Strong coupling determination from relativistic quarkonium sum rules

Diogo Boito

University of São Paulo
University of Vienna

> DB, Vicent Mateu, arXiv:1912:06237 PLB (2020),
> DB, Vicent Mateu, arXiv:2001:11041 JHEP (2020)
> DB, Vicent Mateu and Marcus V Rodrigues, in preparation

α_{s} the whys and the hows

Theoretical uncertainty in a Higgs decay

Decay $H \rightarrow b \bar{b}$

Optical theorem

Scalar qq correlator

Optical theorem

$\Gamma(H \rightarrow b \bar{b})=\operatorname{Im} \Pi / m_{H}$

$$
\begin{aligned}
& \Pi\left(p^{2}\right) \equiv i \int \mathrm{~d} x \mathrm{e}^{i p x}\langle\Omega| T\left\{j(x) j^{\dagger}(0)\right\}|\Omega\rangle \\
& j(x)=m_{q}: \bar{q}_{f}(x) q_{f}(x)
\end{aligned}
$$

Theoretical uncertainty in a Higgs decay
Decay $H \rightarrow b \bar{b}$
$\operatorname{Im} \Pi(s)=\frac{N_{c}}{8 \pi} m_{b}^{2} s\left[1+\sum_{n=0}^{\infty} c_{n} a_{s}^{n}\right]$
(massless case)

$$
a_{s}=\frac{\alpha_{s}}{\pi}
$$

$c_{1}=\frac{17}{3}$	$c_{2}=29.1467$	$c_{3}=41.7576$	$c_{4}=-825.747$
1980	1990	1997	2006
raaten, Leveille			
akai	Gorishny et al	Chetyrkin	Baikov, Chetyrkin, Kühn
2-loop	3-loop	4-loop	5-loop
NLO	N2LO	N3LO	N4LO

With this information we can estimate even higher orders using Borel-Padé approximants

DB, P Masjuan, C London, in preparation

$$
c_{5}=-8200 \pm 308
$$

Estimated 6-loop (N5LO)

Theoretical uncertainty in a Higgs decay

Decay $H \rightarrow b \bar{b}$

Truncation error vs. strong coupling error

Theoretical uncertainty in a Higgs decay
Decay $H \rightarrow b \bar{b}$
Renormalization scale variation

AE N4LO we already have a very slable perturbalive series

Theoretical uncertainty in a Higgs decay

Decay $H \rightarrow b \bar{b}$

Uncertainky is dominated by the masses and couplings

$$
\begin{aligned}
\sigma_{\alpha_{s}} & \sim 0.9 \% \\
\sigma_{m_{b}} & \sim 0.7 \% \\
\sigma_{m_{H}} & \sim 0.1 \%
\end{aligned}
$$

The strong coupling in 2021

Tensions in determinations from same data

Event shapes give systematically lower results
starting to be dominated by lattice

The strong coupling in 2021

Lower energies

Larger coupling, more sensitivity to QCD corrections.
Larger non-perkurbakive physics (OPE, DVS),
Problems with pl. Eheory (renormalons).

Higher energies
Smaller coupling, less sensitive to QCD corrections, more precision required from exp. Small contamination from non-perturbakive physics, pe. series is almost convergent

Strong coupling from quarkonium sum rules

- DB,V. Mateu, arXiv:I9|2:06237 PLB (2020),
- DB,V. Mateu, arXiv:200I:II04I JHEP (2020)

Sum rules

Vector correlator with massive quarks

$$
j^{\mu}(x)=\bar{q}(x) \gamma^{\mu} q(x)
$$

$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J_{\mu}(x) J_{\nu}(0)^{\dagger}\right\}|0\rangle
$$

(once subtracted) dispersion relation

$$
\Pi\left(q^{2}\right)=\frac{q^{2}}{12 \pi^{2}} \int_{s_{t h}}^{\infty} \frac{R_{q \bar{q}}(s)}{s\left(s-q^{2}+i \epsilon\right)}
$$

$$
R_{q \bar{q}}(s)=\frac{\sigma_{e^{+} e^{-} \rightarrow q \bar{q}+X}(s)}{\sigma_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}(s)}
$$

$$
R_{q \bar{q}}=12 \pi \operatorname{Im} \Pi\left(q^{2}\right)
$$

Sum rules

(once subtracted) dispersion relation

$$
\Pi\left(q^{2}\right)=\frac{q^{2}}{12 \pi^{2}} \int_{s_{t h}}^{\infty} \frac{R_{q \bar{q}}(s)}{s\left(s-q^{2}+i \epsilon\right)}
$$

