(x)�µb(x). The Taylor coe�cients of the
⇧b(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mb/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
b is written

in terms of two renormalization scales, µ↵, at which the
strong coupling is evaluated, and µm, where the quark-
mass is evaluated:

M (n)
q =

1

[2mb(µm)]2n

X
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"
↵
(nf )
s (µ↵)

⇡

#i

(6)
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iX
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µm

mb(µm)
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lnb
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mb(µm)

◆
,

with [i � 1] ⌘ Max(i � 1, 0). The running mass mb(µm)
and coupling ↵s(µ↵) are calculated in the MS scheme
with the five-loop QCD � and � functions, respec-
tively [7–9]. (Henceforth we always have nf = 5 and
we will often omit the explicit nf dependence in ↵s and

c(n).) The leading logarithm in M (n)
b appears at order

↵s. Setting the two scales in Eq. (6) to the common
value µ↵ = µm = mb(mb) the logarithms are resummed

and the expansion of M (n)
b in this particular case exposes

the independent coe�cients c(n)i,0,0 which must be calcu-
lated in perturbation theory. Thanks to a tremendous

computational e↵ort, the coe�cients c(n)i,0,0 have been cal-
culated (analytically) for n = 1, 2, 3 and 4 [10–12] up to
order ↵3

s [ four loops, or next-to-next-to-next-to-leading
order (N3LO) ]. For n > 4 only estimates are available at
this order. The logarithms of Eq. (6) with the respective
coe�cients can be generated with the use of renormaliza-
tion group equations. Numerical values of the coe�cients

c(n)i,a,b can be found in Ref. [13]. The dependence of M (n)
b

on mb through the prefactor makes these moments ideal
for the extraction of the bottom-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads
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where now the first logarithm, which brings the depen-
dence on mb, appears only at ↵2

s. The ratios RV,n
b are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
b in ↵s and the use of renormalization

group equations. For instance, for RV,2
b at N3LO one

finds
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where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mb(µm) ] and
Lm = ln[µm/mb(µm) ]. The leading ↵s correction to
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b is of about 4.5%, for RV,2
b it is 2.2%, and for RV,3

b it

is 1.4%. The perturbative contribution to RV,n
b is the first

term in its Operator Product Expansion (corresponding
to the identity operator). The leading non-perturbative
correction stems from the gluon condensate and is known
to O(↵s) [14]. In the case of bottom-quark moments, this
correction is tiny and hence taken into account only as
check that non-perturbative e↵ects are fully under con-
trol. We have included it into our analysis, but the e↵ect
is completely immaterial and will no longer be discussed
here. Our results are, therefore, overwhelmingly domi-
nated by perturbative QCD.
We turn now to the experimental determination of the

ratios RV,n
b . Our results are based on the obtention of

the inverse moments M (n)
b performed in Ref. [13] and

discussed in detail in that work. One must combine the
contribution from the first four narrow resonances with
the threshold data from BABAR [15]. The latter has to
be corrected for initial-state radiation and vacuum po-
larization e↵ects. An unfolding of the data is necessary,
which introduces correlations among the di↵erent data

points. This results in moments M (n)
b with strong corre-

lations. BABAR data are available only up to 11.2GeV.
The remainder contribution to the integral of Eq. (2) is
modeled with perturbation theory for Rbb̄(s), often re-
ferred to as the continuum contribution. Moments with
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of the vector bottom-quark current correlator. The the-
oretical counterpart to Eq. (2) reads [5, 6]

M (n)
b =

12⇡2Q2
q

n!

dn

dsn
⇧b(s)

���
s=0

, (4)

where Qq is the quark electric charge and the correlator
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with [i � 1] ⌘ Max(i � 1, 0). The running mass mb(µm)
and coupling ↵s(µ↵) are calculated in the MS scheme
with the five-loop QCD � and � functions, respec-
tively [7–9]. (Henceforth we always have nf = 5 and
we will often omit the explicit nf dependence in ↵s and

c(n).) The leading logarithm in M (n)
b appears at order

↵s. Setting the two scales in Eq. (6) to the common
value µ↵ = µm = mb(mb) the logarithms are resummed

and the expansion of M (n)
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the independent coe�cients c(n)i,0,0 which must be calcu-
lated in perturbation theory. Thanks to a tremendous

computational e↵ort, the coe�cients c(n)i,0,0 have been cal-
culated (analytically) for n = 1, 2, 3 and 4 [10–12] up to
order ↵3

s [ four loops, or next-to-next-to-next-to-leading
order (N3LO) ]. For n > 4 only estimates are available at
this order. The logarithms of Eq. (6) with the respective
coe�cients can be generated with the use of renormaliza-
tion group equations. Numerical values of the coe�cients

c(n)i,a,b can be found in Ref. [13]. The dependence of M (n)
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on mb through the prefactor makes these moments ideal
for the extraction of the bottom-quark mass.
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where now the first logarithm, which brings the depen-
dence on mb, appears only at ↵2
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therefore, almost insensitive to the quark mass. The
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b in ↵s and the use of renormalization
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where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mb(µm) ] and
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ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mb/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
b is written

in terms of two renormalization scales, µ↵, at which the
strong coupling is evaluated, and µm, where the quark-
mass is evaluated:

M (n)
q =

1

[2mb(µm)]2n

X

i=0

"
↵
(nf )
s (µ↵)

⇡

#i
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✓
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with [i � 1] ⌘ Max(i � 1, 0). The running mass mb(µm)
and coupling ↵s(µ↵) are calculated in the MS scheme
with the five-loop QCD � and � functions, respec-
tively [7–9]. (Henceforth we always have nf = 5 and
we will often omit the explicit nf dependence in ↵s and

c(n).) The leading logarithm in M (n)
b appears at order

↵s. Setting the two scales in Eq. (6) to the common
value µ↵ = µm = mb(mb) the logarithms are resummed

and the expansion of M (n)
b in this particular case exposes

the independent coe�cients c(n)i,0,0 which must be calcu-
lated in perturbation theory. Thanks to a tremendous

computational e↵ort, the coe�cients c(n)i,0,0 have been cal-
culated (analytically) for n = 1, 2, 3 and 4 [10–12] up to
order ↵3

s [ four loops, or next-to-next-to-next-to-leading
order (N3LO) ]. For n > 4 only estimates are available at
this order. The logarithms of Eq. (6) with the respective
coe�cients can be generated with the use of renormaliza-
tion group equations. Numerical values of the coe�cients

c(n)i,a,b can be found in Ref. [13]. The dependence of M (n)
b

on mb through the prefactor makes these moments ideal
for the extraction of the bottom-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads

RV,n
b =
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⇡
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(7)
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lnk
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◆
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where now the first logarithm, which brings the depen-
dence on mb, appears only at ↵2

s. The ratios RV,n
b are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
b in ↵s and the use of renormalization

group equations. For instance, for RV,2
b at N3LO one

finds

RV,2
b = 0.82937 + 0.47645 as

+ (0.24518 + 1.8264L↵) a
2
s (8)

�
�
2.8544 + 3.6528Lm � 4.1826L↵ � 7.0012L2

↵

�
a3s,

where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mb(µm) ] and
Lm = ln[µm/mb(µm) ]. The leading ↵s correction to
RV,1

b is of about 4.5%, for RV,2
b it is 2.2%, and for RV,3

b it

is 1.4%. The perturbative contribution to RV,n
b is the first

term in its Operator Product Expansion (corresponding
to the identity operator). The leading non-perturbative
correction stems from the gluon condensate and is known
to O(↵s) [14]. In the case of bottom-quark moments, this
correction is tiny and hence taken into account only as
check that non-perturbative e↵ects are fully under con-
trol. We have included it into our analysis, but the e↵ect
is completely immaterial and will no longer be discussed
here. Our results are, therefore, overwhelmingly domi-
nated by perturbative QCD.
We turn now to the experimental determination of the

ratios RV,n
b . Our results are based on the obtention of

the inverse moments M (n)
b performed in Ref. [13] and

discussed in detail in that work. One must combine the
contribution from the first four narrow resonances with
the threshold data from BABAR [15]. The latter has to
be corrected for initial-state radiation and vacuum po-
larization e↵ects. An unfolding of the data is necessary,
which introduces correlations among the di↵erent data

points. This results in moments M (n)
b with strong corre-

lations. BABAR data are available only up to 11.2GeV.
The remainder contribution to the integral of Eq. (2) is
modeled with perturbation theory for Rbb̄(s), often re-
ferred to as the continuum contribution. Moments with
higher values of n are, by construction, less sensitive to
how the continuum is treated. In the case of quark-mass
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2 Theoretical input

In this section we discuss the theoretical description of inverse moments of the vector and
pseudo-scalar quark-currents, as well as the ratios formed from these that we exploit in the
present work. The moments of Eq. (1.2) can be related, using analyticity and unitarity, to
the Taylor coefficients of the expansion of ⇧V

q at s = 0 as

M
V, n
q =

12⇡2
Q

2
q

n!

dn

dsn
⇧V

q (s)
���
s=0

, (2.1)

with
p
s =

p
p2, the e+e� center-of-mass energy [7, 8], Qq the quark electric charge, q = c, b,

and �
g
µ⌫

s� p
µ
p
⌫
�
⇧V

q (s) = � i

Z
dx ei p·x

⌦
0
��T j

µ
q (x)j

⌫
q (0)

�� 0
↵
, (2.2)

where j
µ
q (x) = q̄(x)�µq(x).

Using the notation of Ref. [5], we define the pseudo-scalar quark-current correlator as

⇧P
q (s) = i

Z
dx ei p·x

⌦
0
��T j

P
q (x)j

P
q (0)

�� 0
↵
, (2.3)

with j
P
q (x) = 2mq i q̄(x)�5q(x); here we will only consider pseudo-scalar moments of the

charm-quark current (q = c). The additional mass factor in the pseudo-scalar current (as
compared to the vector case) makes it formally scheme and scale independent. Moments
analogous to those of Eq. (2.1) can be defined as

M
P,n
q =

12⇡2
Q

2
q

n!

dn

dsn
Pq(s)

���
s=0

, (2.4)

where we introduced the combination

Pq(s) =
⇧P

q (s)�⇧P
q (0)� (⇧P

q )
0(0) s

s2
. (2.5)

The theoretical quantities that will be used in this article to determine ↵s are mass
insensitive and dimensionless. For the case of the pseudo-scalar correlator one can use the
0-th moment, which has mass dimension zero by itself, and depends on the quark mass only
logarithmically starting at O(↵2

s). This moment is an observable, in the sense that it does
not need an ultraviolet subtraction to become finite, being formally renormalization-scale
and scheme independent (although it still retains a residual µ dependence at any finite
order in perturbation theory). The 0-th moment of the vector correlator cannot be related
to any experimentally measurable quantity. It is related to the subtraction that renders the
sum rule finite, and is therefore scheme and scale dependent.

One can, however, work with ratios of roots of the n > 0 moments, such that the
mass dependence almost completely disappears. The quantities we are interested in are the
ratios of consecutive roots of moments. Specifically, we define the following mass-insensitive
quantities

R
X,n
q ⌘

�
M

X,n
q

� 1
n

�
M

X,n+1
q

� 1
n+1

, (2.6)
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Example

Almost insensitive to the quark mass (only through logs at O(↵2
s))

Sensitive to the coupling.
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3
LO up to RV,3

q

Can be accurately determined from data.
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only lattice data is available [5]. As we will show, the
ratios RV,n

c that we introduce here are particularly suit-
able for ↵s extractions: for 1  n  3 they are known up
to O(↵3

s), have a very weak dependence on the c-quark
mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rcc̄(s).

Let us start by discussing the perturbative expansion

for M (n)
c and the ratios RV,n

c . Using analyticity and uni-

tarity, the moments M (n)
c can be related to derivatives of

the vector charm-quark current correlator. The theoret-
ical counterpart to Eq. (2) reads [6, 7]

M (n)
c =

12⇡2Q2
c

n!

dn

dsn
⇧c(s)

���
s=0

, (4)

where Qc is the charm-quark electric charge and the cor-
relator is formed from the charm vector currents as

�
gµ⌫s�pµp⌫

�
⇧c(s) =�i

Z
dx ei p·xh0|T jµc (x)j

⌫
c (0)|0i, (5)

with jµc (x) = c̄(x)�µc(x). The Taylor coe�cients of the
⇧c(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mc/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
c is writ-

ten in terms of two renormalization scales, µ↵ and µm,
at which the strong coupling and the quark-mass are re-
spectively evaluated, as first noticed in Ref. [4]:

M (n)
c =

1

[2mc(µm)]2n

X

i=0

"
↵
(nf )
s (µ↵)

⇡

#i

(6)

⇥
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a=0

[i�1]X

b=0

c(n)i,a,b(nf ) ln
a

✓
µm

mc(µm)

◆
lnb

✓
µ↵

mc(µm)

◆
,

with [i � 1] ⌘ Max(i � 1, 0), and nf = 4. The running
mass mc(µm) and coupling ↵s(µ↵) are calculated in the
MS scheme with the five-loop QCD � and � functions,
respectively [8–10]. Likewise, we use the four-loop match-
ing condition [11–13] to relate ↵s in the four- and five-
flavour schemes. (We will often omit the explicit nf de-

pendence in ↵s and c(n)i,a,b.) The leading logarithm inM (n)
c

appears at order ↵s. Setting the two scales in Eq. (6) to
the common value µ↵ = µm = mc(mc) the logarithms

are resummed and the expansion of M (n)
c , in this particu-

lar case, exposes the independent coe�cients c(n)i,0,0 which
must be calculated in perturbation theory. Thanks to

a tremendous computational e↵ort, the coe�cients c(n)i,0,0
have been calculated (analytically) for n = 1, 2, 3 and
4 [14–16] up to order ↵3

s [ four loops, or next-to-next-to-
next-to-leading order (N3LO) ]. For n > 4 only estimates
are available at this order [17–20]. The logarithms of

Eq. (6) with the respective coe�cients can be generated
with the use of renormalization group equations. Nu-

merical values of the coe�cients c(n)i,a,b can be found in

Ref. [21]. The dependence of M (n)
c on mc through the

prefactor makes these moments ideal for the extraction
of the charm-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads

RV,n
c =

X

i=0


↵s(µ↵)

⇡

�i
(7)

⇥

[i�1]X

k=0

[i�2]X

j=0

r(n)i,j,k ln
j

✓
µm

mc(µm)

◆
lnk

✓
µ↵

mc(µm)

◆
,

where now the first logarithm, which brings the depen-
dence on mc, appears only at ↵2

s. The ratios RV,n
c are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
c in ↵s and the use of renormalization

group equations. For instance, for RV,2
c at N3LO one

finds

RV,2
c = 1.0449

⇥
1 + 0.57448 as

+ (0.32576 + 2.3937L↵) a
2
s (8)

�
�
2.1093 + 4.7873Lm � 6.4009L↵ � 9.9736L2

↵

�
a3s
⇤
,

where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mc(µm) ] and
Lm = ln[µm/mc(µm) ]. The total ↵s correction to RV,1

c

is about 12.5%, 7.2% for RV,2
c , and 5.2% for RV,3

c . The
perturbative contribution to RV,n

c is the first term in
its Operator Product Expansion (corresponding to the
identity operator). The leading non-perturbative correc-
tion stems from the gluon condensate and is known to
O(↵s) [22]. This correction is small, but nevertheless in-
cluded in our analysis even though our results are largely
dominated by perturbative QCD.
Alternatively, one could consider not re-expanding in

↵s the ratios defined in Eq. (3). In principle, one could
even take di↵erent renormalization scales in the numer-
ator and denominator. Even though the pole-mass am-
biguity cancels individually in each moment, subleading
renormalons exist and their e↵ect might be softened by
taking the same renormalization scale and re-expading
the ratios. Furthermore, the physics of RV,n

c is di↵er-
ent from the one of each individual moment, and as such
they should be considered as observables in their own
right, therefore with their own series expansion in terms
of a single ↵s(µ↵).
We turn now to the experimental determination of the

ratios RV,n
c . Our results are based on the obtention of

the inverse moments M (n)
c performed in Ref. [4] and dis-

cussed in detail in that work. It combines the contribu-
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only lattice data is available [5]. As we will show, the
ratios RV,n

c that we introduce here are particularly suit-
able for ↵s extractions: for 1  n  3 they are known up
to O(↵3

s), have a very weak dependence on the c-quark
mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rcc̄(s).

Let us start by discussing the perturbative expansion

for M (n)
c and the ratios RV,n

c . Using analyticity and uni-

tarity, the moments M (n)
c can be related to derivatives of

the vector charm-quark current correlator. The theoret-
ical counterpart to Eq. (2) reads [6, 7]

M (n)
c =
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, (4)

where Qc is the charm-quark electric charge and the cor-
relator is formed from the charm vector currents as
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gµ⌫s�pµp⌫
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⇧c(s) =�i

Z
dx ei p·xh0|T jµc (x)j

⌫
c (0)|0i, (5)

with jµc (x) = c̄(x)�µc(x). The Taylor coe�cients of the
⇧c(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mc/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
c is writ-

ten in terms of two renormalization scales, µ↵ and µm,
at which the strong coupling and the quark-mass are re-
spectively evaluated, as first noticed in Ref. [4]:
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with [i � 1] ⌘ Max(i � 1, 0), and nf = 4. The running
mass mc(µm) and coupling ↵s(µ↵) are calculated in the
MS scheme with the five-loop QCD � and � functions,
respectively [8–10]. Likewise, we use the four-loop match-
ing condition [11–13] to relate ↵s in the four- and five-
flavour schemes. (We will often omit the explicit nf de-

pendence in ↵s and c(n)i,a,b.) The leading logarithm inM (n)
c

appears at order ↵s. Setting the two scales in Eq. (6) to
the common value µ↵ = µm = mc(mc) the logarithms

are resummed and the expansion of M (n)
c , in this particu-

lar case, exposes the independent coe�cients c(n)i,0,0 which
must be calculated in perturbation theory. Thanks to

a tremendous computational e↵ort, the coe�cients c(n)i,0,0
have been calculated (analytically) for n = 1, 2, 3 and
4 [14–16] up to order ↵3

s [ four loops, or next-to-next-to-
next-to-leading order (N3LO) ]. For n > 4 only estimates
are available at this order [17–20]. The logarithms of

Eq. (6) with the respective coe�cients can be generated
with the use of renormalization group equations. Nu-

merical values of the coe�cients c(n)i,a,b can be found in

Ref. [21]. The dependence of M (n)
c on mc through the

prefactor makes these moments ideal for the extraction
of the charm-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads
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where now the first logarithm, which brings the depen-
dence on mc, appears only at ↵2

s. The ratios RV,n
c are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
c in ↵s and the use of renormalization

group equations. For instance, for RV,2
c at N3LO one

finds
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c = 1.0449
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where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mc(µm) ] and
Lm = ln[µm/mc(µm) ]. The total ↵s correction to RV,1

c

is about 12.5%, 7.2% for RV,2
c , and 5.2% for RV,3

c . The
perturbative contribution to RV,n

c is the first term in
its Operator Product Expansion (corresponding to the
identity operator). The leading non-perturbative correc-
tion stems from the gluon condensate and is known to
O(↵s) [22]. This correction is small, but nevertheless in-
cluded in our analysis even though our results are largely
dominated by perturbative QCD.
Alternatively, one could consider not re-expanding in

↵s the ratios defined in Eq. (3). In principle, one could
even take di↵erent renormalization scales in the numer-
ator and denominator. Even though the pole-mass am-
biguity cancels individually in each moment, subleading
renormalons exist and their e↵ect might be softened by
taking the same renormalization scale and re-expading
the ratios. Furthermore, the physics of RV,n

c is di↵er-
ent from the one of each individual moment, and as such
they should be considered as observables in their own
right, therefore with their own series expansion in terms
of a single ↵s(µ↵).
We turn now to the experimental determination of the

ratios RV,n
c . Our results are based on the obtention of

the inverse moments M (n)
c performed in Ref. [4] and dis-

cussed in detail in that work. It combines the contribu-
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only lattice data is available [5]. As we will show, the
ratios RV,n

c that we introduce here are particularly suit-
able for ↵s extractions: for 1  n  3 they are known up
to O(↵3

s), have a very weak dependence on the c-quark
mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rcc̄(s).