Using analyticity and unitarity (dispersion relation): sum rules

$$
\begin{gathered}
\text { Experiment Theory } \\
M_{q}^{V, n}=\int \frac{\mathrm{d} s}{s^{n+1}} R_{q \bar{q}}(s)=\left.\frac{12 \pi^{2} Q_{q}^{2}}{n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} s^{n}} \Pi_{q}^{V}(s)\right|_{s=0}
\end{gathered}
$$

We restrict the sum rules to $n \leq 4$. Typical scale m_{q} / n. Relakivistic sum rules

Theory: QCD

Small momentum expansion of the correlator

$$
\widehat{\Pi}_{q}^{X}(s)=\frac{1}{12 \pi^{2} Q_{q}^{2}} \sum_{n=0}^{\infty} s^{n} \hat{M}_{q}^{X, n}
$$

$$
M_{q}^{V, n}=\frac{12 \pi^{2} Q_{q}^{2}}{n!}\left(\frac{d}{d q^{2}}\right)^{n}\left[\frac{1}{q} \bigcirc-\infty+\underset{\text { A Maier }}{ }\right.
$$

Perturbative expansion
$\hat{M}_{q}^{X, n}=\frac{1}{\left(2 \bar{m}_{q}\right)^{2 n}} \sum_{i=0}\left[\frac{\alpha_{s}\left(\bar{m}_{q}\right)}{\pi}\right]^{i} c_{i}^{X, n}$ summing logs with $\mu=\bar{m}_{q}\left(\bar{m}_{q}\right)$

Known up to $\mathcal{O}\left(\alpha_{s}^{3}\right)$ for $n \leq 4$
Also for scalar, pseudoscalar Chetyrkin, Kühn, Sturm '06; Boughezal, Czakon, Schutzmeier '06 Maier, Maierhöfer, Smirnov '08/'09; Maier and Marquard 'I7
and axial correlators

Theory: QCD

Perturbative expansion

$\hat{M}_{q}^{X, n}=\frac{1}{\left(2 \bar{m}_{q}\right)^{2 n}} \sum_{i=0}\left[\frac{\alpha_{s}\left(\bar{m}_{q}\right)}{\pi}\right]^{i} c_{i}^{X, n}$
Known up to $\mathcal{O}\left(\alpha_{s}^{3}\right)$ for $n \leq 4$
Chetyrkin, Kühn, Sturm '06; Boughezal, Czakon, Schutzmeier '06 Maier, Maierhöfer, Smirnov '08/'09; Maier and Marquard 'I7

General expansion in terms of the two scales (using RG)

$$
M_{q}^{(n)}=\frac{1}{\left[2 \bar{m}_{b}\left(\mu_{m}\right)\right]^{2 n}} \sum_{i=0}\left[\frac{\alpha_{s}^{\left(n_{f}\right)}\left(\mu_{\alpha}\right)}{\pi}\right]^{i} \sum_{a=0}^{i} \sum_{b=0}^{[i-1]} c_{i, a, b}^{(n)}\left(n_{f}\right) \ln ^{a}\left(\frac{\mu_{m}}{\bar{m}_{b}\left(\mu_{m}\right)}\right) \ln ^{b}\left(\frac{\mu_{\alpha}}{\bar{m}_{b}\left(\mu_{m}\right)}\right)
$$

Highly sensitive to the mass, ideal for quark-mass determinations

$$
M_{q}^{(n)}=\frac{1}{\left[2 \bar{m}_{b}\left(\mu_{m}\right)\right]^{2 n}} \sum_{i=0}\left[\frac{\alpha_{s}^{\left(n_{f}\right)}\left(\mu_{\alpha}\right)}{\pi}\right]^{i} \sum_{a=0}^{i} \sum_{b=0}^{[i-1]} c_{i, a, b}^{(n)}\left(n_{f}\right) \ln ^{a}\left(\frac{\mu_{m}}{\bar{m}_{b}\left(\mu_{m}\right)}\right) \ln ^{b}\left(\frac{\mu_{\alpha}}{\bar{m}_{b}\left(\mu_{m}\right)}\right)
$$

Strong mass dependence is eliminaled
We consider dimensionless ratios of moments
DB,V Mateu 'I9

$$
R_{q}^{X, n} \equiv \frac{\left(M_{q}^{X, n}\right)^{\frac{1}{n}}}{\left(M_{q}^{X, n+1}\right)^{\frac{1}{n+1}}}
$$

Central object of this part of the talk
...similar to the ones used in lattice studies of the PS correlators
Maezawa, Petreczky 'I6
Perturbative expansion

$$
\begin{array}{r}
R_{b}^{V, n}=\sum_{i=0}\left[\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right]^{i} \sum_{k=0}^{i[i-1]} \sum_{j=0}^{[i-2]} r_{i, j, k}^{(n)} \ln ^{j}\left(\frac{\mu_{m}}{\bar{m}_{b}\left(\mu_{m}\right)}\right) \ln ^{k}\left(\frac{\mu_{\alpha}}{\bar{m}_{b}\left(\mu_{m}\right)}\right) \\
\text { Residual (suppressed) mass dependence }
\end{array}
$$

Ratios of moments: strong coupling extraction
Perturbative expansion

$$
R_{q}^{X, n} \equiv \frac{\left(M_{q}^{X, n}\right)^{\frac{1}{n}}}{\left(M_{q}^{X, n+1}\right)^{\frac{1}{n+1}}}
$$

$$
R_{b}^{V, n}=\sum_{i=0}\left[\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right]^{i[i-1]} \sum_{k=0}^{[i-2]} \sum_{j=0}^{(n)} r_{i, j, k}^{(n} \ln ^{j}\left(\frac{\mu_{m}}{\bar{m}_{b}\left(\mu_{m}\right)}\right) \ln ^{k}\left(\frac{\mu_{\alpha}}{\bar{m}_{b}\left(\mu_{m}\right)}\right)
$$

Residual (suppressed) mass dependence

Example

$$
R_{c}^{V, 2}=1.0449\left[1+0.57448 a_{s}+\left(0.32576+2.3937 L_{\alpha}\right) a_{s}^{2}\right.
$$

$$
\left.-\left(2.1093+4.7873 L_{m}-6.4009 L_{\alpha}-9.9736 L_{\alpha}^{2}\right) a_{s}^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right)\right]
$$

Almost insensitive to the quark mass (only through logs at $\mathcal{O}\left(\alpha_{s}^{2}\right)$) Sensitive to the coupling.
Available at $\mathrm{N}^{3} \mathrm{LO}$ up to $R_{q}^{V, 3}$
Can be accurately determined from data.

Ratios of moments: strong coupling extraction

Perturbative expansion

$$
\begin{aligned}
R_{c}^{V, 2}=1.0449[1+ & 0.57448 a_{s}+\left(0.32576+2.3937 L_{\alpha}\right) a_{s}^{2} \\
& \left.-\left(2.1093+4.7873 L_{m}-6.4009 L_{\alpha}-9.9736 L_{\alpha}^{2}\right) a_{s}^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right)\right]
\end{aligned}
$$

Typical size of pt. corrections: $13 \%, 7 \%$, and 5% (for charm with $n=1,2,3$)

Non-perturbative contributions: gluon-condensate known to NLO.

$$
\Delta M_{n}^{X,\left\langle G^{2}\right\rangle}=\frac{1}{\left(4 M_{q}^{2}\right)^{n+2}}\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle_{\mathrm{RGI}}\left[\left[a_{X}\left(n_{f}\right)\right]_{n}^{0}+\frac{\alpha_{s}^{\left(n_{f}\right)}\left(\mu_{\alpha}\right)}{\pi}\left[a_{X}\left(n_{f}\right)\right]_{n}^{1}\right]
$$

Added as an estimate of non-perturbative uncertainties.
completely irrelevant for the bottom-quark case.

Theory errors: scale variation

$$
R_{b}^{V, n}=\sum_{i=0}\left[\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right]^{i} \sum_{k=0}^{[i-1]} \sum_{j=0}^{[i-2]} r_{i, j, k}^{(n)} \ln ^{j}\left(\frac{\mu_{m}}{\bar{m}_{b}\left(\mu_{m}\right)}\right) \ln ^{k}\left(\frac{\mu_{\alpha}}{\bar{m}_{b}\left(\mu_{m}\right)}\right)
$$

Independent scale variation important for conservative error estimate

$$
\bar{m}_{q} \leq \mu_{\alpha}, \mu_{m} \leq \mu_{\max } \quad \text { With } \mu_{\max }=4(15) \mathrm{GeV} \text { for charm (bottom) }
$$

With the following constraint

$$
1 / \xi \leq\left(\mu_{m} / \mu_{\alpha}\right) \leq \xi \quad \text { with } \quad \xi=2 \text { our (canonical) choice }
$$

Aways checking order-by-order convergence.