Let us start by discussing the perturbative expansion

for M (n)
c and the ratios RV,n

c . Using analyticity and uni-

tarity, the moments M (n)
c can be related to derivatives of

the vector charm-quark current correlator. The theoret-
ical counterpart to Eq. (2) reads [6, 7]
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where Qc is the charm-quark electric charge and the cor-
relator is formed from the charm vector currents as
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with jµc (x) = c̄(x)�µc(x). The Taylor coe�cients of the
⇧c(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mc/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
c is writ-

ten in terms of two renormalization scales, µ↵ and µm,
at which the strong coupling and the quark-mass are re-
spectively evaluated, as first noticed in Ref. [4]:
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with [i � 1] ⌘ Max(i � 1, 0), and nf = 4. The running
mass mc(µm) and coupling ↵s(µ↵) are calculated in the
MS scheme with the five-loop QCD � and � functions,
respectively [8–10]. Likewise, we use the four-loop match-
ing condition [11–13] to relate ↵s in the four- and five-
flavour schemes. (We will often omit the explicit nf de-

pendence in ↵s and c(n)i,a,b.) The leading logarithm inM (n)
c

appears at order ↵s. Setting the two scales in Eq. (6) to
the common value µ↵ = µm = mc(mc) the logarithms

are resummed and the expansion of M (n)
c , in this particu-

lar case, exposes the independent coe�cients c(n)i,0,0 which
must be calculated in perturbation theory. Thanks to

a tremendous computational e↵ort, the coe�cients c(n)i,0,0
have been calculated (analytically) for n = 1, 2, 3 and
4 [14–16] up to order ↵3

s [ four loops, or next-to-next-to-
next-to-leading order (N3LO) ]. For n > 4 only estimates
are available at this order [17–20]. The logarithms of

Eq. (6) with the respective coe�cients can be generated
with the use of renormalization group equations. Nu-

merical values of the coe�cients c(n)i,a,b can be found in

Ref. [21]. The dependence of M (n)
c on mc through the

prefactor makes these moments ideal for the extraction
of the charm-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads
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where now the first logarithm, which brings the depen-
dence on mc, appears only at ↵2

s. The ratios RV,n
c are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
c in ↵s and the use of renormalization

group equations. For instance, for RV,2
c at N3LO one

finds
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where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mc(µm) ] and
Lm = ln[µm/mc(µm) ]. The total ↵s correction to RV,1

c

is about 12.5%, 7.2% for RV,2
c , and 5.2% for RV,3

c . The
perturbative contribution to RV,n

c is the first term in
its Operator Product Expansion (corresponding to the
identity operator). The leading non-perturbative correc-
tion stems from the gluon condensate and is known to
O(↵s) [22]. This correction is small, but nevertheless in-
cluded in our analysis even though our results are largely
dominated by perturbative QCD.
Alternatively, one could consider not re-expanding in

↵s the ratios defined in Eq. (3). In principle, one could
even take di↵erent renormalization scales in the numer-
ator and denominator. Even though the pole-mass am-
biguity cancels individually in each moment, subleading
renormalons exist and their e↵ect might be softened by
taking the same renormalization scale and re-expading
the ratios. Furthermore, the physics of RV,n

c is di↵er-
ent from the one of each individual moment, and as such
they should be considered as observables in their own
right, therefore with their own series expansion in terms
of a single ↵s(µ↵).
We turn now to the experimental determination of the

ratios RV,n
c . Our results are based on the obtention of

the inverse moments M (n)
c performed in Ref. [4] and dis-

cussed in detail in that work. It combines the contribu-

+O
�
↵4
s

�
]

<latexit sha1_base64="xi9Eow7ZyygiucH6DWHfyJON2KQ=">AAACDXicbVDJSgNBEO2JW4xb1KOXwShEhDATA3oMevFmBLNAZgw1nZ6kSc9Cd40QhvyAF3/FiwdFvHr35t/YWQ6a+KDg8V4VVfW8WHCFlvVtZJaWV1bXsuu5jc2t7Z387l5DRYmkrE4jEcmWB4oJHrI6chSsFUsGgSdY0xtcjf3mA5OKR+EdDmPmBtALuc8poJY6+aNTJwDsUxDpzcgRzMeiAyLuQ0fdVxzJe308cTv5glWyJjAXiT0jBTJDrZP/croRTQIWIhWgVNu2YnRTkMipYKOckygWAx1Aj7U1DSFgyk0n34zMY610TT+SukI0J+rviRQCpYaBpzvHp6t5byz+57UT9C/clIdxgiyk00V+IkyMzHE0ZpdLRlEMNQEqub7VpH2QQFEHmNMh2PMvL5JGuWSflcq3lUL1chZHlhyQQ1IkNjknVXJNaqROKHkkz+SVvBlPxovxbnxMWzPGbGaf/IHx+QNPOJu0</latexit>

2

to O(↵3
s), have a very weak dependence on the b-quark

mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rbb̄(s).

Let us start by discussing the perturbative expansion

for M (n)
b and the ratios RV,n

b . Using analyticity and uni-

tarity, the moments M (n)
b can be related to derivatives

of the vector bottom-quark current correlator. The the-
oretical counterpart to Eq. (2) reads [5, 6]

M (n)
b =

12⇡2Q2
q

n!

dn

dsn
⇧b(s)

���
s=0

, (4)

where Qq is the quark electric charge and the correlator
is formed from the quark currents as

�
gµ⌫s�pµp⌫

�
⇧b(s) =�i

Z
dx ei p·xh0|T jµb (x)j

⌫
b (0)|0i, (5)

with jµb (x) = b̄(x)�µb(x). The Taylor coe�cients of the
⇧b(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mb/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
b is written

in terms of two renormalization scales, µ↵, at which the
strong coupling is evaluated, and µm, where the quark-
mass is evaluated:

M (n)
q =

1
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with [i � 1] ⌘ Max(i � 1, 0). The running mass mb(µm)
and coupling ↵s(µ↵) are calculated in the MS scheme
with the five-loop QCD � and � functions, respec-
tively [7–9]. (Henceforth we always have nf = 5 and
we will often omit the explicit nf dependence in ↵s and

c(n).) The leading logarithm in M (n)
b appears at order

↵s. Setting the two scales in Eq. (6) to the common
value µ↵ = µm = mb(mb) the logarithms are resummed

and the expansion of M (n)
b in this particular case exposes

the independent coe�cients c(n)i,0,0 which must be calcu-
lated in perturbation theory. Thanks to a tremendous

computational e↵ort, the coe�cients c(n)i,0,0 have been cal-
culated (analytically) for n = 1, 2, 3 and 4 [10–12] up to
order ↵3

s [ four loops, or next-to-next-to-next-to-leading
order (N3LO) ]. For n > 4 only estimates are available at
this order. The logarithms of Eq. (6) with the respective
coe�cients can be generated with the use of renormaliza-
tion group equations. Numerical values of the coe�cients

c(n)i,a,b can be found in Ref. [13]. The dependence of M (n)
b

on mb through the prefactor makes these moments ideal
for the extraction of the bottom-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads
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where now the first logarithm, which brings the depen-
dence on mb, appears only at ↵2

s. The ratios RV,n
b are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
b in ↵s and the use of renormalization

group equations. For instance, for RV,2
b at N3LO one

finds

RV,2
b = 0.82937 + 0.47645 as

+ (0.24518 + 1.8264L↵) a
2
s (8)

�
�
2.8544 + 3.6528Lm � 4.1826L↵ � 7.0012L2
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where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mb(µm) ] and
Lm = ln[µm/mb(µm) ]. The leading ↵s correction to
RV,1

b is of about 4.5%, for RV,2
b it is 2.2%, and for RV,3

b it

is 1.4%. The perturbative contribution to RV,n
b is the first

term in its Operator Product Expansion (corresponding
to the identity operator). The leading non-perturbative
correction stems from the gluon condensate and is known
to O(↵s) [14]. In the case of bottom-quark moments, this
correction is tiny and hence taken into account only as
check that non-perturbative e↵ects are fully under con-
trol. We have included it into our analysis, but the e↵ect
is completely immaterial and will no longer be discussed
here. Our results are, therefore, overwhelmingly domi-
nated by perturbative QCD.
We turn now to the experimental determination of the

ratios RV,n
b . Our results are based on the obtention of

the inverse moments M (n)
b performed in Ref. [13] and

discussed in detail in that work. One must combine the
contribution from the first four narrow resonances with
the threshold data from BABAR [15]. The latter has to
be corrected for initial-state radiation and vacuum po-
larization e↵ects. An unfolding of the data is necessary,
which introduces correlations among the di↵erent data

points. This results in moments M (n)
b with strong corre-

lations. BABAR data are available only up to 11.2GeV.
The remainder contribution to the integral of Eq. (2) is
modeled with perturbation theory for Rbb̄(s), often re-
ferred to as the continuum contribution. Moments with
higher values of n are, by construction, less sensitive to
how the continuum is treated. In the case of quark-mass
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term in its Operator Product Expansion (corresponding
to the identity operator). The leading non-perturbative
correction stems from the gluon condensate and is known
to O(↵s) [14]. In the case of bottom-quark moments, this
correction is tiny and hence taken into account only as
check that non-perturbative e↵ects are fully under con-
trol. We have included it into our analysis, but the e↵ect
is completely immaterial and will no longer be discussed
here. Our results are, therefore, overwhelmingly domi-
nated by perturbative QCD.
We turn now to the experimental determination of the
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b . Our results are based on the obtention of

the inverse moments M (n)
b performed in Ref. [13] and

discussed in detail in that work. One must combine the
contribution from the first four narrow resonances with
the threshold data from BABAR [15]. The latter has to
be corrected for initial-state radiation and vacuum po-
larization e↵ects. An unfolding of the data is necessary,
which introduces correlations among the di↵erent data

points. This results in moments M (n)
b with strong corre-

lations. BABAR data are available only up to 11.2GeV.
The remainder contribution to the integral of Eq. (2) is
modeled with perturbation theory for Rbb̄(s), often re-
ferred to as the continuum contribution. Moments with
higher values of n are, by construction, less sensitive to
how the continuum is treated. In the case of quark-mass

Perturbative expansion

Residual (suppressed) mass dependence

IFAE, May 2021



Diogo Boito

Ratios of  moments: strong coupling extraction 15

Perturbative expansion

Typical size of pt. corrections: 13%, 7%, and 5% (for charm with n=1,2,3)

correlator of the form P (q2) = P (q2)�P (0). Slightly abusing notation, we denote P as the
“on-shell” scheme for P (q2), and the twice subtracted (original) definition as the MS scheme
for P (q2). Using the OS scheme with b⇧X(0) = 0 for either vector or pseudoscalar correlator,
we find that the first moment for the contour-improved expansion gives exactly the first
fixed-order moment, M̂X,C

1 = M̂
X

1 . Thus, in order to implement a non-trivial modification,
and following Ref. [6], we employ the MS scheme for b⇧V (0) defined for µ = mq(mq), and
the twice-subtracted expression for P (q2). Generically it can be written as

b⇧MS
X (0, nf ) =

X
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. (2.8)

The numerical values for the coefficients [CX ]a,b0,i are collected in Table 7 for the vector
correlator with 5 flavors and the pseudoscalar correlator with 4 flavors. In Table 4 or Ref. [6]
one finds the the numerical values of [CV (nf = 4)]a,b0,i .

2.2 Gluon Condensate Contribution

We estimate nonperturbative power corrections by including the gluon condensate contri-
bution. The gluon condensate is a dimension-4 matrix element and gives the leading power
correction in the OPE for the moments [39, 40]

M
X

n = M̂
X

n +�M
X, hG2i
n + . . . (2.9)

Here the ellipses represent higher-order power corrections of the OPE involving con-
densates with dimensions bigger than 4. The Wilson coefficients of the gluon condensate
corrections are known to O(↵s) accuracy [25]. Following Ref. [41], we express the Wilson
coefficient of the gluon condensate in terms of the pole mass, since in this way the correction
is numerically more stable for higher moments. However, as we did in Ref. [6], we still write
the pole mass in terms of the MS quark mass at one loop. The resulting expression reads

�M
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We use the renormalization group invariant (RGI) scheme for the gluon condensate
[42]. The numerical value of the [aV (nf = 5)]an and [aP (nf = 4)]an coefficients are collected
in Table 6. The values for [aV (nf = 4)]an can be found in Table 5 of Ref. [6]. For methods
(b) and (c) one can obtain the gluon condensate contribution by performing simple algebra
operations and re-expansions in ↵

(nf )
s and hG

2
i. For method (d) we employ Eqs. (2.9) and

(2.10) as shown. For the RGI gluon condensate we adopt [43]

D
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2
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RGI
= 0.006± 0.012 GeV4

. (2.11)

– 8 –

gluon-condensate known to NLO. 

Added as an estimate of non-perturbative uncertainties.

Completely irrelevant for the bottom-quark case.

Non-perturbative contributions:

2

only lattice data is available [5]. As we will show, the
ratios RV,n

c that we introduce here are particularly suit-
able for ↵s extractions: for 1  n  3 they are known up
to O(↵3

s), have a very weak dependence on the c-quark
mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rcc̄(s).

Let us start by discussing the perturbative expansion

for M (n)
c and the ratios RV,n

c . Using analyticity and uni-

tarity, the moments M (n)
c can be related to derivatives of

the vector charm-quark current correlator. The theoret-
ical counterpart to Eq. (2) reads [6, 7]
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where Qc is the charm-quark electric charge and the cor-
relator is formed from the charm vector currents as
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Z
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⌫
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with jµc (x) = c̄(x)�µc(x). The Taylor coe�cients of the
⇧c(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mc/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
c is writ-

ten in terms of two renormalization scales, µ↵ and µm,
at which the strong coupling and the quark-mass are re-
spectively evaluated, as first noticed in Ref. [4]:
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with [i � 1] ⌘ Max(i � 1, 0), and nf = 4. The running
mass mc(µm) and coupling ↵s(µ↵) are calculated in the
MS scheme with the five-loop QCD � and � functions,
respectively [8–10]. Likewise, we use the four-loop match-
ing condition [11–13] to relate ↵s in the four- and five-
flavour schemes. (We will often omit the explicit nf de-

pendence in ↵s and c(n)i,a,b.) The leading logarithm inM (n)
c

appears at order ↵s. Setting the two scales in Eq. (6) to
the common value µ↵ = µm = mc(mc) the logarithms

are resummed and the expansion of M (n)
c , in this particu-

lar case, exposes the independent coe�cients c(n)i,0,0 which
must be calculated in perturbation theory. Thanks to

a tremendous computational e↵ort, the coe�cients c(n)i,0,0
have been calculated (analytically) for n = 1, 2, 3 and
4 [14–16] up to order ↵3

s [ four loops, or next-to-next-to-
next-to-leading order (N3LO) ]. For n > 4 only estimates
are available at this order [17–20]. The logarithms of

Eq. (6) with the respective coe�cients can be generated
with the use of renormalization group equations. Nu-

merical values of the coe�cients c(n)i,a,b can be found in

Ref. [21]. The dependence of M (n)
c on mc through the

prefactor makes these moments ideal for the extraction
of the charm-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads
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where now the first logarithm, which brings the depen-
dence on mc, appears only at ↵2

s. The ratios RV,n
c are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
c in ↵s and the use of renormalization

group equations. For instance, for RV,2
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where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mc(µm) ] and
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c . The
perturbative contribution to RV,n

c is the first term in
its Operator Product Expansion (corresponding to the
identity operator). The leading non-perturbative correc-
tion stems from the gluon condensate and is known to
O(↵s) [22]. This correction is small, but nevertheless in-
cluded in our analysis even though our results are largely
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with jµc (x) = c̄(x)�µc(x). The Taylor coe�cients of the
⇧c(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mc/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
c is writ-

ten in terms of two renormalization scales, µ↵ and µm,
at which the strong coupling and the quark-mass are re-
spectively evaluated, as first noticed in Ref. [4]:
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with [i � 1] ⌘ Max(i � 1, 0), and nf = 4. The running
mass mc(µm) and coupling ↵s(µ↵) are calculated in the
MS scheme with the five-loop QCD � and � functions,
respectively [8–10]. Likewise, we use the four-loop match-
ing condition [11–13] to relate ↵s in the four- and five-
flavour schemes. (We will often omit the explicit nf de-

pendence in ↵s and c(n)i,a,b.) The leading logarithm inM (n)
c

appears at order ↵s. Setting the two scales in Eq. (6) to
the common value µ↵ = µm = mc(mc) the logarithms

are resummed and the expansion of M (n)
c , in this particu-

lar case, exposes the independent coe�cients c(n)i,0,0 which
must be calculated in perturbation theory. Thanks to

a tremendous computational e↵ort, the coe�cients c(n)i,0,0
have been calculated (analytically) for n = 1, 2, 3 and
4 [14–16] up to order ↵3

s [ four loops, or next-to-next-to-
next-to-leading order (N3LO) ]. For n > 4 only estimates
are available at this order [17–20]. The logarithms of

Eq. (6) with the respective coe�cients can be generated
with the use of renormalization group equations. Nu-

merical values of the coe�cients c(n)i,a,b can be found in

Ref. [21]. The dependence of M (n)
c on mc through the

prefactor makes these moments ideal for the extraction
of the charm-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads

RV,n
c =

X

i=0


↵s(µ↵)

⇡

�i
(7)

⇥

[i�1]X

k=0

[i�2]X

j=0

r(n)i,j,k ln
j

✓
µm

mc(µm)

◆
lnk

✓
µ↵

mc(µm)

◆
,

where now the first logarithm, which brings the depen-
dence on mc, appears only at ↵2

s. The ratios RV,n
c are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
c in ↵s and the use of renormalization

group equations. For instance, for RV,2
c at N3LO one

finds

RV,2
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where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mc(µm) ] and
Lm = ln[µm/mc(µm) ]. The total ↵s correction to RV,1

c

is about 12.5%, 7.2% for RV,2
c , and 5.2% for RV,3

c . The
perturbative contribution to RV,n

c is the first term in
its Operator Product Expansion (corresponding to the
identity operator). The leading non-perturbative correc-
tion stems from the gluon condensate and is known to
O(↵s) [22]. This correction is small, but nevertheless in-
cluded in our analysis even though our results are largely
dominated by perturbative QCD.
Alternatively, one could consider not re-expanding in

↵s the ratios defined in Eq. (3). In principle, one could
even take di↵erent renormalization scales in the numer-
ator and denominator. Even though the pole-mass am-
biguity cancels individually in each moment, subleading
renormalons exist and their e↵ect might be softened by
taking the same renormalization scale and re-expading
the ratios. Furthermore, the physics of RV,n

c is di↵er-
ent from the one of each individual moment, and as such
they should be considered as observables in their own
right, therefore with their own series expansion in terms
of a single ↵s(µ↵).
We turn now to the experimental determination of the

ratios RV,n
c . Our results are based on the obtention of

the inverse moments M (n)
c performed in Ref. [4] and dis-

cussed in detail in that work. It combines the contribu-
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with [i � 1] ⌘ Max(i � 1, 0), and nf = 4. The running
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MS scheme with the five-loop QCD � and � functions,
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ing condition [11–13] to relate ↵s in the four- and five-
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where now the first logarithm, which brings the depen-
dence on mc, appears only at ↵2
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where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mc(µm) ] and
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c , and 5.2% for RV,3

c . The
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c is the first term in
its Operator Product Expansion (corresponding to the
identity operator). The leading non-perturbative correc-
tion stems from the gluon condensate and is known to
O(↵s) [22]. This correction is small, but nevertheless in-
cluded in our analysis even though our results are largely
dominated by perturbative QCD.
Alternatively, one could consider not re-expanding in

↵s the ratios defined in Eq. (3). In principle, one could
even take di↵erent renormalization scales in the numer-
ator and denominator. Even though the pole-mass am-
biguity cancels individually in each moment, subleading
renormalons exist and their e↵ect might be softened by
taking the same renormalization scale and re-expading
the ratios. Furthermore, the physics of RV,n

c is di↵er-
ent from the one of each individual moment, and as such
they should be considered as observables in their own
right, therefore with their own series expansion in terms
of a single ↵s(µ↵).
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cussed in detail in that work. It combines the contribu-

+O
�
↵4
s

�
]

<latexit sha1_base64="xi9Eow7ZyygiucH6DWHfyJON2KQ=">AAACDXicbVDJSgNBEO2JW4xb1KOXwShEhDATA3oMevFmBLNAZgw1nZ6kSc9Cd40QhvyAF3/FiwdFvHr35t/YWQ6a+KDg8V4VVfW8WHCFlvVtZJaWV1bXsuu5jc2t7Z387l5DRYmkrE4jEcmWB4oJHrI6chSsFUsGgSdY0xtcjf3mA5OKR+EdDmPmBtALuc8poJY6+aNTJwDsUxDpzcgRzMeiAyLuQ0fdVxzJe308cTv5glWyJjAXiT0jBTJDrZP/croRTQIWIhWgVNu2YnRTkMipYKOckygWAx1Aj7U1DSFgyk0n34zMY610TT+SukI0J+rviRQCpYaBpzvHp6t5byz+57UT9C/clIdxgiyk00V+IkyMzHE0ZpdLRlEMNQEqub7VpH2QQFEHmNMh2PMvL5JGuWSflcq3lUL1chZHlhyQQ1IkNjknVXJNaqROKHkkz+SVvBlPxovxbnxMWzPGbGaf/IHx+QNPOJu0</latexit>

IFAE, May 2021



Diogo Boito

Theory errors: scale variation

2

to O(↵3
s), have a very weak dependence on the b-quark

mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rbb̄(s).