Experimental ratios of moments: charm

$M_{q}^{V, n}=\int \frac{\mathrm{d} s}{s^{n+1}} R_{q \bar{q}}(s)=\left(\right.$ Resonan.) $+\int_{\substack{\text { Resonance data }}}^{s_{\sin }} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)+\int_{s_{\max }}^{\infty} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)$
$\quad-\int_{s_{\mathrm{th}}}^{\infty} \frac{d s}{s^{n+1}} R_{u d s}$
(singlet contributions are very small and can be neglected)
(no light-quark background for the bottom moments)

Parametrize the continuum contribution (highly linear dependence on the coupling) (including mass corrections)

Experimental ratios of moments: charm

$$
\begin{aligned}
M_{q}^{V, n}= & \text { Resonance data } \\
& \int_{s_{\mathrm{th}}}^{s_{\max }} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)+\int_{s_{\max }}^{\infty} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)-\int_{s_{\mathrm{th}}}^{\infty} \frac{d s}{s^{n+1}} R_{u d s} \\
\text { Combined R data } & \text { Non-charm background (theory) }
\end{aligned}
$$

Dehnadi, Hoang, Mateu, Zebarjad ’ II, Dehnadi, Hoang, Mateu ‘I5
Exp moments determined from resonances and combined R data.
Correlations must be taken into account in the procedure.
Parametrize the continuum contribution (highly linear dependence on the coupling) (including mass corrections)

Experimental ratios of moments: charm

$$
\begin{array}{r}
M_{q}^{V, n}=(\text { resonan. })+\int_{s_{\mathrm{th}}}^{s_{\max }} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)+\int_{s_{\mathrm{max}}}^{\infty} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)-\int_{s_{\mathrm{th}}}^{\infty} \frac{d s}{s^{n+1}} R_{u d s} \\
\text { Combined R data } \quad \text { Non-charm background (theory) }
\end{array}
$$

Slightly update as compared with the original works. Dehnadi, Hoang, Mateu, Zebariad ’।I, Dehnadi, Hoang, Mate ‘I5 Cross checked with other R-data combinations Keshavarzi, Nomura, Teubner 'I8

For the charm quark ratios we have

$$
R_{q}^{X, n} \equiv \frac{\left(M_{q}^{X, n}\right)^{\frac{1}{n}}}{\left(M_{q}^{X, n+1}\right)^{\frac{1}{n+1}}}
$$

$$
R_{c}^{V, 1}=\left(1.770-0.705 \Delta_{\alpha}\right) \pm 0.017
$$

$$
\left[\sigma_{\mathrm{rel}}=0.98 \%\right]
$$

$$
R_{c}^{V, 2}=\left(1.1173-0.1330 \Delta_{\alpha}\right) \pm 0.0022
$$

$$
\left[\sigma_{\mathrm{rel}}=0.22 \%\right]
$$

$$
R_{c}^{V, 3}=\left(1.03535-0.04376 \Delta_{\alpha}\right) \pm 0.00084 . \quad\left[\sigma_{\mathrm{rel}}=0.104 \%\right]
$$

Continuum contribution smaller for higher n
 among the moments Min.

Experimental ratios of moments: bottom

$$
M_{q}^{V, n}=(\text { resonan. })+\int_{\substack{\text { Resonance data } \\ \text { Combined R data }}}^{s_{\max }} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)+\int_{s_{\max }}^{\infty} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)
$$

For the bottom quark ratios we have

	$R_{q}^{V, 1}$	$R_{q}^{V, 2}$	$R_{q}^{V, 3}$
bottom	$0.8020(14)+0.4083 \Delta_{\alpha}$	$0.8465(20)+0.14955 \Delta_{\alpha}$	$0.8962(11)+0.06905 \Delta_{\alpha}$
	$\sigma_{\text {rel }}=0.55 \%$	$\sigma_{\text {rel }}=0.23 \%$	$\sigma_{\text {rel }}=0.12 \%$

Smaller errors parlially due
to cancellations arising
from the positive
correlations between

$$
R_{q}^{X, n} \equiv \frac{\left(M_{q}^{X, n}\right)^{\frac{1}{n}}}{\left(M_{q}^{X, n+1}\right)^{\frac{1}{n+1}}}
$$

moments

Results for charmonium sum rules

$$
\alpha_{s} \text { with } n_{f}=4 \text { and } R_{c}^{V, n} \text { with } n=1,2, \text { and } 3
$$

α_{s} from charm moment ratios

$$
R_{q}^{V, \exp }=R_{q}^{V, \mathrm{th}}
$$

$R_{c}^{V, 2}$
$\left(1.1173-0.1330 \Delta_{\alpha}\right) \pm 0.0022$

$$
\begin{aligned}
= & 1.0449\left[1+0.57448 a_{s}+\left(0.32576+2.3937 L_{\alpha}\right) a_{s}^{2}\right. \\
& \left.-\left(2.1093+4.7873 L_{m}-6.4009 L_{\alpha}-9.9736 L_{\alpha}^{2}\right) a_{s}^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right)\right]
\end{aligned}
$$

- Scan for different values of the renormalization scale
- Include (and remove) the gluon condensate
- Vary the quark mass