Let us start by discussing the perturbative expansion

for M (n)
b and the ratios RV,n

b . Using analyticity and uni-

tarity, the moments M (n)
b can be related to derivatives

of the vector bottom-quark current correlator. The the-
oretical counterpart to Eq. (2) reads [5, 6]
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where Qq is the quark electric charge and the correlator
is formed from the quark currents as
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Z
dx ei p·xh0|T jµb (x)j

⌫
b (0)|0i, (5)

with jµb (x) = b̄(x)�µb(x). The Taylor coe�cients of the
⇧b(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mb/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
b is written

in terms of two renormalization scales, µ↵, at which the
strong coupling is evaluated, and µm, where the quark-
mass is evaluated:
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with [i � 1] ⌘ Max(i � 1, 0). The running mass mb(µm)
and coupling ↵s(µ↵) are calculated in the MS scheme
with the five-loop QCD � and � functions, respec-
tively [7–9]. (Henceforth we always have nf = 5 and
we will often omit the explicit nf dependence in ↵s and

c(n).) The leading logarithm in M (n)
b appears at order

↵s. Setting the two scales in Eq. (6) to the common
value µ↵ = µm = mb(mb) the logarithms are resummed

and the expansion of M (n)
b in this particular case exposes

the independent coe�cients c(n)i,0,0 which must be calcu-
lated in perturbation theory. Thanks to a tremendous

computational e↵ort, the coe�cients c(n)i,0,0 have been cal-
culated (analytically) for n = 1, 2, 3 and 4 [10–12] up to
order ↵3

s [ four loops, or next-to-next-to-next-to-leading
order (N3LO) ]. For n > 4 only estimates are available at
this order. The logarithms of Eq. (6) with the respective
coe�cients can be generated with the use of renormaliza-
tion group equations. Numerical values of the coe�cients

c(n)i,a,b can be found in Ref. [13]. The dependence of M (n)
b

on mb through the prefactor makes these moments ideal
for the extraction of the bottom-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads
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where now the first logarithm, which brings the depen-
dence on mb, appears only at ↵2

s. The ratios RV,n
b are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
b in ↵s and the use of renormalization

group equations. For instance, for RV,2
b at N3LO one

finds

RV,2
b = 0.82937 + 0.47645 as

+ (0.24518 + 1.8264L↵) a
2
s (8)
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where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mb(µm) ] and
Lm = ln[µm/mb(µm) ]. The leading ↵s correction to
RV,1

b is of about 4.5%, for RV,2
b it is 2.2%, and for RV,3

b it

is 1.4%. The perturbative contribution to RV,n
b is the first

term in its Operator Product Expansion (corresponding
to the identity operator). The leading non-perturbative
correction stems from the gluon condensate and is known
to O(↵s) [14]. In the case of bottom-quark moments, this
correction is tiny and hence taken into account only as
check that non-perturbative e↵ects are fully under con-
trol. We have included it into our analysis, but the e↵ect
is completely immaterial and will no longer be discussed
here. Our results are, therefore, overwhelmingly domi-
nated by perturbative QCD.
We turn now to the experimental determination of the

ratios RV,n
b . Our results are based on the obtention of

the inverse moments M (n)
b performed in Ref. [13] and

discussed in detail in that work. One must combine the
contribution from the first four narrow resonances with
the threshold data from BABAR [15]. The latter has to
be corrected for initial-state radiation and vacuum po-
larization e↵ects. An unfolding of the data is necessary,
which introduces correlations among the di↵erent data

points. This results in moments M (n)
b with strong corre-

lations. BABAR data are available only up to 11.2GeV.
The remainder contribution to the integral of Eq. (2) is
modeled with perturbation theory for Rbb̄(s), often re-
ferred to as the continuum contribution. Moments with
higher values of n are, by construction, less sensitive to
how the continuum is treated. In the case of quark-mass
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and coupling ↵s(µ↵) are calculated in the MS scheme
with the five-loop QCD � and � functions, respec-
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term in its Operator Product Expansion (corresponding
to the identity operator). The leading non-perturbative
correction stems from the gluon condensate and is known
to O(↵s) [14]. In the case of bottom-quark moments, this
correction is tiny and hence taken into account only as
check that non-perturbative e↵ects are fully under con-
trol. We have included it into our analysis, but the e↵ect
is completely immaterial and will no longer be discussed
here. Our results are, therefore, overwhelmingly domi-
nated by perturbative QCD.
We turn now to the experimental determination of the
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b . Our results are based on the obtention of

the inverse moments M (n)
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discussed in detail in that work. One must combine the
contribution from the first four narrow resonances with
the threshold data from BABAR [15]. The latter has to
be corrected for initial-state radiation and vacuum po-
larization e↵ects. An unfolding of the data is necessary,
which introduces correlations among the di↵erent data

points. This results in moments M (n)
b with strong corre-

lations. BABAR data are available only up to 11.2GeV.
The remainder contribution to the integral of Eq. (2) is
modeled with perturbation theory for Rbb̄(s), often re-
ferred to as the continuum contribution. Moments with
higher values of n are, by construction, less sensitive to
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Independent scale variation important for conservative error estimate

With the following constraint

negligible uncertainty in ↵s, and therefore do not include this variation in our final error
budget.

In order to thoroughly study the perturbative uncertainties, and following Refs. [3, 5],
we use two independent renormalization scales, which we call µ↵ and µm. The perturbative
series we shall be dealing with are written in terms of ↵s(µ↵) only. It is important to
have a single expansion parameter [ that is, one has to avoid having ↵s(µm) explicitly in
the series ], such that the pole-mass related renormalon is properly canceled. Therefore, the
dependence on µm starts only at ↵2

s, as powers of log(µ↵/µm) and log[µm/mq(µm)]. Hence,
it is expected that the dependence on µm is weaker than on µ↵, which in turn might mean
that double scale variation is not as crucial as in quark mass determinations. In any case,
to be conservative, we adopt the same scale variation as in [3, 5]: mq  µ↵, µm  µmax,
with µmax = 4 (15)GeV for charm (bottom). We will explore how uncertainties change if
other conventions, some of which less conservative, are adopted.

Firstly, we performed an analysis of the convergence properties of the perturbative
series for ↵s in the spirit of what was done in Ref. [5], studying the convergence of each
series for different values of µ↵ and µm within our grids. In Ref. [5] it was suggested
that series with bad convergence properties could be discarded. However, in the present
case we find a rather flat distribution for the parameter that measures the convergence
of the series, in contrast to what was found in Ref. [5] for the quark-mass determination.
The detailed results of this analysis are given in App. A. Instead, here we shall use a
more standard criterion based on avoiding large logarithms, and will simply require that
0.5  µ↵/µm  2. The excluded regions are shown as faint gray areas in Fig. 1. We do
not impose a similar veto on µm/mq(µm) since the original variation range on µm already
implements the usual small-log paradigm (here one cannot use values of µm smaller than
mq since then ↵s becomes large and endangers the convergence properties of the series).
Furthermore, our analyses also show that the bottom vector ratios are the most convergent,
closely followed by the charm vector correlator. However, the series for the pseudo-scalar
correlator are significantly less convergent than the other two cases studied, a behavior that
was already found in Ref. [5]. Therefore determining ↵s from the charm and bottom vector
correlators seems warranted, at least from the perspective of perturbative uncertainties.

We continue our exploration of perturbative uncertainties drawing contour plots that
show the dependence of the ↵

(nf=5)
s (mZ) extracted value on the renormalization scales. For

this exercise we do not include the gluon condensate correction and use the experimental
values quoted in Table 6 for the vector correlator using the world average value for the
strong coupling constant, and the results of [10] shown in Table 7 for the pseudo-scalar
correlator. We also use for the quark masses the current world-average central values,
mc = 1.28GeV, and mb = 4.18GeV, ignoring their uncertainties. We analyze the values of
↵s as obtained from the series which include up to O(↵3

s) terms. The results for the various
currents and number of flavors are collected in the three rows of Fig. 1, where different
columns correspond to different ratios (except in the last row, where the leftmost panel
shows the result for the n = 0 pseudo-scalar moment). From the plots one can conclude
that in most cases, varying the scales in a correlated way in some limited ranges may lead
to serious underestimates of perturbative uncertainties. In some cases, however, a variation
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Particularly important for our work are the inverse moments, MV,n
q , of Rqq̄(s) defined as

M
V,n
q =

Z
ds

sn+1
Rqq̄(s) . (1.2)

Using analyticity and unitarity, these can be related to the coefficients of the Taylor expan-
sion of the quark vector-current correlator around s = 0, which can be computed rigorously
in perturbative QCD for n not too large.

A shortcoming of using moments M
V,n
q is that, while the integration in Eq. (1.2) over

the normalized cross section extends all the way to infinity, experimental data are limited
to a finite energy range. If the energy of the last measured cross section is sufficiently large,
one can safely use the theoretical prediction for the R-ratio in perturbation theory as a
substitute (the region is sometimes referred to as the continuum), applying some penalty
to reduce the model dependence. For the charm cross section the data above threshold
spans over a wide range of energies such that even for n = 1 the computed moment is fairly
insensitive to how the continuum is treated [3]. On the other hand, bottom moments with
low values of n do depend strongly on the continuum such that M

V,1
b cannot be used for

any competitive determination of the bottom-quark mass [4, 5] — a situation that could
change if data at larger energies became available. Here, since we are interested in a precise
extraction of ↵s, the continuum contribution must be treated carefully, in a way that avoids
any possible contamination of the extracted values.

An interesting alternative which does not suffer from problems related to the contin-
uum are moments of the pseudo-scalar quark-current correlator, which can be accurately
computed in lattice QCD [6] — although, so far, precise simulations exist only for the charm
quark. Interestingly, the 0-th moment of this correlator is physical,1 and quite insensitive
to the charm-quark mass, which makes it an ideal candidate to determine ↵s. On the other
hand, it has been shown that the perturbative series of the pseudo-scalar moments (at least
for n > 0) displays a quite poor convergence [5].

The moments M
X,n
q are governed by the typical scale mq/n & ⇤QCD. This is easy to

understand since large values of n have more weight in the narrow resonances such that
a non-relativistic treatment becomes necessary. For small values of n one can compute
the theoretical moments in perturbative QCD supplemented by non-perturbative power
corrections parametrized in terms of local condensates. This framework is known as the
operator product expansion (OPE) [7, 8]. It turns out that the perturbative term overly
dominates the series (even more so for the bottom quark) and the leading (gluon) condensate
is introduced mainly as an estimate of the size of non-perturbative corrections. This method
goes under the name of relativistic quarkonium sum rules.

A lot of progress has been made in the lattice community for determining QCD pa-
rameters from the pseudo-scalar correlator since the pioneering work of Ref. [6], in which
the charm-quark mass and the strong coupling were extracted (the former with high ac-
curacy). Focusing on ↵s, the follow-up paper by HQPCD [9] already claimed half-percent
accuracy at the Z-boson mass with a value very close to the world average, while Refs. [10]

1The first two Taylor coefficients are UV divergent already at O(↵0
s), when no renormalization has been

applied yet. We label moments such that n = 0 corresponds to the third Taylor coefficient.
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= (resonan.) +

Z smax

sth

ds

sn+1
Rqq̄(s) +

Z 1

smax

ds

sn+1
Rqq̄(s)
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Z 1
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Ruds
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Using analyticity and unitarity, these can be related to the coefficients of the Taylor expan-
sion of the quark vector-current correlator around s = 0, which can be computed rigorously
in perturbative QCD for n not too large.

A shortcoming of using moments M
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q is that, while the integration in Eq. (1.2) over

the normalized cross section extends all the way to infinity, experimental data are limited
to a finite energy range. If the energy of the last measured cross section is sufficiently large,
one can safely use the theoretical prediction for the R-ratio in perturbation theory as a
substitute (the region is sometimes referred to as the continuum), applying some penalty
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spans over a wide range of energies such that even for n = 1 the computed moment is fairly
insensitive to how the continuum is treated [3]. On the other hand, bottom moments with
low values of n do depend strongly on the continuum such that M
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any competitive determination of the bottom-quark mass [4, 5] — a situation that could
change if data at larger energies became available. Here, since we are interested in a precise
extraction of ↵s, the continuum contribution must be treated carefully, in a way that avoids
any possible contamination of the extracted values.

An interesting alternative which does not suffer from problems related to the contin-
uum are moments of the pseudo-scalar quark-current correlator, which can be accurately
computed in lattice QCD [6] — although, so far, precise simulations exist only for the charm
quark. Interestingly, the 0-th moment of this correlator is physical,1 and quite insensitive
to the charm-quark mass, which makes it an ideal candidate to determine ↵s. On the other
hand, it has been shown that the perturbative series of the pseudo-scalar moments (at least
for n > 0) displays a quite poor convergence [5].

The moments M
X,n
q are governed by the typical scale mq/n & ⇤QCD. This is easy to

understand since large values of n have more weight in the narrow resonances such that
a non-relativistic treatment becomes necessary. For small values of n one can compute
the theoretical moments in perturbative QCD supplemented by non-perturbative power
corrections parametrized in terms of local condensates. This framework is known as the
operator product expansion (OPE) [7, 8]. It turns out that the perturbative term overly
dominates the series (even more so for the bottom quark) and the leading (gluon) condensate
is introduced mainly as an estimate of the size of non-perturbative corrections. This method
goes under the name of relativistic quarkonium sum rules.

A lot of progress has been made in the lattice community for determining QCD pa-
rameters from the pseudo-scalar correlator since the pioneering work of Ref. [6], in which
the charm-quark mass and the strong coupling were extracted (the former with high ac-
curacy). Focusing on ↵s, the follow-up paper by HQPCD [9] already claimed half-percent
accuracy at the Z-boson mass with a value very close to the world average, while Refs. [10]

1The first two Taylor coefficients are UV divergent already at O(↵0
s), when no renormalization has been

applied yet. We label moments such that n = 0 corresponds to the third Taylor coefficient.
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Figure 9. Result of the fit for the default selection of data sets. On the top, (a) and (b) show the
entire fit region and the non-charm region, respectively. In the middle row, (c) illustrates the low
charm region and (d) the threshold region 1. In the bottom line (e) and (f) depict threshold region
2 and the data continuum region, respectively.

including it into the integration measure. Using the relation ds/s
n+1

= d(E
�2n

/n) we thus
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Figure 9. Result of the fit for the default selection of data sets. On the top, (a) and (b) show the
entire fit region and the non-charm region, respectively. In the middle row, (c) illustrates the low
charm region and (d) the threshold region 1. In the bottom line (e) and (f) depict threshold region
2 and the data continuum region, respectively.

including it into the integration measure. Using the relation ds/s
n+1

= d(E
�2n

/n) we thus
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Parametrize the continuum contribution (highly linear dependence on the coupling)
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For the charm quark ratios we have

3

extractions, one normally fixes the input value of ↵s in
the continuum. Here, however, since we aim at extract-
ing ↵s from data, one cannot do this lest the results be
contaminated by the input value of the strong coupling.
We have, therefore, adapted the extraction of the mo-

ments M (n)
b from Ref. [13] in order to obtain RV,n

b as a
function of the ↵s value used in the continuum. It turns
out that the dependence with ↵s, for values not too far
from the world average, is highly linear, which facilitates
the task of obtaining parametrized expressions for the ra-
tios RV,n

b . In terms of �↵ = 0.1181�↵s, the three ratios
we exploit here read

RV,1
b = (0.8020 + 0.4083�↵)± 0.0014,

RV,2
b = (0.84647 + 0.14955�↵)± 0.00040, (9)

RV,3
b = (0.89617 + 0.06905�↵)± 0.00017.

The associated errors are completely dominated by data
and are very small. The smallness of the errors is in
part due to the strong positive correlations between the

consecutive moments M (n)
b which, when properly prop-

agated, lead to a very small uncertainty in the ratios.

(For example, moments M (2)
b and M (3)

b are 86% corre-
lated.) The relative errors in the ratios are of only 0.16%,
0.046%, 0.019% for RV,1

b , RV,2
b , and RV,3

b , respectively.
The determination of ↵s is done by equating the ex-

perimental results of Eq. (9) to the respective expan-
sions of the type of Eq. (8), numerically solving for ↵s.
We turn now to a discussion of the results we obtain
from this analysis. Sound results require a careful —
and conservative — study of the associated uncertain-
ties, in particular those that stem from the truncation
of the perturbative series. It has been shown that in

quark-mass extractions from M (n)
b , a reliable error es-

timate requires the independent variation of the two
scales µm and µ↵ [13]. To be fully conservative, even
though here the dependence on µm is weaker than in

the case of M (n)
b , we vary both scales in the interval

mb  µ↵, µm  µmax, with µmax = 15GeV, and apply
the constraint 1/⇠  (µ↵/µm)  ⇠ with the canonical
choice ⇠ = 2 (the dependence on the value of ⇠ will
be discussed below).1 The scale variation we adopt is
much more conservative than that used in many related
works, where one often sets µm = µ↵ (or ⇠ = 1). For
the bottom mass we adopt the current world average
mb = 4.180(23)GeV. With this setup we have created
grids with 4000 points of µm and µ↵ and the respective
↵s values for each ratio RV,n

b (with n = 1, 2, and 3), order
by order in the perturbative expansion. First, we check

1 We have carefully investigated the convergence of the perturba-
tive expansion with an adapted Cauchy test suggested in Ref. [13]
and conclude that the use of the restriction 1/⇠  (µ↵/µm)  ⇠
is sound in our case.

1 2 3

0.11

0.12

0.13

0.14

0.15

0.16

FIG. 1. ↵s values extracted order by order in perturbation
theory from the ratios RV,n

b of Eq. (9). Only perturbative
uncertainties are displayed.

0.1177

0.1179

0.1182

0.1185

0.1191

4 6 8 10 12 14
4

6

8

10

12

14

FIG. 2. Results for ↵s from RV,2
b at O(↵3

s) in the µ↵ ⇥ µm

plane. Shaded areas are excluded from our analysis (see text).

the convergence of the ↵s extractions at each order in per-
turbation theory from the results obtained in the grids,
without considering any other source of uncertainty apart
from the spread in values due to scale variation, which
measures the perturbative error. The results are shown
in Fig. 1 for the three ratios we consider. One clearly sees
a nice convergence for all the moments, which indicates
that the perturbative uncertainties are under control.
We continue the investigation of perturbative incer-

titudes by analyzing the ↵s grids with two-dimensional
contour plots at N3LO. In Fig. 2 we show the result of
such a scan in the case of RV,2

b . What one sees from this
plot is that a correlated scale variation with µ↵ = µm,
along the diagonal of the plot, would lead to a seriously
underestimated theory uncertainty. The consequences of
a correlated scale variation would be less dramatic for
n = 1 and n = 3 but the results of Fig. 2 demonstrate,
visually, the need of the independent scale variation. Fi-

Small uncertainties partially 
due to positive correlation 
among the moments Mn.