Perturbative error analysis

$$
1 / \xi \leq\left(\mu_{m} / \mu_{\alpha}\right) \leq \xi
$$

$$
\xi=1 \rightarrow \mu_{m}=\mu_{\alpha}
$$

$$
\xi=2 \text { our (canonical) choice }
$$

$$
100 \times\left[\frac{\alpha_{s}^{\left(n_{f}=5\right)}\left(m_{Z}\right)}{\left.\alpha_{s}^{\left(n_{f}=5\right)}\left(m_{Z}\right)\right|_{\xi=2}}-1\right] \text { from } R_{c}^{V, i}
$$

Small variations in the central values ($\sim 0.5 \%$)

Diagonal variation: errors underestimated by a factor of up bo ~2.0

Perturbative error analysis

Order by order convergence

Results

Resulls from the charm moment ratios

| flavor | n | $\alpha_{s}^{\left(n_{f}=5\right)}\left(m_{Z}\right)$ | $\sigma_{\text {pert }}$ | $\sigma_{\exp }$ | $\sigma_{m_{q}}$ | σ_{np} | $\sigma_{\text {total }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| charm | 1 | 0.1168 | 0.0010 | 0.0028 | 0.0003 | 0.0006 | 0.0030 |
| | 2 | 0.1168 | 0.0015 | 0.0009 | 0.0003 | 0.0007 | 0.0019 |
| | 3 | 0.1173 | 0.0020 | 0.0005 | 0.0003 | 0.0006 | 0.0022 |

Trend ko larger values

$$
\alpha_{s}\left(m_{Z}\right)=0.1168 \pm 0.0019
$$

Results

Results from the charm and bottom moment ratios

| flavor | n | $\alpha_{s}^{\left(n_{f}=5\right)}\left(m_{Z}\right)$ | $\sigma_{\text {pert }}$ | $\sigma_{\exp }$ | $\sigma_{m_{q}}$ | $\sigma_{\text {np }}$ | $\sigma_{\text {total }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bottom | 1 | 0.1183 | 0.0011 | 0.0089 | 0.0002 | 0.0000 | 0.0090 |
| | 2 | 0.1186 | 0.0011 | 0.0046 | 0.0001 | 0.0000 | 0.0048 |
| | 3 | 0.1194 | 0.0013 | 0.0029 | 0.0001 | 0.0000 | 0.0032 |
| | 1 | 0.1168 | 0.0010 | 0.0028 | 0.0003 | 0.0006 | 0.0030 |
| | 2 | 0.1168 | 0.0015 | 0.0009 | 0.0003 | 0.0007 | 0.0019 |
| | 3 | 0.1173 | 0.0020 | 0.0005 | 0.0003 | 0.0006 | 0.0022 |

Trend ko larger values

(Re)analysis of lattice data for pseudo-scalar charm-quark moments

Results from lattice correlators

Data for moments of the pseudo-scalar corrents are available from the lattice

moment	$[6]$	$[9]$	$[10]$	$[11]$	$[12]$
$M_{c}^{P, 0}$	$1.708(7)$	$1.709(5)$	$1.699(9)$	$1.705(5)$	-
$R_{c}^{P, 1}$	-	-	$1.199(4)$	$1.1886(13)$	$1.188(5)$
$R_{c}^{P, 2}$	-	-	$1.0344(13)$	$1.0324(16)$	$1.0341(19)$

[6] HPQCD, Allison et al, Phys. Rev. D (2008)
[9] McNeile et al., Phys. Rev. D (20।0)
[10] Maezawa and Petreczky, Phys. Rev. D (2016)
[11] Petreczky and Weber, Phys. Rev. D (2019)
[12] Nakayama, Fahy, Hashimoto, Phys. Rev. D (20|6)

We use the ratios and the 0-th moment to extract alpha_s and reassess pt. errors

IFAE, May 2021
Diogo Boito

Results from lattice correlators

Maezawa el al are even more					conservalive pl. cheory errors		
conserval	ve Ref.	$\alpha_{s}^{\left(n_{f}=5\right)}\left(m_{Z}\right)$	$\sigma_{\text {pert }}$	$\sigma_{\text {lattice }}$	$\sigma_{m_{c}}$	σ_{NP}	$\sigma_{\text {total }}$
	Allison et al. [6]	0.1179	0.0019	0.0006	0.0003	0.0004	0.0020
,	McNeile et al. [9]	0.1180	0.0019	0.0005	0.0003	0.0004	0.0020
	Maezawa et al. [10]	0.1171	0.0018	0.0008	0.0003	0.0004	0.0020
	Petreczky et al. [11]	0.1177	0.0019	0.0005	0.0003	0.0004	0.0020

Main result

Main result

Extraction from charm-quark vector-current moment ratios:

$$
\begin{aligned}
& \alpha_{s}\left(m_{Z}\right)=0.1168(10)_{\mathrm{pt}}(28)_{\exp }(6)_{\mathrm{np}}=0.1168(30)\left[R_{c}^{V, 1}\right], 4 \\
& \alpha_{s}\left(m_{Z}\right)=0.1168(15)_{\mathrm{pt}}(9)_{\exp }(7)_{\mathrm{np}}=0.1168(19)\left[R_{c}^{V, 2}\right] \\
& \alpha_{s}\left(m_{Z}\right)=0.1173(20)_{\mathrm{pt}}(5)_{\exp }(6)_{\mathrm{np}}=0.1173(22)\left[R_{c}^{V, 3}\right], 4 \\
& \text { Large values of } \mathrm{n}
\end{aligned}
$$

Very conservative errors (with diagonal scale variation error would be +/-0.0013)
Continuum contribution treated self-consistently (fixing it would give smaller errors).

Perturbative behaviour and renormalons

Standard perturbation theory

large $-\beta_{0}$

Gluon propagator with insertions of $q \bar{q}$ loops
$=100000$

$$
\alpha_{s} n_{f}
$$

$\left(\alpha_{s} n_{f}\right)^{2}$

$$
\alpha_{s} n_{f} \sim \mathcal{O}(1) \quad \beta_{0, f}=\frac{n_{f}}{6 \pi}
$$

Leading uf Kerms

Large-nf result

Standard perturbation theory

$R={ }_{1}^{\mathrm{LO}}$	One chain		Two chains	Three chains		
	NfLO		Nf-NLO	Nf-NNLO		
+ [$\begin{gathered} c_{10} \\ c_{21} n_{f} \\ c_{32} n_{f}^{2} \end{gathered}$] α_{s}
+		++	c_{20}			α_{s}^{2}
$+$			$c_{31} n_{f}$		c_{30}	$] \alpha_{s}^{3}$
+						
$+$	${ }_{n-1} n_{f}^{n-1}$	+	$c_{n, n-2} n_{f}^{n-2}$		$+$	$] \alpha_{s}^{n}$

large $-\beta_{0}$

Gluon propagator with insertions of $q \bar{q}$ loops
$=50000000 \times 10000000000$

$$
\alpha_{s} n_{f}
$$

$\left(\alpha_{s} n_{f}\right)^{2}$

$$
\alpha_{s} n_{f} \sim \mathcal{O}(1) \quad \beta_{0, f}=\frac{n_{f}}{6 \pi}
$$

Leading uf Eerms

"Non-abelianization" of the result

$$
n_{f} \rightarrow 6 \pi \beta_{0}
$$

A set of non-abelian diagrams included (running coupling)

large $-\beta_{0}$

Gluon propagator with insertions of $q \bar{q}$ loops
$=1000000$

$\alpha_{s} n_{f}$
$\left(\alpha_{s} n_{f}\right)^{2}$
$\alpha_{s} n_{f} \sim \mathcal{O}(1)$

$$
\beta_{0, f}=\frac{n_{f}}{6 \pi}
$$

Leading uf Eerms

"Non-abelianization" of the result

$$
n_{f} \rightarrow 6 \pi \beta_{0}
$$

A set of non-abelian diagrams included (running coupling)

Standard perturbation theory

Renormalons

Perturbation theory is divergent Dyson'52 $\quad r_{n} \sim n$!

$$
R \sim \sum_{n=0}^{n^{*}} r_{n} \alpha_{s}^{n+1}+e^{-p / \alpha_{s}} \alpha_{s}\left(Q^{2}\right) \quad R \sim \sum_{n=0}^{n^{*}} r_{n} \alpha_{s}^{n+1}+\left(\frac{\Lambda^{2}}{Q^{2}}\right)^{p}
$$

Borel transform method
$B[R](t) \equiv \sum_{n=0}^{\infty} r_{n} \frac{t^{n}}{n!}$ which can be "summed" $\Longrightarrow \tilde{R} \equiv \int_{0}^{\infty} d t \mathrm{e}^{-t / \alpha} B[R](t)$

Singularities in the Borel plane: renormalons

Beneke '99

large- β_{0} results

Large- β_{0} calculation of heavy-quark current correlators

Results available in the literature only for the moments of the vector current
Grozin \& Sturm ‘04

$$
j_{\mu}^{V}=\bar{\psi} \gamma_{\mu} \psi, \quad j_{\mu}^{A}=\bar{\psi} \gamma_{\mu} \gamma_{5} \psi, \quad j^{S}=\bar{\psi} \psi \quad \text { and } \quad j^{P}=i \bar{\psi} \gamma_{5} \psi
$$