Continuum contribution 
smaller for higher n

3

tion from the narrow J/ and  0 resonances, the avail-
able threshold data from Refs. [23–37], and a remain-
ing contribution modeled with perturbative QCD for
s > 10.538GeV where no data is available (the so-called
continuum contribution). One also subtracts from the
data a non-charm background from u, d, and s quarks,
as well as a contribution from secondary charm produc-
tion which is not included in the theory. (The small
singlet contribution has been estimated and can be ne-
glected [38].) The continuum contribution as well as the
uds background, which are implemented at the R-ratio
level, use perturbative QCD expressions. Here, since we
aim at a precise extraction of ↵s, we cannot fix its value
in these contributions. We have, therefore, adapted the

extraction of the moments M (n)
c from Ref. [21] in order

to obtain RV,n
c as a function of the ↵s value used in the

continuum and the background. It turns out that the de-
pendence with ↵s, for values not too far from the world
average, is highly linear, which facilitates the task of ob-
taining parametrized expressions for the ratios RV,n

c . In

terms of �↵ = ↵
(nf=5)
s (mZ)�0.1181, the three ratios we

exploit here read

RV,1
c = (1.770� 0.705�↵)± 0.017,

RV,2
c = (1.1173� 0.1330�↵)± 0.0022, (9)

RV,3
c = (1.03535� 0.04376�↵)± 0.00084.

The associated errors are dominated by data and are
fairly small. The smallness of the uncertainties is in part
due to the strong positive correlations between the con-

secutive moments M (n)
c which, in the error propagation,

lead to a very small uncertainty in the ratios. (For ex-

ample, moments M (2)
c and M (3)

c are 97.6% correlated.)
The relative errors in the ratios are of only 0.98%, 0.22%,
0.10% for RV,1

c , RV,2
c , and RV,3

c , respectively.
The determination of ↵s is done by equating the exper-

imental results of Eq. (9) to the respective expansions of
the type of Eq. (8), numerically solving for ↵s. We turn
now to a discussion of the results we obtain from this
analysis. Sound results require a careful — and conserva-
tive — study of the associated uncertainties, in particular
those that stem from the truncation of the perturbative
series. It has been shown that in quark-mass extractions

from M (n)
c , a reliable error estimate requires the indepen-

dent variation of the two scales µm and µ↵ [21]. To be
fully conservative, even though here the dependence on

µm is weaker than in the case ofM (n)
c , we vary both scales

in the interval mc  µ↵, µm  µmax, with µmax = 4GeV,
and apply the constraint 1/⇠  (µ↵/µm)  ⇠ with the
canonical choice ⇠ = 2 (the dependence on the value of ⇠
will be discussed below).2 The scale variation we adopt

2 We have carefully investigated the convergence of the perturba-
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is much more conservative than that used in many re-
lated works, where one often sets µm = µ↵ (or ⇠ = 1).
For the charm mass we adopt mc = 1.28(2)GeV. With
this setup we have created grids with 3025 points of µm

and µ↵ and the respective ↵s values for each ratio RV,n
c

(with n = 1, 2, and 3), order by order in the perturbative
expansion. First, we check the convergence of the ↵s ex-
tractions at each order in perturbation theory from the
results obtained in the grids, neglecting charm-mass, ex-
perimental, and non-perturbative uncertainties. There-
fore the spread in values due to scale variation directly
measures the perturbative error. The results are shown
in Fig. 1 for the three ratios we consider. One clearly sees
a nice convergence for all the moments, which indicates

tive expansion with an adapted Cauchy test suggested in Ref. [21]
and conclude that the use of the restriction 1/⇠  (µ↵/µm)  ⇠
is sound in our case.
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2 Theoretical input

In this section we discuss the theoretical description of inverse moments of the vector and
pseudo-scalar quark-currents, as well as the ratios formed from these that we exploit in the
present work. The moments of Eq. (1.2) can be related, using analyticity and unitarity, to
the Taylor coefficients of the expansion of ⇧V

q at s = 0 as

M
V, n
q =

12⇡2
Q

2
q

n!

dn

dsn
⇧V

q (s)
���
s=0

, (2.1)

with
p
s =

p
p2, the e+e� center-of-mass energy [7, 8], Qq the quark electric charge, q = c, b,

and �
g
µ⌫

s� p
µ
p
⌫
�
⇧V

q (s) = � i

Z
dx ei p·x

⌦
0
��T j

µ
q (x)j

⌫
q (0)

�� 0
↵
, (2.2)

where j
µ
q (x) = q̄(x)�µq(x).

Using the notation of Ref. [5], we define the pseudo-scalar quark-current correlator as

⇧P
q (s) = i

Z
dx ei p·x

⌦
0
��T j

P
q (x)j

P
q (0)

�� 0
↵
, (2.3)

with j
P
q (x) = 2mq i q̄(x)�5q(x); here we will only consider pseudo-scalar moments of the

charm-quark current (q = c). The additional mass factor in the pseudo-scalar current (as
compared to the vector case) makes it formally scheme and scale independent. Moments
analogous to those of Eq. (2.1) can be defined as

M
P,n
q =

12⇡2
Q

2
q

n!

dn

dsn
Pq(s)

���
s=0

, (2.4)

where we introduced the combination

Pq(s) =
⇧P

q (s)�⇧P
q (0)� (⇧P

q )
0(0) s

s2
. (2.5)

The theoretical quantities that will be used in this article to determine ↵s are mass
insensitive and dimensionless. For the case of the pseudo-scalar correlator one can use the
0-th moment, which has mass dimension zero by itself, and depends on the quark mass only
logarithmically starting at O(↵2

s). This moment is an observable, in the sense that it does
not need an ultraviolet subtraction to become finite, being formally renormalization-scale
and scheme independent (although it still retains a residual µ dependence at any finite
order in perturbation theory). The 0-th moment of the vector correlator cannot be related
to any experimentally measurable quantity. It is related to the subtraction that renders the
sum rule finite, and is therefore scheme and scale dependent.

One can, however, work with ratios of roots of the n > 0 moments, such that the
mass dependence almost completely disappears. The quantities we are interested in are the
ratios of consecutive roots of moments. Specifically, we define the following mass-insensitive
quantities

R
X,n
q ⌘

�
M

X,n
q

� 1
n

�
M

X,n+1
q

� 1
n+1

, (2.6)
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Particularly important for our work are the inverse moments, MV,n
q , of Rqq̄(s) defined as

M
V,n
q =

Z
ds

sn+1
Rqq̄(s) . (1.2)

Using analyticity and unitarity, these can be related to the coefficients of the Taylor expan-
sion of the quark vector-current correlator around s = 0, which can be computed rigorously
in perturbative QCD for n not too large.

A shortcoming of using moments M
V,n
q is that, while the integration in Eq. (1.2) over

the normalized cross section extends all the way to infinity, experimental data are limited
to a finite energy range. If the energy of the last measured cross section is sufficiently large,
one can safely use the theoretical prediction for the R-ratio in perturbation theory as a
substitute (the region is sometimes referred to as the continuum), applying some penalty
to reduce the model dependence. For the charm cross section the data above threshold
spans over a wide range of energies such that even for n = 1 the computed moment is fairly
insensitive to how the continuum is treated [3]. On the other hand, bottom moments with
low values of n do depend strongly on the continuum such that M

V,1
b cannot be used for

any competitive determination of the bottom-quark mass [4, 5] — a situation that could
change if data at larger energies became available. Here, since we are interested in a precise
extraction of ↵s, the continuum contribution must be treated carefully, in a way that avoids
any possible contamination of the extracted values.

An interesting alternative which does not suffer from problems related to the contin-
uum are moments of the pseudo-scalar quark-current correlator, which can be accurately
computed in lattice QCD [6] — although, so far, precise simulations exist only for the charm
quark. Interestingly, the 0-th moment of this correlator is physical,1 and quite insensitive
to the charm-quark mass, which makes it an ideal candidate to determine ↵s. On the other
hand, it has been shown that the perturbative series of the pseudo-scalar moments (at least
for n > 0) displays a quite poor convergence [5].

The moments M
X,n
q are governed by the typical scale mq/n & ⇤QCD. This is easy to

understand since large values of n have more weight in the narrow resonances such that
a non-relativistic treatment becomes necessary. For small values of n one can compute
the theoretical moments in perturbative QCD supplemented by non-perturbative power
corrections parametrized in terms of local condensates. This framework is known as the
operator product expansion (OPE) [7, 8]. It turns out that the perturbative term overly
dominates the series (even more so for the bottom quark) and the leading (gluon) condensate
is introduced mainly as an estimate of the size of non-perturbative corrections. This method
goes under the name of relativistic quarkonium sum rules.

A lot of progress has been made in the lattice community for determining QCD pa-
rameters from the pseudo-scalar correlator since the pioneering work of Ref. [6], in which
the charm-quark mass and the strong coupling were extracted (the former with high ac-
curacy). Focusing on ↵s, the follow-up paper by HQPCD [9] already claimed half-percent
accuracy at the Z-boson mass with a value very close to the world average, while Refs. [10]

1The first two Taylor coefficients are UV divergent already at O(↵0
s), when no renormalization has been

applied yet. We label moments such that n = 0 corresponds to the third Taylor coefficient.
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= (resonan.) +

Z smax

sth

ds

sn+1
Rqq̄(s) +

Z 1

smax

ds

sn+1
Rqq̄(s)
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in perturbative QCD for n not too large.

A shortcoming of using moments M
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one can safely use the theoretical prediction for the R-ratio in perturbation theory as a
substitute (the region is sometimes referred to as the continuum), applying some penalty
to reduce the model dependence. For the charm cross section the data above threshold
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extraction of ↵s, the continuum contribution must be treated carefully, in a way that avoids
any possible contamination of the extracted values.
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quark. Interestingly, the 0-th moment of this correlator is physical,1 and quite insensitive
to the charm-quark mass, which makes it an ideal candidate to determine ↵s. On the other
hand, it has been shown that the perturbative series of the pseudo-scalar moments (at least
for n > 0) displays a quite poor convergence [5].

The moments M
X,n
q are governed by the typical scale mq/n & ⇤QCD. This is easy to

understand since large values of n have more weight in the narrow resonances such that
a non-relativistic treatment becomes necessary. For small values of n one can compute
the theoretical moments in perturbative QCD supplemented by non-perturbative power
corrections parametrized in terms of local condensates. This framework is known as the
operator product expansion (OPE) [7, 8]. It turns out that the perturbative term overly
dominates the series (even more so for the bottom quark) and the leading (gluon) condensate
is introduced mainly as an estimate of the size of non-perturbative corrections. This method
goes under the name of relativistic quarkonium sum rules.

A lot of progress has been made in the lattice community for determining QCD pa-
rameters from the pseudo-scalar correlator since the pioneering work of Ref. [6], in which
the charm-quark mass and the strong coupling were extracted (the former with high ac-
curacy). Focusing on ↵s, the follow-up paper by HQPCD [9] already claimed half-percent
accuracy at the Z-boson mass with a value very close to the world average, while Refs. [10]
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Combined R data

Pt. continuum (theory)Resonance data

Experimental ratios of  moments: bottom

J
H
E
P
0
3
(
2
0
2
0
)
0
9
4

RV,1
q RV,2

q RV,3
q

charm 1.770(17)− 0.705∆α 1.1173(22)− 0.1330∆α 1.03535(84)− 0.04376∆α

bottom 0.8020(14) + 0.4083∆α 0.8465(20) + 0.14955∆α 0.8962(11) + 0.06905∆α

Table 6. Experimental values for the ratios of moments of the vector-current charm (second

row) and bottom (third row) correlator, with ∆α ≡ α
(nf=5)
s (mZ) − 0.1181. These quantities are

dimensionless.

subtraction as compared to the continuum contribution. The moments’ uncertainty is

dominated by data and found to be αs independent. We quote the results obtained for

the ratios RV,n
c as a function of α

(nf=5)
s (mZ) in the second row of table 6, where we define

∆α ≡ α
(nf=5)
s (mZ)− 0.1181.7 These results were reported for the first time in ref. [13].

Since the uncertainties among the various moments are highly positively correlated,

the ratios turn out to be more precise than the individual moments. While the relative

precision for the first 4 moments is roughly constant and around 1%, the uncertainties for

the first 3 ratios rapidly decrease as n grows giving 0.98%, 0.22% and 0.104%, respectively.

This is partially caused by the fact that the narrow-resonance contribution (with very small

errors) has a stronger weight for larger n. The value for the higher ratios seems to freeze

and we find RV,n→∞
c → 1.

3.2 Bottom vector correlator

Regular moments of bottom-tagged cross section where discussed in detail e.g. in ref. [5].

In this case one has to combine the contribution from the first four narrow resonances with

threshold data from BABAR [75], which has to be corrected for initial-state radiation and

vacuum polarization effects. This unfolding of the data induces a correlation among the

different data points, which in turns translates into a stronger correlation for the moments.

We have translated our old Mathematica program that performs the QED corrections into

a fast python code, which allows to take many more iterations in the unfolding proce-

dure using very little CPU time, accurately reproducing the results of ref. [5]. BABAR

data stops at 11.52GeV, and some modeling becomes necessary at larger energies. The

approach of ref. [5] was to interpolate the last experimental points with the pQCD predic-

tion in a smooth way, assigning an energy-dependent systematic uncertainty to the model,

linearly decreasing with the invariant squared mass s from 4% at Q = 11.52GeV to 0.3%

at Q = mZ . Here, we tune the dependence of the uncertainty with s in accordance with

expectations from hadronization power corrections based on the operator product expan-

sion, parametrized by the gluon condensate, which predicts a dependence of the type 1/s2.

This results in a moderate reduction of the moments’ uncertainty.

Our updated code also provides the correlation matrix among the moments, which is

used to calculate the ratios’ uncertainties. Finally, since there is some (small) αs depen-

dence left in the moments through the continuum [ this includes the perturbative QCD

prediction and an interpolation between pQCD and a linear fit to the (QED corrected)

BABAR data for energies larger than 11.05GeV ], we again evaluate the moments for

7The updated results for individual moments MV,n
c will be given elsewhere.
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This results in a moderate reduction of the moments’ uncertainty.

Our updated code also provides the correlation matrix among the moments, which is

used to calculate the ratios’ uncertainties. Finally, since there is some (small) αs depen-

dence left in the moments through the continuum [ this includes the perturbative QCD

prediction and an interpolation between pQCD and a linear fit to the (QED corrected)
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7The updated results for individual moments MV,n
c will be given elsewhere.

– 12 –

For the bottom quark ratios we have

�rel = 0.55%
<latexit sha1_base64="2NFMH8I9cplTWVX+zh9ibTcBFjs=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksBU8hqRa9CEUvHivYVmhC2Gw37dLdTdjdCCX04l/x4kERr/4Mb/4bt20O2vpg4PHeDDPzopRRpV332yqtrK6tb5Q3K1vbO7t79v5BRyWZxKSNE5bIhwgpwqggbU01Iw+pJIhHjHSj0c3U7z4SqWgi7vU4JQFHA0FjipE2Umgf+YoOOApzX3IoCZtcuU6j4ddCu+o67gxwmXgFqYICrdD+8vsJzjgRGjOkVM9zUx3kSGqKGZlU/EyRFOERGpCeoQJxooJ89sAE1ozSh3EiTQkNZ+rviRxxpcY8Mp0c6aFa9Kbif14v0/FlkFORZpoIPF8UZwzqBE7TgH0qCdZsbAjCkppbIR4iibA2mVVMCN7iy8ukU3e8M6d+d15tXhdxlMExOAGnwAMXoAluQQu0AQYT8AxewZv1ZL1Y79bHvLVkFTOH4A+szx81T5V9</latexit>

�rel = 0.23%
<latexit sha1_base64="c0de6uSodEJ2o+cjZcJPWCtQKOg=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgZLwVVIWkE3QtGNywr2AU0Ik+m0HTozCTMToYRs/BU3LhRx62e482+ctllo64ELh3Pu5d57ooRRpV332yqtrW9sbpW3Kzu7e/sH9uFRR8WpxKSNYxbLXoQUYVSQtqaakV4iCeIRI91ocjvzu49EKhqLBz1NSMDRSNAhxUgbKbRPfEVHHIWZLzmUhOXXrlNv+LXQrrqOOwdcJV5BqqBAK7S//EGMU06Exgwp1ffcRAcZkppiRvKKnyqSIDxBI9I3VCBOVJDNH8hhzSgDOIylKaHhXP09kSGu1JRHppMjPVbL3kz8z+unengVZFQkqSYCLxYNUwZ1DGdpwAGVBGs2NQRhSc2tEI+RRFibzComBG/55VXSqTtew6nfX1SbN0UcZXAKzsA58MAlaII70AJtgEEOnsEreLOerBfr3fpYtJasYuYY/IH1+QMtrpV4</latexit>

�rel = 0.12%
<latexit sha1_base64="ifbwcvGiUtLWUsxu5qtIh3AHjh4=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksBU8hqYJehKIXjxVsLTQhbLabdunuJuxuhBJy8a948aCIV3+GN/+N2zYHbX0w8Hhvhpl5Ucqo0q77bVVWVtfWN6qbta3tnd09e/+gq5JMYtLBCUtkL0KKMCpIR1PNSC+VBPGIkYdofDP1Hx6JVDQR93qSkoCjoaAxxUgbKbSPfEWHHIW5LzmUhBVXruM1/UZo113HnQEuE68kdVCiHdpf/iDBGSdCY4aU6ntuqoMcSU0xI0XNzxRJER6jIekbKhAnKshnDxSwYZQBjBNpSmg4U39P5IgrNeGR6eRIj9SiNxX/8/qZji+DnIo000Tg+aI4Y1AncJoGHFBJsGYTQxCW1NwK8QhJhLXJrGZC8BZfXibdpuOdOc2783rruoyjCo7BCTgFHrgALXAL2qADMCjAM3gFb9aT9WK9Wx/z1opVzhyCP7A+fwAqoZV2</latexit>

2 Theoretical input

In this section we discuss the theoretical description of inverse moments of the vector and
pseudo-scalar quark-currents, as well as the ratios formed from these that we exploit in the
present work. The moments of Eq. (1.2) can be related, using analyticity and unitarity, to
the Taylor coefficients of the expansion of ⇧V

q at s = 0 as

M
V, n
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Q

2
q
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dn

dsn
⇧V

q (s)
���
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, (2.1)

with
p
s =

p
p2, the e+e� center-of-mass energy [7, 8], Qq the quark electric charge, q = c, b,

and �
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↵
, (2.2)

where j
µ
q (x) = q̄(x)�µq(x).

Using the notation of Ref. [5], we define the pseudo-scalar quark-current correlator as

⇧P
q (s) = i

Z
dx ei p·x

⌦
0
��T j

P
q (x)j

P
q (0)

�� 0
↵
, (2.3)

with j
P
q (x) = 2mq i q̄(x)�5q(x); here we will only consider pseudo-scalar moments of the

charm-quark current (q = c). The additional mass factor in the pseudo-scalar current (as
compared to the vector case) makes it formally scheme and scale independent. Moments
analogous to those of Eq. (2.1) can be defined as

M
P,n
q =

12⇡2
Q

2
q

n!

dn

dsn
Pq(s)

���
s=0

, (2.4)

where we introduced the combination

Pq(s) =
⇧P

q (s)�⇧P
q (0)� (⇧P

q )
0(0) s

s2
. (2.5)

The theoretical quantities that will be used in this article to determine ↵s are mass
insensitive and dimensionless. For the case of the pseudo-scalar correlator one can use the
0-th moment, which has mass dimension zero by itself, and depends on the quark mass only
logarithmically starting at O(↵2

s). This moment is an observable, in the sense that it does
not need an ultraviolet subtraction to become finite, being formally renormalization-scale
and scheme independent (although it still retains a residual µ dependence at any finite
order in perturbation theory). The 0-th moment of the vector correlator cannot be related
to any experimentally measurable quantity. It is related to the subtraction that renders the
sum rule finite, and is therefore scheme and scale dependent.

One can, however, work with ratios of roots of the n > 0 moments, such that the
mass dependence almost completely disappears. The quantities we are interested in are the
ratios of consecutive roots of moments. Specifically, we define the following mass-insensitive
quantities

R
X,n
q ⌘

�
M

X,n
q

� 1
n

�
M

X,n+1
q

� 1
n+1

, (2.6)
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to cancellations arising 
from the positive 
correlations between 
moments
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only lattice data is available [5]. As we will show, the
ratios RV,n

c that we introduce here are particularly suit-
able for ↵s extractions: for 1  n  3 they are known up
to O(↵3

s), have a very weak dependence on the c-quark
mass, and can be accurately determined using the ex-
perimental values for the masses and partial widths of
narrow resonances, supplemented with continuous data
for Rcc̄(s).