We have calculated for the first time the corresponding result for A, S and $P S$ cases
DB,V Mateu, M.V. Rodrigues, in preparation

large- β_{0} results

Summing n bubbles in the gluon propagator (Landau gauge) $d=4-2 \epsilon$

$$
\begin{gathered}
\cdots \cdots \cdots=000 \bigcirc 000 \bigcirc \cdot \cdots \\
D_{\mu \nu}^{(n)}(k)=\frac{-i}{\left(-k^{2}\right)^{(1+n \epsilon)}}\left(g_{\mu \nu}-\frac{k_{\mu \nu}}{k^{2}}\right)\left[I_{B}(\epsilon)\right]^{n} \\
\text { (Continuous) shift in the } \\
\text { power of the momentum in }
\end{gathered}
$$ the denominator

- Extend γ_{5} to D dim.

Karin '93

- Renormalization
- Expansion in $\frac{q^{2}}{4 m^{2}} \sim 0$

large- β_{0} results

- Expansion in $\frac{q^{2}}{4 m^{2}} \sim 0$

$$
J_{2}\left(n_{1}, \cdots, n_{5}\right)=\int \frac{\mathrm{d}^{d} k_{1} \mathrm{~d}^{d} k_{2}}{\left[\left(k_{1}+q\right)^{2}-m_{0}^{2}\right]^{n_{1}}\left[\left(k_{2}+q\right)^{2}-m_{0}^{2}\right]^{n_{2}}\left[k_{1}^{2}-m_{0}^{2}\right]^{n_{3}}\left[k_{2}^{2}-m_{0}^{2}\right]^{n_{4}}\left[\left(k_{2}-k_{1}\right)^{2]^{n 5}}\right.}
$$

After expanding and setting $q^{2}=0$

$$
\begin{aligned}
\left.J_{2}\left(n_{1}, \cdots, n_{5}\right)\right|_{q=0} & =\int \frac{\mathrm{d}^{d} k_{1} \mathrm{~d}^{d} k_{2}}{\left[k_{1}^{2}-m_{0}^{2}\right]^{n_{1}+n_{3}}\left[k_{2}^{2}-m_{0}^{2}\right]^{n_{2}+n_{4}}\left[\left(k_{2}-k_{1}\right)^{2}\right]^{n_{5}}} \\
& =-\pi^{d}(-1)^{\lambda_{1}+\lambda_{2}+\lambda_{3}}\left(m_{0}^{2}\right)^{d-\lambda_{1}-\lambda_{2}-\lambda_{3}} \\
& \frac{\Gamma\left(\lambda_{1}+\lambda_{3}-d / 2\right) \Gamma\left(\lambda_{2}+\lambda_{3}-d / 2\right) \Gamma\left(d / 2-\lambda_{3}\right) \Gamma\left(\lambda_{1}+\lambda_{2}+\lambda_{3}-d\right)}{\Gamma\left(\lambda_{1}\right) \Gamma\left(\lambda_{2}\right) \Gamma\left(\lambda_{1}+\lambda_{2}+2 \lambda_{3}-d\right) \Gamma(d / 2)}
\end{aligned}
$$

$\lambda_{1} \equiv n_{1}+n_{3}, \lambda_{2} \equiv n_{2}+n_{4}$ and $\lambda_{3} \equiv n_{5}$

large- β_{0} results

Structure of the results for the moments M

$$
M_{n}^{V}=\left[12 \pi^{2} Q_{q}^{2} \frac{3}{16 \pi^{2}}\right] \frac{g_{n}^{V}(0)}{\left(4 m^{2}(\mu)\right)^{n}} A_{n}^{V}(\mu)
$$

After renormalization and expressing everything in terms of the $\overline{\mathrm{MS}}$ Mass

$$
\hat{A}_{n}^{\delta}=1+\frac{1}{\beta_{0}} \int_{0}^{\infty} \mathrm{d} u e^{-u / \beta\left(\alpha_{s}\left(\mu_{0}\right)\right)} S_{n}^{\delta}(u)+\mathcal{O}\left(\frac{1}{\beta_{0}^{2}}\right)
$$

Borel Eransform of the moments

General structure of the Borel transform of the moments

$$
S_{n}^{V}(u)=\frac{8 n}{u}+\left(\frac{e^{5 / 3} \mu_{0}^{2}}{\tilde{m}^{2}}\right)^{u} \frac{\operatorname{Csc}(\pi u) \Gamma(n+u)}{4^{u} \Gamma(3 / 2+n+u)} \pi^{3 / 2}(-1+u)(u+1+n) N_{n}^{V}(u)
$$

large- β_{0} results

Anatomy of the result

Scheme and scale
independent
$S_{n}^{V}(u)=\frac{8 n}{u}+\left(\frac{e^{5 / 3} \mu_{0}^{2}}{\tilde{m}^{2}}\right)^{u} \frac{\operatorname{Csc}(\pi u) \Gamma(n+u)}{4^{u} \Gamma(3 / 2+n+u)} \pi^{3 / 2}(-1+u)(u+1+n) N_{n}^{V}(u)$
Residual scale and scheme dependence