Let us start by discussing the perturbative expansion

for M (n)
c and the ratios RV,n

c . Using analyticity and uni-

tarity, the moments M (n)
c can be related to derivatives of

the vector charm-quark current correlator. The theoret-
ical counterpart to Eq. (2) reads [6, 7]

M (n)
c =

12⇡2Q2
c

n!

dn

dsn
⇧c(s)

���
s=0

, (4)

where Qc is the charm-quark electric charge and the cor-
relator is formed from the charm vector currents as

�
gµ⌫s�pµp⌫

�
⇧c(s) =�i

Z
dx ei p·xh0|T jµc (x)j

⌫
c (0)|0i, (5)

with jµc (x) = c̄(x)�µc(x). The Taylor coe�cients of the
⇧c(s) expansion in powers of s around s = 0, that partic-
ipate in Eq. (4), can be accurately calculated in perturba-
tion theory with the typical short-distance scale given by
⇠ mc/n > ⇤QCD (restricting n to small values). In full

generality, the perturbative expansion of M (n)
c is writ-

ten in terms of two renormalization scales, µ↵ and µm,
at which the strong coupling and the quark-mass are re-
spectively evaluated, as first noticed in Ref. [4]:

M (n)
c =

1

[2mc(µm)]2n

X

i=0

"
↵
(nf )
s (µ↵)
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(6)
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b=0

c(n)i,a,b(nf ) ln
a

✓
µm

mc(µm)

◆
lnb

✓
µ↵

mc(µm)

◆
,

with [i � 1] ⌘ Max(i � 1, 0), and nf = 4. The running
mass mc(µm) and coupling ↵s(µ↵) are calculated in the
MS scheme with the five-loop QCD � and � functions,
respectively [8–10]. Likewise, we use the four-loop match-
ing condition [11–13] to relate ↵s in the four- and five-
flavour schemes. (We will often omit the explicit nf de-

pendence in ↵s and c(n)i,a,b.) The leading logarithm inM (n)
c

appears at order ↵s. Setting the two scales in Eq. (6) to
the common value µ↵ = µm = mc(mc) the logarithms

are resummed and the expansion of M (n)
c , in this particu-

lar case, exposes the independent coe�cients c(n)i,0,0 which
must be calculated in perturbation theory. Thanks to

a tremendous computational e↵ort, the coe�cients c(n)i,0,0
have been calculated (analytically) for n = 1, 2, 3 and
4 [14–16] up to order ↵3

s [ four loops, or next-to-next-to-
next-to-leading order (N3LO) ]. For n > 4 only estimates
are available at this order [17–20]. The logarithms of

Eq. (6) with the respective coe�cients can be generated
with the use of renormalization group equations. Nu-

merical values of the coe�cients c(n)i,a,b can be found in

Ref. [21]. The dependence of M (n)
c on mc through the

prefactor makes these moments ideal for the extraction
of the charm-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads

RV,n
c =

X

i=0


↵s(µ↵)

⇡

�i
(7)
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[i�1]X

k=0
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r(n)i,j,k ln
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lnk
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mc(µm)

◆
,

where now the first logarithm, which brings the depen-
dence on mc, appears only at ↵2

s. The ratios RV,n
c are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
c in ↵s and the use of renormalization

group equations. For instance, for RV,2
c at N3LO one

finds

RV,2
c = 1.0449

⇥
1 + 0.57448 as

+ (0.32576 + 2.3937L↵) a
2
s (8)

�
�
2.1093 + 4.7873Lm � 6.4009L↵ � 9.9736L2

↵

�
a3s
⇤
,

where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mc(µm) ] and
Lm = ln[µm/mc(µm) ]. The total ↵s correction to RV,1

c

is about 12.5%, 7.2% for RV,2
c , and 5.2% for RV,3

c . The
perturbative contribution to RV,n

c is the first term in
its Operator Product Expansion (corresponding to the
identity operator). The leading non-perturbative correc-
tion stems from the gluon condensate and is known to
O(↵s) [22]. This correction is small, but nevertheless in-
cluded in our analysis even though our results are largely
dominated by perturbative QCD.
Alternatively, one could consider not re-expanding in

↵s the ratios defined in Eq. (3). In principle, one could
even take di↵erent renormalization scales in the numer-
ator and denominator. Even though the pole-mass am-
biguity cancels individually in each moment, subleading
renormalons exist and their e↵ect might be softened by
taking the same renormalization scale and re-expading
the ratios. Furthermore, the physics of RV,n

c is di↵er-
ent from the one of each individual moment, and as such
they should be considered as observables in their own
right, therefore with their own series expansion in terms
of a single ↵s(µ↵).
We turn now to the experimental determination of the

ratios RV,n
c . Our results are based on the obtention of

the inverse moments M (n)
c performed in Ref. [4] and dis-

cussed in detail in that work. It combines the contribu-
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able for ↵s extractions: for 1  n  3 they are known up
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s), have a very weak dependence on the c-quark
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with [i � 1] ⌘ Max(i � 1, 0), and nf = 4. The running
mass mc(µm) and coupling ↵s(µ↵) are calculated in the
MS scheme with the five-loop QCD � and � functions,
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ing condition [11–13] to relate ↵s in the four- and five-
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appears at order ↵s. Setting the two scales in Eq. (6) to
the common value µ↵ = µm = mc(mc) the logarithms

are resummed and the expansion of M (n)
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c on mc through the
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M (n)
c =

1

[2mc(µm)]2n

X

i=0

"
↵
(nf )
s (µ↵)

⇡

#i

(6)

⇥

iX

a=0

[i�1]X

b=0

c(n)i,a,b(nf ) ln
a

✓
µm

mc(µm)

◆
lnb

✓
µ↵

mc(µm)

◆
,

with [i � 1] ⌘ Max(i � 1, 0), and nf = 4. The running
mass mc(µm) and coupling ↵s(µ↵) are calculated in the
MS scheme with the five-loop QCD � and � functions,
respectively [8–10]. Likewise, we use the four-loop match-
ing condition [11–13] to relate ↵s in the four- and five-
flavour schemes. (We will often omit the explicit nf de-

pendence in ↵s and c(n)i,a,b.) The leading logarithm inM (n)
c

appears at order ↵s. Setting the two scales in Eq. (6) to
the common value µ↵ = µm = mc(mc) the logarithms

are resummed and the expansion of M (n)
c , in this particu-

lar case, exposes the independent coe�cients c(n)i,0,0 which
must be calculated in perturbation theory. Thanks to

a tremendous computational e↵ort, the coe�cients c(n)i,0,0
have been calculated (analytically) for n = 1, 2, 3 and
4 [14–16] up to order ↵3

s [ four loops, or next-to-next-to-
next-to-leading order (N3LO) ]. For n > 4 only estimates
are available at this order [17–20]. The logarithms of

Eq. (6) with the respective coe�cients can be generated
with the use of renormalization group equations. Nu-

merical values of the coe�cients c(n)i,a,b can be found in

Ref. [21]. The dependence of M (n)
c on mc through the

prefactor makes these moments ideal for the extraction
of the charm-quark mass.
The ratios we are interested in, given in Eq. (3), are

constructed in such a way as to cancel the mass depen-
dence of the prefactor in Eq. (6). Their fixed-order per-
turbative expansion reads

RV,n
c =

X

i=0


↵s(µ↵)

⇡

�i
(7)

⇥

[i�1]X

k=0

[i�2]X

j=0

r(n)i,j,k ln
j

✓
µm

mc(µm)

◆
lnk

✓
µ↵

mc(µm)

◆
,

where now the first logarithm, which brings the depen-
dence on mc, appears only at ↵2

s. The ratios RV,n
c are,

therefore, almost insensitive to the quark mass. The

coe�cients r(n)i,j,k can be obtained from c(n)i,0,0 upon re-

expansion of RV,n
c in ↵s and the use of renormalization

group equations. For instance, for RV,2
c at N3LO one

finds

RV,2
c = 1.0449

⇥
1 + 0.57448 as

+ (0.32576 + 2.3937L↵) a
2
s (8)

�
�
2.1093 + 4.7873Lm � 6.4009L↵ � 9.9736L2

↵

�
a3s
⇤
,

where here as = ↵s(µ↵)/⇡, L↵ = ln[µ↵/mc(µm) ] and
Lm = ln[µm/mc(µm) ]. The total ↵s correction to RV,1

c

is about 12.5%, 7.2% for RV,2
c , and 5.2% for RV,3

c . The
perturbative contribution to RV,n

c is the first term in
its Operator Product Expansion (corresponding to the
identity operator). The leading non-perturbative correc-
tion stems from the gluon condensate and is known to
O(↵s) [22]. This correction is small, but nevertheless in-
cluded in our analysis even though our results are largely
dominated by perturbative QCD.
Alternatively, one could consider not re-expanding in

↵s the ratios defined in Eq. (3). In principle, one could
even take di↵erent renormalization scales in the numer-
ator and denominator. Even though the pole-mass am-
biguity cancels individually in each moment, subleading
renormalons exist and their e↵ect might be softened by
taking the same renormalization scale and re-expading
the ratios. Furthermore, the physics of RV,n

c is di↵er-
ent from the one of each individual moment, and as such
they should be considered as observables in their own
right, therefore with their own series expansion in terms
of a single ↵s(µ↵).
We turn now to the experimental determination of the

ratios RV,n
c . Our results are based on the obtention of

the inverse moments M (n)
c performed in Ref. [4] and dis-

cussed in detail in that work. It combines the contribu-

+O
�
↵4
s

�
]
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q
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       from charm moment ratios↵s
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3

tion from the narrow J/ and  0 resonances, the avail-
able threshold data from Refs. [23–37], and a remain-
ing contribution modeled with perturbative QCD for
s > 10.538GeV where no data is available (the so-called
continuum contribution). One also subtracts from the
data a non-charm background from u, d, and s quarks,
as well as a contribution from secondary charm produc-
tion which is not included in the theory. (The small
singlet contribution has been estimated and can be ne-
glected [38].) The continuum contribution as well as the
uds background, which are implemented at the R-ratio
level, use perturbative QCD expressions. Here, since we
aim at a precise extraction of ↵s, we cannot fix its value
in these contributions. We have, therefore, adapted the

extraction of the moments M (n)
c from Ref. [21] in order

to obtain RV,n
c as a function of the ↵s value used in the

continuum and the background. It turns out that the de-
pendence with ↵s, for values not too far from the world
average, is highly linear, which facilitates the task of ob-
taining parametrized expressions for the ratios RV,n

c . In

terms of �↵ = ↵
(nf=5)
s (mZ)�0.1181, the three ratios we

exploit here read

RV,1
c = (1.770� 0.705�↵)± 0.017,

RV,2
c = (1.1173� 0.1330�↵)± 0.0022, (9)

RV,3
c = (1.03535� 0.04376�↵)± 0.00084.

The associated errors are dominated by data and are
fairly small. The smallness of the uncertainties is in part
due to the strong positive correlations between the con-

secutive moments M (n)
c which, in the error propagation,

lead to a very small uncertainty in the ratios. (For ex-

ample, moments M (2)
c and M (3)

c are 97.6% correlated.)
The relative errors in the ratios are of only 0.98%, 0.22%,
0.10% for RV,1

c , RV,2
c , and RV,3

c , respectively.
The determination of ↵s is done by equating the exper-

imental results of Eq. (9) to the respective expansions of
the type of Eq. (8), numerically solving for ↵s. We turn
now to a discussion of the results we obtain from this
analysis. Sound results require a careful — and conserva-
tive — study of the associated uncertainties, in particular
those that stem from the truncation of the perturbative
series. It has been shown that in quark-mass extractions

from M (n)
c , a reliable error estimate requires the indepen-

dent variation of the two scales µm and µ↵ [21]. To be
fully conservative, even though here the dependence on

µm is weaker than in the case ofM (n)
c , we vary both scales

in the interval mc  µ↵, µm  µmax, with µmax = 4GeV,
and apply the constraint 1/⇠  (µ↵/µm)  ⇠ with the
canonical choice ⇠ = 2 (the dependence on the value of ⇠
will be discussed below).2 The scale variation we adopt

2 We have carefully investigated the convergence of the perturba-
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FIG. 1. ↵s values extracted order by order in perturbation
theory from the ratios RV,n

c of Eq. (9). Only perturbative
uncertainties are displayed.
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FIG. 2. Results for ↵s from RV,2
c at O(↵3

s) in the µ↵ ⇥ µm

plane. Shaded areas are excluded from our analysis (see text).

is much more conservative than that used in many re-
lated works, where one often sets µm = µ↵ (or ⇠ = 1).
For the charm mass we adopt mc = 1.28(2)GeV. With
this setup we have created grids with 3025 points of µm

and µ↵ and the respective ↵s values for each ratio RV,n
c

(with n = 1, 2, and 3), order by order in the perturbative
expansion. First, we check the convergence of the ↵s ex-
tractions at each order in perturbation theory from the
results obtained in the grids, neglecting charm-mass, ex-
perimental, and non-perturbative uncertainties. There-
fore the spread in values due to scale variation directly
measures the perturbative error. The results are shown
in Fig. 1 for the three ratios we consider. One clearly sees
a nice convergence for all the moments, which indicates

tive expansion with an adapted Cauchy test suggested in Ref. [21]
and conclude that the use of the restriction 1/⇠  (µ↵/µm)  ⇠
is sound in our case.

•Scan for different values of the renormalization scale 
•Include (and remove) the gluon condensate 
•Vary the quark mass

RV,2
c
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Figure 1. Contour plots for the extracted value of ↵(nf=5)
s (mZ) from different perturbative series

at O(↵3
s), as a function of the two renormalization scales µ↵ and µm. The three panels at the top

show the result for the bottom vector correlator, the three in the middle (bottom) correspond to the
charm vector (pseudo-scalar) correlator. For the six panels showing results for the vector correlator,
the left, center and right columns correspond to R

V,1
q , RV,2

q and R
V,3
q , respectively, while for the

pseudo-scalar they show M
P,0
c , RP,1

c , and R
P,1
c . The shaded gray areas are excluded for ⇠ = 2.
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The gray areas are not 
included in the analysis
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Small variations in the 
central values (~0.5%)
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⇠ = 1 ! µm = µ↵
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Diagonal variation: errors 
underestimated by a factor of up 
 to ~2.0
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Figure 2. Dependence of the central value and perturbative uncertainty with the “trim-
ming” parameter ⇠, which controls how renormalization scales are varied through the constraint
1/⇠  µ↵/µm  ⇠, with mq  µ↵, µm  µmax and q = c (b) for charm (bottom). The gray, dashed,
vertical lines signal our canonical choice ⇠ = 2. The three panels on top correspond to how central
values depend on ⇠, shown as a percent deviation from our canonical choice for ⇠. The three panels
at the bottom show the dependence of perturbative uncertainties with ⇠. Left, right, and middle
panels correspond to bottom vector, charm vector, and charm pseudo-scalar, respectively. Blue,
red and green distinguish which moment or ratio is used, as shown in the plot legends.

estimate is at most 53% larger than that with ⇠ = 2 for all cases. Except for values of ⇠
close to 1, the central value grows as ⇠ increases, but the variation is below the percent in
all cases.

We finish this section by exploring the order-by-order convergence of the extracted
values of ↵s. Again we ignore non-perturbative effects and fix the quark masses. We also
assume experimental moments have no uncertainties, such that error bars shown in this
section are purely of perturbative origin. Taking the default constraint ⇠ = 2 we obtain
the results shown in Fig. 3. We see excellent convergence between the O(↵2

s) and O(↵3
s)

determinations in all cases, while for ratios with n > 1 there is a slight tension between the
O(↵1

s) and O(↵3
s) results. This is not cause for concern since the LO extraction does not yet

depend on µm and therefore should be regarded as a special case. A similar situation was
found with the O(↵0

s) determination of quark masses in e.g. Ref. [5], which was independent
of µ↵. In that sense the O(↵n

s ) quark-mass determination should be thought of as being of
the same order as the O(↵n+1

s ) strong-coupling extraction.
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Figure 2. Dependence of the central value and perturbative uncertainty with the “trim-
ming” parameter ⇠, which controls how renormalization scales are varied through the constraint
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Figure 3. ↵(nf=5)
s (mZ) as determined from ratios of moments or MP,0

c using the corresponding per-
turbative series at O(↵n

s ) with n = 1, 2, 3 which we call NnLO. Panels (a), (b), and (c) show results
for the bottom vector, charm vector, and charm pseudo-scalar correlators, respectively. For (a) and
(b), blue, red and green correspond to R

V,1
q , RV,2

q , and R
V,3
q , respectively, with q = c, b, while for (c)

these colors correspond to M
P,0
c , RP,1

c , and R
V,2
c . Error bars reflect only perturbative uncertainties,

which are computed varying µ↵ and µm independently, but requiring that 0.5  µ↵/µm  2.

5 Results

In this section we present the main results of our analysis: the determination of ↵(nf=5)
s (mZ)

using perturbative expressions at O(↵3
s) from ratios of moments for the two types of currents

considered, both for charm and bottom quarks, as well as from the 0-th moment of the
pseudo-scalar charm correlator. Here we include the gluon condensate correction, and take
into account all relevant sources that contribute to the uncertainty. The most important
contributions to the error budget are the perturbative error — due to the truncation of the
series in ↵s, estimated through scale variation — and the experimental/lattice uncertainties
(in general, experimental uncertainties in ↵s from the vector correlators are larger than
lattice uncertainties in ↵s from the pseudo-scalar moments). To estimate the incertitude
coming from the charm or bottom mass we use

mb = 4.18± 0.023GeV , mc = 1.28± 0.02GeV . (5.1)

The associated uncertainties are very small and barely contribute to the final error, since
the ratios of moments we use are rather insensitive to the quark mass. Non-perturvative
corrections also contribute to the error budget, but their contribution is absolutely negligible
in the case of the bottom-quark based determinations, and always subleading for the charm-
quark ones.

For charm-quark based determinations one could consider an additional source of un-
certainty coming from matching the theories with nf = 4 and 5 active flavors at the scale
µb, which by default is taken to be mb. The choice of µb inflicts a tiny uncertainty, which
we estimate by considering µb = 2mb and mb/2. Running ↵s at 5 loops (and matching
accordingly at 4 loops) it turns out to be negligibly small: 5 ⇥ 10�6. The uncertainty on
the bottom mass also affects the matching relation, but the associated error is also in-
significant: 1⇥ 10�5. These are much smaller than any other source and will no longer be
mentioned.
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Results 26flavor n ↵
(nf=5)
s (mZ) �pert �exp �mq �np �total

bottom

1 0.1183 0.0011 0.0089 0.0002 0.0000 0.0090

2 0.1186 0.0011 0.0046 0.0001 0.0000 0.0048

3 0.1194 0.0013 0.0029 0.0001 0.0000 0.0032

charm

1 0.1168 0.0010 0.0028 0.0003 0.0006 0.0030

2 0.1168 0.0015 0.0009 0.0003 0.0007 0.0019

3 0.1173 0.0020 0.0005 0.0003 0.0006 0.0022

Table 8. ↵
(nf=5)
s (mZ) determination from ratios of bottom and charm vector-correlator moments

R
V,n
q , Eq. (2.6). The first column specifies the flavor content of the current, the second column

shows which ratio has been used, while the third gives the central value. Fourth to seventh provide
the various components of the uncertainty: scale variation (�pert), experimental (�exp), quark mass
(�mq ), and gluon condensate (�np), which are added in quadrature in the last column (�tot).

5.1 ↵s from ratios of vector correlators

In this section we present results based on “real” experimental data, that is, ↵s extractions
from ratios of vector-correlator moments, for nf = 4 and 5. For these analyses we use the
↵s dependence of the experimental moments, given in Table 6, solving the relevant equa-
tions consistently. The determinations from the charm correlator are shown graphically in
Fig. 4(a). For comparison, the world average is shown as a faint gray band. All charmonium
(and bottomonium) determinations are compatible among themselves and with the world
average. Both extractions are quite robust, with rather stable central values, although the
extraction from bottomonium yields somewhat larger central values than the extractions
from charmonium sum rules. A detailed splitting of all sources of incertitude is given in
Table 8. For both quarkonium systems we observe that perturbative uncertainties grow
with n (this behavior was already seen in Fig. 3), particularly for charmonium, with overall
larger errors. Experimental uncertainties behave in the opposite way, decreasing as n grows.
This is expected since larger values of n are dominated by the very precise narrow-resonance
contribution. For charmonium, the larger experimental uncertainties discards the first ratio
for precision extractions of ↵s. If the experimental error could be drastically reduced, n = 1

could however turn into a competitive measurement, since, from the theoretical point of
view, it is quite clean. For both systems there is a compensation of the two effects such
that the uncertainties for n = 2 and n = 3 are comparable. Since the ratios R

V,2
q involves

the moments MV,2
q and M

V,3
q their perturbative expansion is expected to be better behaved

than the ones for R
V,3
q which brings the contribution from M

V,4
q . Larger values of n are

disfavored since non-relativistic duality violations could start playing a non-negligible role.
This is in line with the smaller perturbative uncertainty for R

V,2
q . Since the charm-quark

based extractions have smaller errors and in the spirit of avoiding moments with large val-
ues of n we take the charm n = 2 result as the main outcome from the analysis of vector
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Figure 4. ↵
(nf=5)
s (mZ) determination from ratios of charm vector-correlator (left panel) and

pseudo-scalar (right panel) moments. Error bands include all sources of uncertainties added in
quadrature. Panel (a) has results for the first three ratios of moments. Panel (b) has results in
different colors for lattice output from various collaborations: from left to right these are Allison
et al. [8], McNeile et al. [9], Maezawa et al. [10], Petreczky et al. [11], and Nakayama et al. [12].
n = 0 corresponds to R

P,0
c ⌘ M

P,0
c , while n = 1, 2 stand for R

P,n
c . Perturbative uncertainties are

estimated trimming the grids with the default parameter ⇠ = 2. The light gray area shows the
current (2019) world average with its uncertainty [47].

correlators:

↵
(nf=5)
s (mZ) = 0.1168± (0.0015)pert ± (0.0009)exp + (0.0006)np (5.2)

= 0.1168± (0.0019)total .

Here we do not show the mc uncertainty since it does not change the total error. Our result
is less precise than the current world average (which has an uncertainty of ±0.0011 [51]),
being fully compatible with it: the central values differ by 0.6�. This value of ↵s was
reported, for the first time, in Ref. [13].

It is interesting to compare our final uncertainties, based on the conservative procedure
of varying both scales independently, with more optimistic approaches often used in the
literature. For example, if we had used a correlated scale variation with µ↵ = µm the
central value would decrease by 0.0001, but the perturbative uncertainty would decrease
by a factor of 2.12 to (0.0007)pert, making up for a total error of only (0.0013)total. On
the other hand, using a completely unconstrained grid, the central value and perturbative
uncertainty grow to 0.1175± (0.0022)pert, a 50% increase in error, with a total uncertainty
of (0.0025)total.

5.2 ↵s from lattice data

We turn now our attention to the pseudo-scalar Green’s function, for which “experimental”
data is obtained from lattice MC simulations. A number of collaborations provide results
for the same quantities, and we analyze all of those with the same theoretical expressions
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flavor n ↵
(nf=5)
s (mZ) �pert �exp �mq �np �total
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1 0.1183 0.0011 0.0089 0.0002 0.0000 0.0090

2 0.1186 0.0011 0.0046 0.0001 0.0000 0.0048

3 0.1194 0.0013 0.0029 0.0001 0.0000 0.0032

charm

1 0.1168 0.0010 0.0028 0.0003 0.0006 0.0030

2 0.1168 0.0015 0.0009 0.0003 0.0007 0.0019

3 0.1173 0.0020 0.0005 0.0003 0.0006 0.0022

Table 8. ↵
(nf=5)
s (mZ) determination from ratios of bottom and charm vector-correlator moments

R
V,n
q , Eq. (2.6). The first column specifies the flavor content of the current, the second column

shows which ratio has been used, while the third gives the central value. Fourth to seventh provide
the various components of the uncertainty: scale variation (�pert), experimental (�exp), quark mass
(�mq ), and gluon condensate (�np), which are added in quadrature in the last column (�tot).

5.1 ↵s from ratios of vector correlators

In this section we present results based on “real” experimental data, that is, ↵s extractions
from ratios of vector-correlator moments, for nf = 4 and 5. For these analyses we use the
↵s dependence of the experimental moments, given in Table 6, solving the relevant equa-
tions consistently. The determinations from the charm correlator are shown graphically in
Fig. 4(a). For comparison, the world average is shown as a faint gray band. All charmonium
(and bottomonium) determinations are compatible among themselves and with the world
average. Both extractions are quite robust, with rather stable central values, although the
extraction from bottomonium yields somewhat larger central values than the extractions
from charmonium sum rules. A detailed splitting of all sources of incertitude is given in
Table 8. For both quarkonium systems we observe that perturbative uncertainties grow
with n (this behavior was already seen in Fig. 3), particularly for charmonium, with overall
larger errors. Experimental uncertainties behave in the opposite way, decreasing as n grows.
This is expected since larger values of n are dominated by the very precise narrow-resonance
contribution. For charmonium, the larger experimental uncertainties discards the first ratio
for precision extractions of ↵s. If the experimental error could be drastically reduced, n = 1

could however turn into a competitive measurement, since, from the theoretical point of
view, it is quite clean. For both systems there is a compensation of the two effects such
that the uncertainties for n = 2 and n = 3 are comparable. Since the ratios R

V,2
q involves

the moments MV,2
q and M

V,3
q their perturbative expansion is expected to be better behaved

than the ones for R
V,3
q which brings the contribution from M

V,4
q . Larger values of n are

disfavored since non-relativistic duality violations could start playing a non-negligible role.
This is in line with the smaller perturbative uncertainty for R

V,2
q . Since the charm-quark

based extractions have smaller errors and in the spirit of avoiding moments with large val-
ues of n we take the charm n = 2 result as the main outcome from the analysis of vector
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moment [6] [9] [10] [11] [12]

M
P,0
c 1.708(7) 1.709(5) 1.699(9) 1.705(5) –

R
P,1
c – – 1.199(4) 1.1886(13) 1.188(5)

R
P,2
c – – 1.0344(13) 1.0324(16) 1.0341(19)

Table 7. Lattice results for the 0-th moment (second row) and the ratios of moments (rest of rows)
for the charm pseudo-scalar current correlator. We show the results for various lattice collaborations
in different columns. These quantities are dimensionless.

The partial cancellation of correlated uncertainties in the ratios of bottom moments
is much larger than for charm. While regular moments with n < 5 are rather imprecise,
with relative accuracy of 24%, 18%, 14%, and 12%, respectively, the first three ratios turn
out to be quite accurate, becoming sub-permille already at n = 2: 0.16%, 0.046%, 0.019%.
Interestingly, bottom ratios turn out to be more precise than their charm counterparts.
This might happen because there are four narrow bottomonium resonances, but only two in
charmonium, and these appear to dominate the value of the ratios. Finally, we also observe
the behavior R

V,n!1
b ! 1 in bottom moments, but in this case the limit is approached

from below.

3.3 Charm pseudo-scalar correlator

Although the pseudo-scalar current is not accessible in experiments in the same way as
the vector (i.e. there is no such thing as a “pseudo-scalar photon”), results for the associ-
ated moments can be obtained from simulations on the lattice. The experimental input is
effectively passed to the simulation by tuning lattice parameters to a number of physical
observables. The tuned lattice action (which is no longer modified or adjusted) is then
used to perform the predictions for the moments. Lattice simulations have to overcome
some difficulties, such as the continuum, infinite-volume and physical mass extrapolations,
which can translate into sizable uncertainties. The simulations are based on MC methods,
and are therefore also limited by statistics. Other aspects to take into account when using
lattice data is which type of action is used to compute the fermion determinant. According
to Ref. [6], moments of the pseudo-scalar current-current are not as afflicted by systematic
uncertainties as the vector-current ones, and therefore might be used for precision analyses.

Lattice results for the pseudo-scalar correlator are provided in terms of the so-called
reduced moments Rk. They are constructed to have all mass-dimension 0, and factor out
the tree-level results such that their perturbative expression starts with a coefficient equal
to 1. For n = 0 and n > 0 they are related to the notation in Eq. (2.7) as follows

M
P,0
c =

4

3
R4 , M

P,n
c = c

P,n
0

✓
R2n+4

m⌘c

◆2n

. (3.1)

The mass dimension of “regular” moments with n > 0 is obtained through powers of the
⌘c mass. However, when taking ratios this dependence, as expected, completely drops, and
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The partial cancellation of correlated uncertainties in the ratios of bottom moments
is much larger than for charm. While regular moments with n < 5 are rather imprecise,
with relative accuracy of 24%, 18%, 14%, and 12%, respectively, the first three ratios turn
out to be quite accurate, becoming sub-permille already at n = 2: 0.16%, 0.046%, 0.019%.
Interestingly, bottom ratios turn out to be more precise than their charm counterparts.
This might happen because there are four narrow bottomonium resonances, but only two in
charmonium, and these appear to dominate the value of the ratios. Finally, we also observe
the behavior R
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b ! 1 in bottom moments, but in this case the limit is approached

from below.

3.3 Charm pseudo-scalar correlator

Although the pseudo-scalar current is not accessible in experiments in the same way as
the vector (i.e. there is no such thing as a “pseudo-scalar photon”), results for the associ-
ated moments can be obtained from simulations on the lattice. The experimental input is
effectively passed to the simulation by tuning lattice parameters to a number of physical
observables. The tuned lattice action (which is no longer modified or adjusted) is then
used to perform the predictions for the moments. Lattice simulations have to overcome
some difficulties, such as the continuum, infinite-volume and physical mass extrapolations,
which can translate into sizable uncertainties. The simulations are based on MC methods,
and are therefore also limited by statistics. Other aspects to take into account when using
lattice data is which type of action is used to compute the fermion determinant. According
to Ref. [6], moments of the pseudo-scalar current-current are not as afflicted by systematic
uncertainties as the vector-current ones, and therefore might be used for precision analyses.

Lattice results for the pseudo-scalar correlator are provided in terms of the so-called
reduced moments Rk. They are constructed to have all mass-dimension 0, and factor out
the tree-level results such that their perturbative expression starts with a coefficient equal
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Figure 1. Contour plots for the extracted value of ↵(nf=5)
s (mZ) from different perturbative series

at O(↵3
s), as a function of the two renormalization scales µ↵ and µm. The three panels at the

top show the result for the bottom vector correlator, the three in the middle (bottom) correspond
to the charm vector (pseudo-scalar) correlator. For the six panels showing results for the vector
correlator, the left, center and right columns correspond to R

V,1
q , RV,2

q and R
V,3
q , respectively, while

for the pseudo-scalar they show M
P,0
c , RP,1

c , and R
P,1
c . The shaded gray areas are excluded from

our scan.
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Figure 3. ↵(nf=5)
s (mZ) as determined from ratios of moments or MP,0

c using the corresponding per-
turbative series at O(↵n

s ) with n = 1, 2, 3 which we call NnLO. Panels (a), (b), and (c) show results
for the bottom vector, charm vector, and charm pseudo-scalar correlators, respectively. For (a) and
(b), blue, red and green correspond to R

V,1
q , RV,2

q , and R
V,3
q , respectively, with q = c, b, while for (c)

these colors correspond to M
P,0
0 , RP,1

c , and R
V,2
c . Error bars reflect only perturbative uncertainties,

which are computed varying µ↵ and µm independently, but requiring that 0.5  µ↵/µm  2.

in Fig. 2. For the bottom vector correlator, taking both scales equal yields uncertainties
which are 42% (first and third ratios) or 136% (second ratio) smaller than our canonical
choice. For the charm-vector correlator the numbers grow dramatically: 275%, 153% and
105% percent growth for the first three ratios. In the pseudo-scalar case the uncertainty as
a function of ⇠ is nearly the same for all quantities considered, and the correlated estimate
is 140% smaller than the default choice. The unconstrained error estimate is between 35%

and 45% larger than that with ⇠ = 2 for all cases. Except for values of ⇠ close to 1, the
central value grows as ⇠ increases, but the variation is below the percent in all cases.

We finish this section by exploring the order-by-order convergence of the extracted
values of ↵s. Again we ignore non-perturbative effects and fix the quark masses to their
world-average results. We also assume experimental moments have no uncertainties, such
that error bars shown in this section are purely of perturbative origin. Taking the default
constraint ⇠ = 2 we obtain the results shown in Fig. 3. We see excellent convergence
between the O(↵2

s) and O(↵3
s) determinations in all cases, while for ratios with n > 1 there

is a slight tension between the O(↵1
s) and O(↵3

s) results. This is not cause for concern since
the LO extraction does not yet depend on µm and therefore should be regarded as a special
case. A similar situation was found with the O(↵0

s) determination of quark masses in e.g.
Ref. [5], which was independent of µ↵. In that sense the O(↵n

s ) quark-mass determination
should be thought of as being of the same order as the O(↵n+1

s ) strong-coupling extraction.

5 Results

In this section we present the main results of our analysis: the determination of ↵(nf=5)
s (mZ)

using perturbative expressions at O(↵3
s) from ratios of moments for the two types of cur-

rents considered, both for charm and bottom quarks, as well as from the 0-th moment of the
pseudo-scalar charm correlator. Here we include the gluon condensate correction, and take
into account all relevant sources that contribute to the uncertainty. The most important

– 17 –

1.0 1.5 2.0 2.5 3.0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

IFAE, May 2021



Diogo Boito

Results from lattice correlators 30

0 1 2
0.106

0.108

0.110

0.112

0.114

0.116

0.118

0.120

Ref. ↵
(nf=5)
s (mZ) �pert �lattice �mc �NP �total

Allison et al. [6] 0.1179 0.0019 0.0006 0.0003 0.0004 0.0020

McNeile et al. [9] 0.1180 0.0019 0.0005 0.0003 0.0004 0.0020

Maezawa et al. [10] 0.1171 0.0018 0.0008 0.0003 0.0004 0.0020

Petreczky et al. [11] 0.1177 0.0019 0.0005 0.0003 0.0004 0.0020

Table 9. ↵(nf=5)
s (mZ) determination from the n = 0 moment of the pseudo-scalar correlator MP,0

c .
The first column shows from which reference the lattice results are taken, the second corresponds
to the central value, third to sixth provide the various component of the uncertainty: scale varia-
tion (�pert), lattice (�lattice), charm mass (�mc) and gluon condensate (�NP), which are added in
quadrature in the last column (�total).

We observe that the total uncertainty is overly dominated by the truncation error, such
that efforts to compute these quantities on the lattice more precisely are not warranted.
Interestingly, perturbative errors for the pseudo-scalar correlator seem roughly independent
of the moment being used. Even though all determinations are well compatible with the
current world average, we observe that results from R

P,2
c are slightly lower than those

with M
P,0
c and R

P,1
c . This behavior is less pronounced for the JLQCD results, which

could suggest that the shift is caused by lattice results (another argument in favor of
this reasoning is that for the vector correlator results with larger n are higher). We also
observe that M

P,0
c -based extractions are higher if HPQCD results are employed, although

still compatible. For R
P,1
c -based determinations, the newest HotQCD result of Ref. [11] is

in very nice agreement with the JLQCD result, although the old HotQCD determination
[10] is significantly larger. Interestingly, for determinations with R

P,1
c the situation is the

opposite, and there is agreement between JLQCD and the old HotQCD results, being again
the extraction of [11] lower. All in all, there seems to be a higher density of central values
around the world average, although, due to truncation errors, these are not competitive
with our main result in Eq. (5.2).

We finish this section by comparing the perturbative uncertainties for vector and
pseudo-scalar correlators with charm quarks. As expected from the analysis carried out
in Sec. 2.1, the uncertainties for the pseudo-scalar correlator are larger for the n = 1, 2

ratios of moments, but for n = 3 they become of the same order. This is in line with the
findings of Ref. [5] for regular moments, and again points out that the total uncertainty
will not go down with more precise lattice simulations. Possible ways of improving the
accuracy are understanding the origin of the bad convergence behavior of the pseudo-scalar
correlator or computing the values for ratios of the vector correlator on the lattice.

5.3 Comparison to previous lattice determinations

In this section we compare the estimates of perturbative uncertainties from the various
lattice collaborations, which have a huge impact in the total uncertainty.

Ref. [6] estimates the perturbative uncertainty on ↵s from the MP,0
c moment by varying
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Larger errors

Large values of n
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Very conservative errors (with diagonal scale variation error would be +/-0.0013)

Continuum contribution treated self-consistently (fixing it would give smaller errors). 

4

that the perturbative uncertainties are under control.
We continue the investigation of perturbative incer-

titudes by analyzing the ↵s grids with two-dimensional
contour plots at N3LO. In Fig. 2 we show the result of
such a scan in the case of RV,2

c . What one sees from this
plot is that a correlated scale variation with µ↵ = µm,
along the diagonal of the plot, would lead to a seriously
underestimated theory uncertainty. The consequences of
a correlated scale variation would be less dramatic for
n = 1 but the results of Fig. 2 demonstrate, visually,
the need for the independent scale variation. Finally,
to examine systematically the consequences of less (and
more) conservative scale variations, we vary the value of
⇠ between ⇠ = 1, which corresponds to µ↵ = µm, and
⇠ = 3, that imposes almost no constraint within our in-
tervals. For ⇠ = 1 we find that the perturbative uncer-
tainties would be underestimated by factors of 3 (n = 1),
2 (n = 2), and 1.5 (n = 3) compared to our canonical
choice (⇠ = 2). On the other hand, adopting an even
more conservative choice with ⇠ = 3, would lead to in-
creases in the errors between 30% and 60%, which shows
that our canonical choice is su�cient for a conservative
error estimate. The central values of ↵s are rather sta-
ble with the choice of ⇠ and the variations are below the
percent level for 1  ⇠  3.

With the perturbative uncertainties under good con-
trol, we are in a position to extract the final values of
our analysis. To study the other sources of uncertain-
ties we created additional ↵s grids in the µm ⇥ µ↵ plane
varying within one sigma the experimental value of RV,n

c ,
the charm-quark mass, and also adding and removing
twice the gluon-condensate contribution (as an estimate
of non-perturbative uncertainties). We find, through the
analysis of these grids,

↵s(mZ) = 0.1168(10)pt(28)exp(6)np = 0.1168(30) [RV,1
c ],

↵s(mZ) = 0.1168(15)pt(9)exp(7)np = 0.1168(19) [RV,2
c ],

↵s(mZ) = 0.1173(20)pt(5)exp(6)np = 0.1173(22) [RV,3
c ],

where the first error is due to the truncation of perturba-
tion theory, obtained from the the spread of values arising
from the independent scale variation with ⇠ = 2, the sec-
ond comes from the experimental errors given in Eq. (9),
and the third is due to non-perturbative contributions.
Perturbative errors grow with n while experimental er-
rors become smaller. The error for the result with n = 1
is largely dominated by experiment, while for n = 2 and
n = 3 the perturbative error dominates. In all cases
the uncertainty associated with the charm-quark mass is
0.0003 and does not contribute to the final error. The
non-perturbative error is always subleading, but gives a
small contribution to the total error for n = 2.