Renormalons are in Polynomial of u the singularikies of

these functions

Non-Erivial polynomials in u for each value of n

$$
\begin{aligned}
& N_{1}^{V}(u)=\frac{u^{3}}{9}+\frac{29 u^{2}}{27}+\frac{92 u}{27}+3 \\
& N_{2}^{V}(u)=\frac{u^{5}}{96}+\frac{7 u^{4}}{54}+\frac{2887 u^{3}}{2592}+\frac{7393 u^{2}}{1296}+\frac{2095 u}{162}+10
\end{aligned}
$$

Similar results for $A, S, P S$ cases

large- β_{0} results

Non-trivial checks of the correctness of the results

- Reproduce all known leading- n_{f} terms in the QCD results.
- First IR renormalon at $u=2$ (gluon condensate).
- PS $n=3$ moment does not have a $u=2$ renormalon which confirms that calculation of the gluon condensate coefficient, which vanishes in this one case.

large- β_{0} results

Ratios of moments

$$
R_{q}^{X, n} \equiv \frac{\left(M_{q}^{X, n}\right)^{\frac{1}{n}}}{\left(M_{q}^{X, n+1}\right)^{\frac{1}{n+1}}}
$$

Borel representation of the ratios of moments

$$
R_{n}^{V}=\left(\frac{9}{4} Q_{q}^{2}\right)^{\frac{1}{n(n+1)}} \frac{\left(g_{n}^{V}(0)\right)^{\frac{1}{n}}}{\left(g_{n+1}^{V}(0)\right)^{\frac{1}{n+1}}}\left[1+\frac{1}{\beta_{0}} \int_{0}^{\infty} d u e^{-u / \hat{a}(\mu)} B_{n}^{V}(u)+\mathcal{O}\left(\frac{1}{\beta_{0}^{2}}\right)\right]
$$

DB,V Mateu, M.V. Rodrigues, in preparation
Borel Eransform

$$
B_{n}^{V}(u)=\frac{S_{n}^{V}(u)}{n}-\frac{S_{n+1}^{V}(u)}{n+1}
$$

Explicibly Scheme and scale independent

$$
\begin{aligned}
B_{n}^{V}(u) & =\left(\frac{e^{5 / 3} \mu^{2}}{m^{2}}\right)^{u} \frac{\mathrm{Csc}(\pi \mathrm{u}) \pi^{3 / 2}(-1+u)}{4^{u}} \\
& {\left[\frac{\Gamma(n+u)(u+1+n) N_{n}^{V}(u)}{n \Gamma(3 / 2+n+u)}-\frac{\Gamma(n+u+1)(u+2+n) N_{n+1}^{V}(u)}{(n+1) \Gamma(5 / 2+n+u)}\right] }
\end{aligned}
$$

large- β_{0} results

Renormalon cancelation in the $R_{\mathrm{m}} \mathrm{n}$ ratios (vector case)

QCD vs Large-beta 0

Diogo Boito

large- β_{0} results

$$
R_{n}^{V}
$$

botkom

Good pe behaviour but
somewhal slow convergence

UV renormalon strongly
suppressed with higher n

large- β_{0} results

$$
R_{n}^{V}
$$

Signs of the leading IR renormalon

Beneke, DB, Jamin. 'I2
DB, Oliani '20

UV renormalon less strongly suppressed with higher n

large- β_{0} results

Toy extraction of α_{s} in large- β_{0} with the Borel sum as "experiment"

Trends in alpha_s values qualitatively corroborated by large-beta0 results.
One order more in the pt. series should lead to more stable results.

Conclusions

Conclusions

α_{s} can be extracted reliably from R data with 4, and 5 active flavours.
Ratios of moments of bottomonium vector-current correlators ideal from the theory view point, but larger exp. errors.

Ratios tend to have good perturbative expansion (renormalon cancelations).
The five loop result would still improve our results (stability and pt. errors)

At present, best determination from charm ratio with $n=2$:

$$
\alpha_{s}\left(m_{Z}\right)=0.1168 \pm 0.0019
$$

Our results are obtained with a conservative error estimate.

PS current moments (from lattice) give stable results but with larger uncertainty.
Our analysis of the perturbative error is more conservative than some of the original studies