The final results for ↵s are correlated since they are
based on ratios of moments obtained from the same data
sets. This disfavors averaging the results obtained from
the di↵erent ratios RV,n

c . Instead, we quote as our final
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FIG. 3. Comparison of our determination of ↵
(nf=5)
s (mZ)

(top, in red) with a few recent determinations. Event-
shape analyses at N3LL0 + O(↵3

s): thrust and C-parameter
(green) [39–41]; lattice QCD [42–46] and static energy po-
tential [47] (in dark blue); Electroweak precision observables
fits [48] (black); Deep Inelastic Scattering [49] and global PDF
fits [50, 51] (light blue); and hadronic ⌧ decays [52, 53] and
e+e� ! hadrons [54] (gray). The current world average [3] is
shown as an orange band.

value the one obtained from the ratio RV,2
c for the fol-

lowing reasons: a) the experimental uncertainty, in the
case of the extraction from RV,1

c , is significantly larger,
which makes the final error much less competitive; b) the

extraction from RV,3
c , on the other hand, relies on M (4)

c ,
which may have a too large value of n and correspond-
ingly a smaller e↵ective scale — a fact that is also respon-
sible for the larger perturbative uncertainty. The most
reliable result is therefore the one from RV,2

c which yields
our final value

↵
(nf=5)
s (mZ) = 0.1168± 0.0019. (10)

Our result is fully compatible with the present world av-
erage [ 0.1181(11) ] [2] although the uncertainty is larger.
Our determination has a very conservative error esti-
mate: with a correlated scale variation the uncertainty
would be reduced to 0.0013, not much larger than the
world average. Comparison with other works in the lit-
erature [42, 43, 45] show that our perturbative error is
also more conservative than what is obtained from esti-
mates of higher-order contributions (as opposed to scale
variations). Our treatment of the experimental moments
is also completely unbiased, since we do not fix ↵s to
compute the perturbative contribution, but keep it as a
free parameter. Using experimental moments with ↵s

fixed to the world average in the perturbative contribu-
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QCD Higgs decay to bb̄

Scalar Correlator

Master integrals method
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QCD Higgs decay to bb̄

Scalar Correlator

• General perturbative expansion

⇧(s) = �
Nc
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• Known up to fourth order

d0,1 = 1 d1,1 =
17

3
d2,1 = 42.032 d3,1 = 353.229 d4,1 = 3512.2

• Not a physical observable
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Figure 8 – Corrections to the gluon propagator due to light-quark loops, yielding the leading-nf

terms. Each bubble loop counts as nf↵s.

Figure 9 – Singlet diagram which also contributes to the leading-nf term in the decay H ! gg at
NNLO which are not due to light-quark bubble corrections to the gluon propagator.

gluon propagator, that appears in the NLO diagrams, due to light-quark bubble loops,
shown in Fig. 8 — the successive additions of these loop corrections contribute with nf↵s

terms in perturbation theory. (We note that when there are external gluon legs — for
example, in the decay H ! gg —, there are other types of diagrams which contribute to
the leading-nf terms; as an example, at the NNLO level of H ! gg, light-fermion box
diagrams also contribute to the leading-nf term, as shown in the diagram of Fig. 9.)

Thus, the introduction of these loop corrections (Fig. 8) to the gluon propagator in
the process H ! �� at NLO generates the leading-nf terms. However, for working in this
limit and proceed to the large-�0 limit, it is useful to work in the so-called Borel space.
We will now briefly introduce the concept of divergent series and the Borel transform, and
after that we return to the discussion of the large-�0 limit which will be instrumental in
the introduction of the key concept of renormalons.

3.3.1 Divergent series and the Borel transform

The discussion presented in the section is based mainly in Ref. [22].
Let us assume we have an observable R which admits a power expansion in the strong

coupling ↵s,
R ⇠

X

n

rn↵
n

s
. (3.44)

It has been known for a long time, through an argument by Dyson in 1952, that these
series expansions in QED are divergent even after charge and mass renormalization [37].
For quantum field theories such as QED and QCD, it is assumed that the series expansion
for observables are asymptotic — when we truncate the series at a certain order, it agrees
to a great accuracy with experiments and therefore it seems to be approaching the true

Gluon propagator with insertions of       loops

↵snf
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In the above expression we note that the ambiguity possess a behaviour analogous to the
power corrections in Eq. (3.53). Thus the terms present in the OPE can, in principle,
cancel the ambiguity present in R̃. In fact this cancellation should occur, since observables
can not have ambiguities, although in practice this remains a conjecture.

Therefore, this example shows that the ambiguity in the Borel integral is related to
exponentially small terms due to IR divergences; the inclusion of OPE power corrections
which needs to be inserted due to the non-perturbative character of QCD at low-energies
then should cancel the ambiguity and result in a unambiguous observable.

Borel transform of the resummed gluon propagator

Since the leading-nf terms in H ! �� are due to the corrections to the gluon propagator
shown in Fig. 8 (which we usually call resummed gluon propagator) at the NLO level, it is
useful to introduce the resummed gluon propagator in Borel space.

Consider the gluon propagator, Gµ⌫ , with the corrections given by light quarks bubbles,

Gµ⌫ =
�i

k2

✓
gµ⌫ �

kµk⌫

k2

◆
1

1 + ⇧0(k2)
+ (�i)⇠

kµk⌫

k4
. (3.55)

The term 1 + ⇧0(k2) in the denominator of the above expression encodes the effect of the
corrections due to quark loops. Each renormalized fermion loop is given by

� �0,f↵s[ ln(�k
2
/µ

2) + C], (3.56)

where
�0,f =

nf

6⇡
(3.57)

is the fermionic contribution to the first term of the QCD �-function. The constant C

depends on the renormalization scheme. For the MS scheme, C = �5/3; in the MS scheme,
C = �5/3 + �E � ln 4⇡.

Using the definition in Eq. (3.46), the resummed gluon propagator in Borel space
reads [22]

B[↵sGµ⌫ ](u) =
(�i)

k2

✓
gµ⌫ �

kµk⌫

k2

◆✓
� µ

2

k2
e
�C

◆u

+ (�i)⇠
kµk⌫

k4
, (3.58)

where
u = ��0,f t. (3.59)

Notice that, in the definition of the transformation (Eq. (3.58)), we multiplied the gluon
propagator by ↵s; thus, the lowest order term in the u expansion corresponds already
to the first QCD correction. Furthermore, in Eq. (3.58), besides the factor (�µ

2
e
�C)u,

the first term of the propagator is basically the original gluon propagator in Landau

Large-�0 Limit Scalar Correlator in Large-�0

Scalar Correlator

• First-order correction in large-�0

• Scalar correlator in large-�0
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QCD Higgs decay to bb̄

Scalar Correlator

• General perturbative expansion
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• Not a physical observable
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Large-�0 Limit Scalar Correlator in Large-�0

Scalar Correlator

• First-order correction in large-�0

• Scalar correlator in large-�0
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Figure 8 – Corrections to the gluon propagator due to light-quark loops, yielding the leading-nf

terms. Each bubble loop counts as nf↵s.

Figure 9 – Singlet diagram which also contributes to the leading-nf term in the decay H ! gg at
NNLO which are not due to light-quark bubble corrections to the gluon propagator.

gluon propagator, that appears in the NLO diagrams, due to light-quark bubble loops,
shown in Fig. 8 — the successive additions of these loop corrections contribute with nf↵s

terms in perturbation theory. (We note that when there are external gluon legs — for
example, in the decay H ! gg —, there are other types of diagrams which contribute to
the leading-nf terms; as an example, at the NNLO level of H ! gg, light-fermion box
diagrams also contribute to the leading-nf term, as shown in the diagram of Fig. 9.)

Thus, the introduction of these loop corrections (Fig. 8) to the gluon propagator in
the process H ! �� at NLO generates the leading-nf terms. However, for working in this
limit and proceed to the large-�0 limit, it is useful to work in the so-called Borel space.
We will now briefly introduce the concept of divergent series and the Borel transform, and
after that we return to the discussion of the large-�0 limit which will be instrumental in
the introduction of the key concept of renormalons.

3.3.1 Divergent series and the Borel transform

The discussion presented in the section is based mainly in Ref. [22].
Let us assume we have an observable R which admits a power expansion in the strong

coupling ↵s,
R ⇠

X

n

rn↵
n

s
. (3.44)

It has been known for a long time, through an argument by Dyson in 1952, that these
series expansions in QED are divergent even after charge and mass renormalization [37].
For quantum field theories such as QED and QCD, it is assumed that the series expansion
for observables are asymptotic — when we truncate the series at a certain order, it agrees
to a great accuracy with experiments and therefore it seems to be approaching the true

Gluon propagator with insertions of       loops

↵snf
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In the above expression we note that the ambiguity possess a behaviour analogous to the
power corrections in Eq. (3.53). Thus the terms present in the OPE can, in principle,
cancel the ambiguity present in R̃. In fact this cancellation should occur, since observables
can not have ambiguities, although in practice this remains a conjecture.

Therefore, this example shows that the ambiguity in the Borel integral is related to
exponentially small terms due to IR divergences; the inclusion of OPE power corrections
which needs to be inserted due to the non-perturbative character of QCD at low-energies
then should cancel the ambiguity and result in a unambiguous observable.

Borel transform of the resummed gluon propagator

Since the leading-nf terms in H ! �� are due to the corrections to the gluon propagator
shown in Fig. 8 (which we usually call resummed gluon propagator) at the NLO level, it is
useful to introduce the resummed gluon propagator in Borel space.

Consider the gluon propagator, Gµ⌫ , with the corrections given by light quarks bubbles,

Gµ⌫ =
�i

k2

✓
gµ⌫ �

kµk⌫

k2

◆
1

1 + ⇧0(k2)
+ (�i)⇠

kµk⌫

k4
. (3.55)

The term 1 + ⇧0(k2) in the denominator of the above expression encodes the effect of the
corrections due to quark loops. Each renormalized fermion loop is given by

� �0,f↵s[ ln(�k
2
/µ

2) + C], (3.56)

where
�0,f =

nf

6⇡
(3.57)

is the fermionic contribution to the first term of the QCD �-function. The constant C

depends on the renormalization scheme. For the MS scheme, C = �5/3; in the MS scheme,
C = �5/3 + �E � ln 4⇡.

Using the definition in Eq. (3.46), the resummed gluon propagator in Borel space
reads [22]
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, (3.58)

where
u = ��0,f t. (3.59)

Notice that, in the definition of the transformation (Eq. (3.58)), we multiplied the gluon
propagator by ↵s; thus, the lowest order term in the u expansion corresponds already
to the first QCD correction. Furthermore, in Eq. (3.58), besides the factor (�µ

2
e
�C)u,

the first term of the propagator is basically the original gluon propagator in Landau

"Non-abelianization" of the result

nf ! 6⇡�0
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Large-�0 Limit Scalar Correlator in Large-�0

Scalar Correlator

• First-order correction in large-�0

• Scalar correlator in large-�0

⇧L�(s) =
Nc

4⇡2
m

2
s

"
1�

L

2
�

1

9

1X

n=1

✓
�
�1

2

◆
n�1

Hn+1(L) a
n

s

#
, L ⌘ ln

✓
�

s

µ2

◆

• For µ2
= �s and Nf = 5

⇧L�(s) =
Nc

4⇡2
m

2
s
⇥
1 + 3.0542as + 17.990a

2
s + 63.519a

3
s + 443.45a

4
s + 2958.45a

5
s + . . .

⇤

Cristiane London (IFSC) Master’s Defense March 17, 2021 30 / 68

dressed gluon

propagator

[Broadhurst, Kataev, Maxwell ’01]

Leading nf terms

A set of non-abelian diagrams is 
included (running coupling)

qq̄
<latexit sha1_base64="fYmJ65s2lYZ6yGigQdWOnUrfYRU=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7dbNLdjVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbT6g0j+WjmSToR3QgecgZNVZqjbsBVWTcK5XdijsHWSVeTsqQo94rfXX7MUsjlIYJqnXHcxPjZ1QZzgROi91UY0LZiA6wY6mkEWo/m587JedW6ZMwVrakIXP190RGI60nUWA7I2qGetmbif95ndSEN37GZZIalGyxKEwFMTGZ/U76XCEzYmIJZYrbWwkbUkWZsQkVbQje8surpFmteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAIMRPMMrvDmJ8+K8Ox+L1jUnnzmBP3A+fwD+Ro9X</latexit>

IFAE, May 2021



Diogo Boito

35large-�0 results
<latexit sha1_base64="vIkU6qPdfxSl4vyTg/owkHgHefE=">AAACEHicbVA9TwJBEN3DL8Qv1NJmIxhtJHdYaEm0scREPhKOkL1lDjbsfWR3zoRc+Ak2/hUbC42xtbTz37jAFQq+ZJKX92YyM8+LpdBo299WbmV1bX0jv1nY2t7Z3SvuHzR1lCgODR7JSLU9pkGKEBooUEI7VsACT0LLG91M/dYDKC2i8B7HMXQDNgiFLzhDI/WKp6nr+ZRKpgZwXnYDhkPPNxog69mTMlWgE4l60iuW7Io9A1 0mTkZKJEO9V/xy+xFPAgiRS6Z1x7Fj7KZMoeASJgU30RAzPmID6BgasgB0N509NKEnRulTP1KmQqQz9fdEygKtx4FnOqcX60VvKv7ndRL0r7qpCOMEIeTzRX4iKUZ0mg7tCwUc5dgQxpUwt1I+ZIpxNBkWTAjO4svLpFmtOBeV6l21VLvO4siTI3JMzohDLkmN3JI6aRBOHskzeSVv1pP1Yr1bH/PWnJXNHJI/sD5/APV6nI4=</latexit>

46

Figure 8 – Corrections to the gluon propagator due to light-quark loops, yielding the leading-nf

terms. Each bubble loop counts as nf↵s.

Figure 9 – Singlet diagram which also contributes to the leading-nf term in the decay H ! gg at
NNLO which are not due to light-quark bubble corrections to the gluon propagator.

gluon propagator, that appears in the NLO diagrams, due to light-quark bubble loops,
shown in Fig. 8 — the successive additions of these loop corrections contribute with nf↵s

terms in perturbation theory. (We note that when there are external gluon legs — for
example, in the decay H ! gg —, there are other types of diagrams which contribute to
the leading-nf terms; as an example, at the NNLO level of H ! gg, light-fermion box
diagrams also contribute to the leading-nf term, as shown in the diagram of Fig. 9.)

Thus, the introduction of these loop corrections (Fig. 8) to the gluon propagator in
the process H ! �� at NLO generates the leading-nf terms. However, for working in this
limit and proceed to the large-�0 limit, it is useful to work in the so-called Borel space.
We will now briefly introduce the concept of divergent series and the Borel transform, and
after that we return to the discussion of the large-�0 limit which will be instrumental in
the introduction of the key concept of renormalons.

3.3.1 Divergent series and the Borel transform

The discussion presented in the section is based mainly in Ref. [22].
Let us assume we have an observable R which admits a power expansion in the strong

coupling ↵s,
R ⇠

X

n

rn↵
n

s
. (3.44)

It has been known for a long time, through an argument by Dyson in 1952, that these
series expansions in QED are divergent even after charge and mass renormalization [37].
For quantum field theories such as QED and QCD, it is assumed that the series expansion
for observables are asymptotic — when we truncate the series at a certain order, it agrees
to a great accuracy with experiments and therefore it seems to be approaching the true
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In the above expression we note that the ambiguity possess a behaviour analogous to the
power corrections in Eq. (3.53). Thus the terms present in the OPE can, in principle,
cancel the ambiguity present in R̃. In fact this cancellation should occur, since observables
can not have ambiguities, although in practice this remains a conjecture.

Therefore, this example shows that the ambiguity in the Borel integral is related to
exponentially small terms due to IR divergences; the inclusion of OPE power corrections
which needs to be inserted due to the non-perturbative character of QCD at low-energies
then should cancel the ambiguity and result in a unambiguous observable.

Borel transform of the resummed gluon propagator

Since the leading-nf terms in H ! �� are due to the corrections to the gluon propagator
shown in Fig. 8 (which we usually call resummed gluon propagator) at the NLO level, it is
useful to introduce the resummed gluon propagator in Borel space.

Consider the gluon propagator, Gµ⌫ , with the corrections given by light quarks bubbles,

Gµ⌫ =
�i

k2

✓
gµ⌫ �

kµk⌫

k2

◆
1

1 + ⇧0(k2)
+ (�i)⇠

kµk⌫

k4
. (3.55)

The term 1 + ⇧0(k2) in the denominator of the above expression encodes the effect of the
corrections due to quark loops. Each renormalized fermion loop is given by

� �0,f↵s[ ln(�k
2
/µ

2) + C], (3.56)

where
�0,f =

nf

6⇡
(3.57)

is the fermionic contribution to the first term of the QCD �-function. The constant C

depends on the renormalization scheme. For the MS scheme, C = �5/3; in the MS scheme,
C = �5/3 + �E � ln 4⇡.

Using the definition in Eq. (3.46), the resummed gluon propagator in Borel space
reads [22]

B[↵sGµ⌫ ](u) =
(�i)

k2

✓
gµ⌫ �

kµk⌫
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� µ

2
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e
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◆u

+ (�i)⇠
kµk⌫

k4
, (3.58)

where
u = ��0,f t. (3.59)

Notice that, in the definition of the transformation (Eq. (3.58)), we multiplied the gluon
propagator by ↵s; thus, the lowest order term in the u expansion corresponds already
to the first QCD correction. Furthermore, in Eq. (3.58), besides the factor (�µ

2
e
�C)u,

the first term of the propagator is basically the original gluon propagator in Landau

"Non-abelianization" of the result

nf ! 6⇡�0
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Large-�0 Limit Scalar Correlator in Large-�0

Scalar Correlator

• First-order correction in large-�0

• Scalar correlator in large-�0
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Figure 8 – Corrections to the gluon propagator due to light-quark loops, yielding the leading-nf

terms. Each bubble loop counts as nf↵s.

Figure 9 – Singlet diagram which also contributes to the leading-nf term in the decay H ! gg at
NNLO which are not due to light-quark bubble corrections to the gluon propagator.

gluon propagator, that appears in the NLO diagrams, due to light-quark bubble loops,
shown in Fig. 8 — the successive additions of these loop corrections contribute with nf↵s

terms in perturbation theory. (We note that when there are external gluon legs — for
example, in the decay H ! gg —, there are other types of diagrams which contribute to
the leading-nf terms; as an example, at the NNLO level of H ! gg, light-fermion box
diagrams also contribute to the leading-nf term, as shown in the diagram of Fig. 9.)

Thus, the introduction of these loop corrections (Fig. 8) to the gluon propagator in
the process H ! �� at NLO generates the leading-nf terms. However, for working in this
limit and proceed to the large-�0 limit, it is useful to work in the so-called Borel space.
We will now briefly introduce the concept of divergent series and the Borel transform, and
after that we return to the discussion of the large-�0 limit which will be instrumental in
the introduction of the key concept of renormalons.

3.3.1 Divergent series and the Borel transform

The discussion presented in the section is based mainly in Ref. [22].
Let us assume we have an observable R which admits a power expansion in the strong

coupling ↵s,
R ⇠

X

n

rn↵
n

s
. (3.44)

It has been known for a long time, through an argument by Dyson in 1952, that these
series expansions in QED are divergent even after charge and mass renormalization [37].
For quantum field theories such as QED and QCD, it is assumed that the series expansion
for observables are asymptotic — when we truncate the series at a certain order, it agrees
to a great accuracy with experiments and therefore it seems to be approaching the true
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Figure 8 – Corrections to the gluon propagator due to light-quark loops, yielding the leading-nf

terms. Each bubble loop counts as nf↵s.

Figure 9 – Singlet diagram which also contributes to the leading-nf term in the decay H ! gg at
NNLO which are not due to light-quark bubble corrections to the gluon propagator.
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after that we return to the discussion of the large-�0 limit which will be instrumental in
the introduction of the key concept of renormalons.
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A set of non-abelian diagrams is 
included (running coupling)
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QCD Higgs decay to bb̄

Scalar Correlator

• General perturbative expansion
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Large-�0 Limit Scalar Correlator in Large-�0

Scalar Correlator

• First-order correction in large-�0

• Scalar correlator in large-�0
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Figura 2: Feynman diagrams for the large-�0 limit.

4.1 Large-�0 Limit in Heavy Quark Current Correlators

The large-�0 limit for the heavy quark current correlators ⇧� consists in calculating the Feynman
diagrams of Fig. 2. The main bubble is formed by a heavy quark while the gluon propagator is
dressed with a chain of light quarks. The bare correlators can be written as
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where g�n(✏) are functions of ✏ that, in the limit ✏ ! 0, gives the coe�cients C�
n at one-loop order
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with the functions F �
n(✏, u) being defined accordingly to Eq. (4.11). Each value of n in the small

momentum expansion represents a di↵erent perturbative series in ↵s.
The correlator is renormalized by introducing the appropriate renormalization constants:
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with Zm being related to the mass renormalization and Z2/Zj related to the current renormaliza-
tion discussed in Section 2. From Eq. (4.21) and using the properties of K� given on Eq. (4.23),
the renormalized quantity A�

n(µ) is found to be
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where the hatted quantity reads
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and the Borel transform S�
n(u) is given by
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large-�0 results
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1 Introduction

One of the most powerful methods for the extraction of the charm mass is the use of sum rules
for the cross section of production of cc̄ in the e+e� annihilation. The observables in that case,
MV

n , are weighted integrals of the normalized cross section with weights 1/sn (n = 1, 2, 3, . . . ),
where s is the invariant mass of the e+e� pair. In the theoretical framework, these observables
are described by the moments of the vector current correlator ⇧V (q2 = s):

(qµq⌫ � q2gµ⌫)⇧
V (s) = i

Z
dx eiqxh⌦|TjVµ (x)j

V †
⌫ (0)|⌦i, (1.1)

where jVµ = c̄�µc is the vector current, c is the charm quark field with charge Qc in units of e
and |⌦i is the full vacuum of the theory. The relation between these observables and the vector
correlator is [1]

MV
n =

12⇡2Q2
c

n!

dn

dsn
⇧V (s)

����
s=0

. (1.2)

As one can see, a low-energy expansion for the correlator is extremely convenient, and we define
the moments of the correlator as the coe�cients of the (s/m2)n term in the series expansion.

There are also analogous strategies to extract the QCD fundamental parameters using
di↵erent currents, whose observables can be obtained either on experiments or in lattice QCD
simulations. The current correlators ⇧�(s) of interest are

(qµq⌫ � q2gµ⌫)⇧
�(s) + qµq⌫⇧

�
L(s) = i

Z
dx eiqxh⌦|Tj�µ(x)j

� †
⌫ (0)|⌦i, for � = V,A,

q2⇧�(s) = i

Z
dx eiqxh⌦|Tj�(x)j� †(0)|⌦i, for � = S, P,

(1.3)

with the currents

jVµ =  ̄�µ , jAµ =  ̄�µ�5 , jS =  ̄ and jP = i ̄�5 . (1.4)
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Figura 2: Feynman diagrams for the large-�0 limit.

4.1 Large-�0 Limit in Heavy Quark Current Correlators

The large-�0 limit for the heavy quark current correlators ⇧� consists in calculating the Feynman
diagrams of Fig. 2. The main bubble is formed by a heavy quark while the gluon propagator is
dressed with a chain of light quarks. The bare correlators can be written as

⇧�
B(s) =

Nc m
�2✏
0

(4⇡)d/2

1X

n=0

✓
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4m2
0

◆n

g�n(✏)A
�
n0, (4.29)

where g�n(✏) are functions of ✏ that, in the limit ✏ ! 0, gives the coe�cients C�
n at one-loop order

and
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, (4.30)

with the functions F �
n(✏, u) being defined accordingly to Eq. (4.11). Each value of n in the small

momentum expansion represents a di↵erent perturbative series in ↵s.
The correlator is renormalized by introducing the appropriate renormalization constants:
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n(µ), (4.31)

where A�
n0 is related to A�

n by

A�
n0 = Z2n

m

✓
Z2

Zj

◆2

A�
n, (4.32)

with Zm being related to the mass renormalization and Z2/Zj related to the current renormaliza-
tion discussed in Section 2. From Eq. (4.21) and using the properties of K� given on Eq. (4.23),
the renormalized quantity A�

n(µ) is found to be

A�
n(µ) = Â�

n

✓
↵s(µ)
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, (4.33)

where the hatted quantity reads

Â�
n = 1 +

1

�0

Z 1

0

du e�u/�(↵s(µ0)) S�
n(u) +O

✓
1

�2
0

◆
(4.34)

and the Borel transform S�
n(u) is given by
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and the Borel transform S�
n(u) is given by
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Summing n bubbles in the gluon propagator (Landau gauge)

Result of loop 
integration(Continuous) shift in the 

power of the momentum in 
the denominator

D(n)
µ⌫ (k) =

�i

(�k2)(1+n✏)

✓
gµ⌫ � kµ⌫

k2

◆
[IB(✏)]

n
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• Extend �5 to D dim.

• Renormalization

• Expansion in q2

4m2 ⇠ 0
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The constants �m0 and �j0 are the first coe�cients of the mass and current anomalous dimension.
The major di�cult to obtain the functions S�

n(u) relies on the computation of a�1(1 + u� ✏)
that defines F �

n(✏, u) and is essentially the calculation of the Feynman diagrams of Fig. 2. As in
the one-loop case, for the four correlators the general form of a�1(1 + u� ✏) is
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where k ⌘ k2 � k1. Again, after calculating the trace and contracting all the Lorentz indices
that main remain, all the terms in the numerator can be written in terms of the propagators.
By the end of the day, it is necessary to study only the scalar integral
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in the small momentum expansion framework. The succesive applications of the d’Alembertian
operator in J2 is somewhat cumbersome, but it can be easily implemented in computer programs
like MATHEMATICA. In particular [9],
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where · · · means no change in the argument of J2. The remaining integrals after setting q = 0
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where �1 ⌘ n1 + n3, �2 ⌘ n2 + n4 and �3 ⌘ n5.
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After expanding and setting q2 = 0
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in the small momentum expansion framework. The succesive applications of the d’Alembertian
operator in J2 is somewhat cumbersome, but it can be easily implemented in computer programs
like MATHEMATICA. In particular [9],

⇤qJ2(n1, · · · , n5) =

4{(n1 + n2 + 1� d/2)[n1J2(n1 + 1, · · · ) + n2J2(n1, n2 + 1, · · · )]

+m2
0[n1(n1 + 1)J2(n1 + 2, · · · ) + n2(n2 + 1)J2(n1, n2 + 2, · · · )]

+ n1n2[2m
2
0J2(n1 + 1, n2 + 1, · · · )� J2(n1 + 1, n2 + 1, n3, n4, n5 � 1)]},

(4.38)
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Figura 2: Feynman diagrams for the large-�0 limit.

4.1 Large-�0 Limit in Heavy Quark Current Correlators

The large-�0 limit for the heavy quark current correlators ⇧� consists in calculating the Feynman
diagrams of Fig. 2. The main bubble is formed by a heavy quark while the gluon propagator is
dressed with a chain of light quarks. The bare correlators can be written as
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where g�n(✏) are functions of ✏ that, in the limit ✏ ! 0, gives the coe�cients C�
n at one-loop order
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with the functions F �
n(✏, u) being defined accordingly to Eq. (4.11). Each value of n in the small

momentum expansion represents a di↵erent perturbative series in ↵s.
The correlator is renormalized by introducing the appropriate renormalization constants:
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with Zm being related to the mass renormalization and Z2/Zj related to the current renormaliza-
tion discussed in Section 2. From Eq. (4.21) and using the properties of K� given on Eq. (4.23),
the renormalized quantity A�

n(µ) is found to be
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where the hatted quantity reads
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and the Borel transform S�
n(u) is given by
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Figura 2: Feynman diagrams for the large-�0 limit.
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where Qb is the bottom charge in units of e and gVn (0) is the one-loop result with ✏ ! 0 (i.e,
gV1 (0) = 16/15). The expression for AV
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1I’m using a tilde in the mass to not specify one particular mass-scheme at this stage.
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Marcus Vińıcius G. Rodriguesa

aInstituto de F́ısica de São Carlos, Universidade de São Paulo, CP 369,
13560-970, São Carlos, SP, Brasil

1 Ratios of Moments RV
n for ↵s extractions

In the large-�0 limit the bottom moments MV
n are given by

MV
n =


12⇡2Q2

b

3

16⇡2

�
gVn (0)

(4m2(µ))n
AV

n (µ), (1.1)

where Qb is the bottom charge in units of e and gVn (0) is the one-loop result with ✏ ! 0 (i.e,
gV1 (0) = 16/15). The expression for AV

n is

AV
n (µ) = ÂV
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1I’m using a tilde in the mass to not specify one particular mass-scheme at this stage.
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General structure of the Borel transform of the moments

one-loop normalizations
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large-�0 results
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1I’m using a tilde in the mass to not specify one particular mass-scheme at this stage.
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and the renormalization group invariant ÂV
n at 1/�0 accuracy is given by
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with the Borel transform SV
n (u) being

1

SV
n (u) =

8n

u
+

✓
e5/3µ2

0

m̃2

◆u
Csc(⇡u)�(n+ u)

4u�(3/2 + n+ u)
⇡3/2(�1 + u)(u+ 1 + n)NV

n (u), (1.5)

with the polynomials in u
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9
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2592
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+
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· · ·

(1.6)

1I’m using a tilde in the mass to not specify one particular mass-scheme at this stage.

1

Non-trivial polynomials in u for each value of n

Similar results for A, S, PS 
 cases

UV renorm. IR renorm.
u
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u = 2, 3, 4...
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DB, V Mateu, M. V. Rodrigues, in preparation
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large-�0 results
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• Reproduce all known leading-nf terms in the QCD results.

• First IR renormalon at u = 2 (gluon condensate).

• PS n = 3 moment does not have a u = 2 renormalon which confirms that
calculation of the gluon condensate coe�cient, which vanishes in this one
case.

<latexit sha1_base64="1JmMyAVvNpmCbIuYv3fxX+ng/VI="></latexit> Broadhurst, Baikov, Ilyin, Fleischer, Tarasov, and Smirnov ‘94

Non-trivial checks of the correctness of the results
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Ratios of moments

Borel representation of the ratios of moments
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Borel transform

If we define the ratios of moments RV
n as
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and after expanding in 1/�0 we get
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Hence, the ratios of moments have a Borel transform BV

n (u) given by
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and from the n-structure of the functions SV
n (u) we see that
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Using the one-loop running coupling one can see that the Borel-sum is completely scheme and
scale independet, since

e�u/�(↵s(µ0))BV
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. (1.12)

In principle the mass m̃ in the MS-scheme should be m(µ0), which would bring a µ0-dependence
in the Borel-sum. However, given that any transformation in the scheme of the mass, as well as
a running to other scales, is of order 1/�0, i.e, m(µ2) = m(µ1) +O(1/�0), at 1/�0 accuracy the
ratios of moments do not depend on the mass-scale.

To be used as a first cross-check, the perturbative series for the first ratio is given by
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1 = 0.788811 + as(µ)0.931965 + a2s(µ)�0(Nl)[�0.145916 + 0.232991L]

+ a3s(µ)�
2
0(Nl)[0.190863� 0.0729579L+ 0.0582478L2] + . . . ,

(1.13)

where L ⌘ ln (µ2/m2(µ)) and �0(Nl) = (11 � 2/3Nl) is calculated with Nl = 4. With the
reference values mb = 4.18 and ↵s(mb) = 0.224, the Borel Sum with the ambiguitie is given by

RV,b
1 = 0.852960± 0.000004. (1.14)
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a running to other scales, is of order 1/�0, i.e, m(µ2) = m(µ1) +O(1/�0), at 1/�0 accuracy the
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where L ⌘ ln (µ2/m2(µ)) and �0(Nl) = (11 � 2/3Nl) is calculated with Nl = 4. With the
reference values mb = 4.18 and ↵s(mb) = 0.224, the Borel Sum with the ambiguitie is given by
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Explicitly
Partial cancelation of the u=-1 
renormalon

DB, V Mateu, M. V. Rodrigues, in preparation
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large-�0 results
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2 Theoretical input

In this section we discuss the theoretical description of inverse moments of the vector and
pseudo-scalar quark-currents, as well as the ratios formed from these that we exploit in the
present work. The moments of Eq. (1.2) can be related, using analyticity and unitarity, to
the Taylor coefficients of the expansion of ⇧V

q at s = 0 as
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where j
µ
q (x) = q̄(x)�µq(x).

Using the notation of Ref. [5], we define the pseudo-scalar quark-current correlator as
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, (2.3)

with j
P
q (x) = 2mq i q̄(x)�5q(x); here we will only consider pseudo-scalar moments of the

charm-quark current (q = c). The additional mass factor in the pseudo-scalar current (as
compared to the vector case) makes it formally scheme and scale independent. Moments
analogous to those of Eq. (2.1) can be defined as
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where we introduced the combination
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The theoretical quantities that will be used in this article to determine ↵s are mass
insensitive and dimensionless. For the case of the pseudo-scalar correlator one can use the
0-th moment, which has mass dimension zero by itself, and depends on the quark mass only
logarithmically starting at O(↵2

s). This moment is an observable, in the sense that it does
not need an ultraviolet subtraction to become finite, being formally renormalization-scale
and scheme independent (although it still retains a residual µ dependence at any finite
order in perturbation theory). The 0-th moment of the vector correlator cannot be related
to any experimentally measurable quantity. It is related to the subtraction that renders the
sum rule finite, and is therefore scheme and scale dependent.

One can, however, work with ratios of roots of the n > 0 moments, such that the
mass dependence almost completely disappears. The quantities we are interested in are the
ratios of consecutive roots of moments. Specifically, we define the following mass-insensitive
quantities

R
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, (2.6)
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independent
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Renormalon cancelation in the R_n ratios (vector case)

QCD vs Large-beta O

Similar 
behaviour 
but QCD is 
actually 
better than 
large-beta_0

IFAE, May 2021

QCD vs Large-beta O
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large-�0 results
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UV renormalon strongly 
suppressed with higher n

Good pt behaviour but 
somewhat slow convergence
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charm

n = 1
<latexit sha1_base64="V7K3Ngl+0r6b+x8Q7NkP416hAYo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrRxwn3I/oQIlQMIpWelDXXq9UdivuDGSZeDkpQ456r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZqRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0ijYEb/HlZdKsVrzzSvX+oly7yeMowDGcwBl4cAk1uIM6NIDBAJ7hFd4c6bw4787HvHXFyWeO4A+czx/KCY14</latexit> n = 3

<latexit sha1_base64="QloUQzxI24bTDi1W4E7k6vlYeAU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewmgl6EoBePEc0DkiXMTnqTIbOzy8ysEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/loxkn6Ed0IHnIGTVWepDX1V6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9arlyf1Gq3WRx5OEETuEcPLiEGtxBHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHzRGNeg==</latexit>

IFAE, May 2021

Pre
lim

ina
ry

large-�0 results
<latexit sha1_base64="vIkU6qPdfxSl4vyTg/owkHgHefE=">AAACEHicbVA9TwJBEN3DL8Qv1NJmIxhtJHdYaEm0scREPhKOkL1lDjbsfWR3zoRc+Ak2/hUbC42xtbTz37jAFQq+ZJKX92YyM8+LpdBo299WbmV1bX0jv1nY2t7Z3SvuHzR1lCgODR7JSLU9pkGKEBooUEI7VsACT0LLG91M/dYDKC2i8B7HMXQDNgiFLzhDI/WKp6nr+ZRKpgZwXnYDhkPPNxog69mTMlWgE4l60iuW7Io9A1 0mTkZKJEO9V/xy+xFPAgiRS6Z1x7Fj7KZMoeASJgU30RAzPmID6BgasgB0N509NKEnRulTP1KmQqQz9fdEygKtx4FnOqcX60VvKv7ndRL0r7qpCOMEIeTzRX4iKUZ0mg7tCwUc5dgQxpUwt1I+ZIpxNBkWTAjO4svLpFmtOBeV6l21VLvO4siTI3JMzohDLkmN3JI6aRBOHskzeSVv1pP1Yr1bH/PWnJXNHJI/sD5/APV6nI4=</latexit>

UV renormalon less strongly 
suppressed with higher n

Signs of the leading IR 
renormalon

Beneke, DB, Jamin.  ’12
DB, Oliani ‘20

RV
n

<latexit sha1_base64="NPrjYseOsl8HKbSRjWvsVqaZNxw=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGKaQttLJvtpF262YTdjVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6CRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTP3mEyrNE/lgRikGMe1LHnFGjZX8+658bHRLZbfizkCWiZeTMuSod0tfnV7CshilYYJq3fbc1ARjqgxnAifFTqYxpWxI+9i2VNIYdTCeHTshp1bpkShRtqQhM/X3xJjGWo/i0HbG1Az0ojcV//PamYmugjGXaWZQsvmiKBPEJGT6OelxhcyIkSWUKW5vJWxAFWXG5lO0IXiLLy+TRrXinVeqdxfl2nUeRwGO4QTOwINLqMEt1MEHBhye4RXeHOm8OO/Ox7x1xclnjuAPnM8fjNuOgw==</latexit>
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Toy extraction of ↵s in large-�0 with the Borel sum as “experiment”
<latexit sha1_base64="nEQlAM8u6TTSTfIp13YNkBYNKJg="></latexit>

Trends in alpha_s values qualitatively corroborated by large-beta0 results.

One order more in the pt. series should lead to more stable results.

IFAE, May 2021

large-�0 results
<latexit sha1_base64="vIkU6qPdfxSl4vyTg/owkHgHefE=">AAACEHicbVA9TwJBEN3DL8Qv1NJmIxhtJHdYaEm0scREPhKOkL1lDjbsfWR3zoRc+Ak2/hUbC42xtbTz37jAFQq+ZJKX92YyM8+LpdBo299WbmV1bX0jv1nY2t7Z3SvuHzR1lCgODR7JSLU9pkGKEBooUEI7VsACT0LLG91M/dYDKC2i8B7HMXQDNgiFLzhDI/WKp6nr+ZRKpgZwXnYDhkPPNxog69mTMlWgE4l60iuW7Io9A1 0mTkZKJEO9V/xy+xFPAgiRS6Z1x7Fj7KZMoeASJgU30RAzPmID6BgasgB0N509NKEnRulTP1KmQqQz9fdEygKtx4FnOqcX60VvKv7ndRL0r7qpCOMEIeTzRX4iKUZ0mg7tCwUc5dgQxpUwt1I+ZIpxNBkWTAjO4svLpFmtOBeV6l21VLvO4siTI3JMzohDLkmN3JI6aRBOHskzeSVv1pP1Yr1bH/PWnJXNHJI/sD5/APV6nI4=</latexit>



Diogo Boito

Conclusions



Diogo Boito

Ratios of moments of bottomonium vector-current correlators ideal from 
the theory view point, but larger exp. errors.

Our results are obtained with a conservative error estimate.

PS current moments (from lattice) give stable results but with larger uncertainty. 
Our analysis of the perturbative error is more conservative than some of the 
original studies

can be extracted reliably from R data with 4, and 5 active flavours.↵s
<latexit sha1_base64="fQFQ26Crymgf7FY2AWTKPFjxqyg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKnR6KZIR93S9X3Ko7B1klXk4qkKPRL3/1BjFNIyYNFah113MT42eoDKeCTUu9VLME6RiHrGupxIhpP5vfOyVnVhmQMFa2pCFz9fdEhpHWkyiwnRGakV72ZuJ/Xjc14bWfcZmkhkm6WBSmgpiYzJ4nA64YNWJiCVLF7a2EjlAhNTaikg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTaAg4Ble4c15dF6cd+dj0Vpw8plj+APn8wcaNpAC</latexit>

At present, best determination from charm ratio with n=2:

↵s(mZ) = 0.1168± 0.0019
<latexit sha1_base64="tLP9wxEBAXXnOJAG7Sw0xhXcnk8=">AAACB3icbZDLSsNAFIYnXmu9RV0KMliEuglJFa0LoejGZQV7wSaEyXTaDp1JwsxEKKE7N76KGxeKuPUV3Pk2TtostPWHgY//nMOZ8wcxo1LZ9rexsLi0vLJaWCuub2xubZs7u00ZJQKTBo5YJNoBkoTRkDQUVYy0Y0EQDxhpBcPrrN56IELSKLxTo5h4HPVD2qMYKW355oGLWDxAvixz//740rYc56zqxhzalm07F75ZyiATnAcnhxLIVffNL7cb4YSTUGGGpOw4dqy8FAlFMSPjoptIEiM8RH3S0RgiTqSXTu4YwyPtdGEvEvqFCk7c3xMp4lKOeKA7OVIDOVvLzP9qnUT1ql5KwzhRJMTTRb2EQRXBLBTYpYJgxUYaEBZU/xXiARIIKx1dUYfgzJ48D82K5ZxYldvTUu0qj6MA9sEhKAMHnIMauAF10AAYPIJn8ArejCfjxXg3PqatC0Y+swf+yPj8AW8jlnI=</latexit>

Ratios tend to have good perturbative expansion (renormalon cancelations).

IFAE, May 2021

Conclusions

The five loop result would still improve our results (stability and pt. errors)

48


