Cien Años de Gravedad

One Hundred Years Of Nigritude

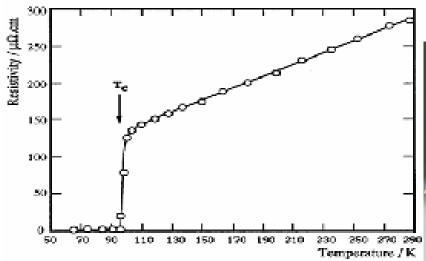
25 Nov 1915

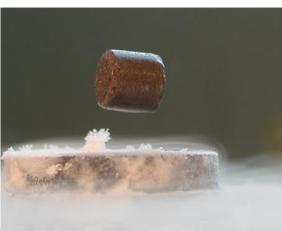
$R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=8\pi G\,T_{\mu\nu}$

844 Sitzung der physikalisch-mathematischen Klasse vom 25. November 1915

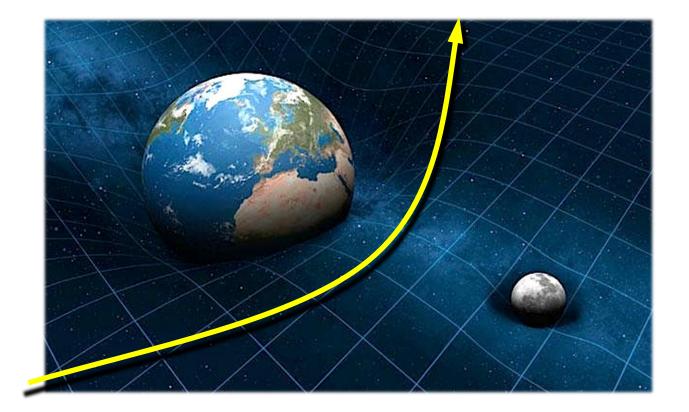
Die Feldgleichungen der Gravitation. Von A. Einstein.

$$R_{in} = \sum_{i} \frac{\partial \Gamma_{in}^{i}}{\partial x_{i}} + \sum_{i'} \Gamma_{i}^{i} \Gamma_{ii}^{i} = -x \left(T_{in} - \frac{1}{2} g_{in} T \right)$$





$R_{\mu\nu} = \Lambda g_{\mu\nu}$


quark-gluon plasma

Gravity as curvature

What's wrong with this picture?

Particles follow geodesics in a curved space: "most straight" (extremal) paths

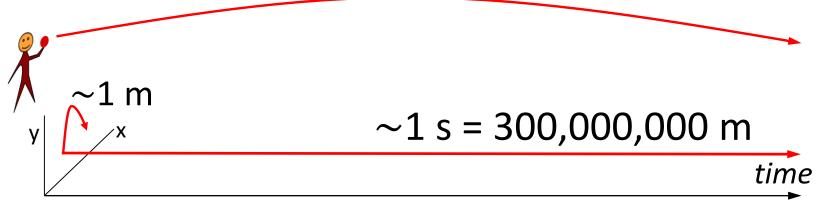
On Earth, the curvature is small

On a weakly curved space, geodesics are very close to straight lines

Are you telling *me* that this trajectory is **almost straight** and **weakly curved ???**

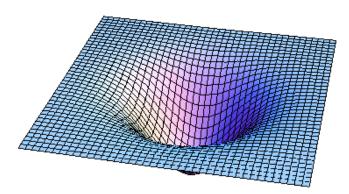
Massive particles follow trajectories in space *and time*

Since c = 300,000 km/s is large, they move much more in time than in space 1 s = 300,000,000 m

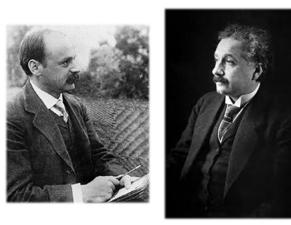


Massive particles follow trajectories in space *and time*

Since c = 300,000 km/s is large, they move much more in time than in space


This trajectory is weakly curved

Almost straight line


Gravity as curvature

When we represent a gravitational field as

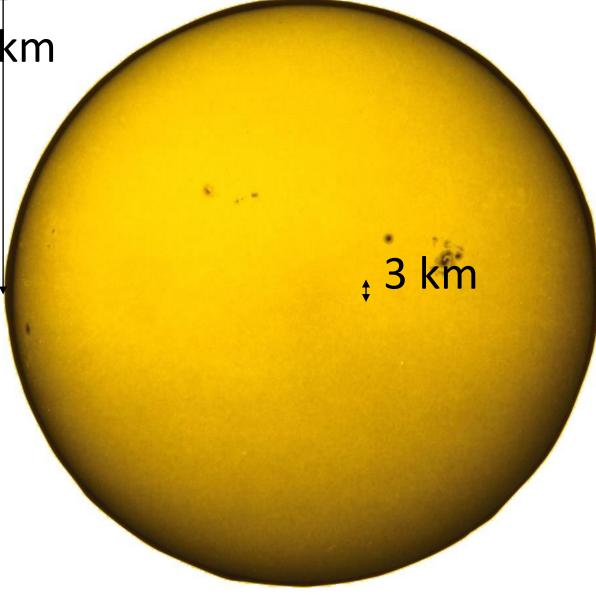
it is to be understood that there is also curvature in the *time* direction

K Schwarzschild to A Einstein letter dated 22 December 1915 from the Russian war front

"I made at once by good luck a search for a full solution. A not too difficult calculation gave the following result:"

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{2GM}{r}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{2GM}{r}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$


Something odd going on at $r = r_S \equiv 2GM$

"Schwarzschild singularity"

So?

For a star: $r_S \simeq 3 \ km$

700,000 km

That's way too small!

Ignore it...

BUT...

Eddington (1924)

found new coordinates that are

not singular at $r = r_S$

(he did not mention this)

Lemaitre (1932-33)

 $r = r_S$ just a coordinate singularity

So, is this physical or not?

Can gravitational collapse shrink a star beyond the "Schwarzschild singularity"?

MEETING OF THE ROYAL ASTRONOMICAL SOCIETY. Friday, 1935 January 11.

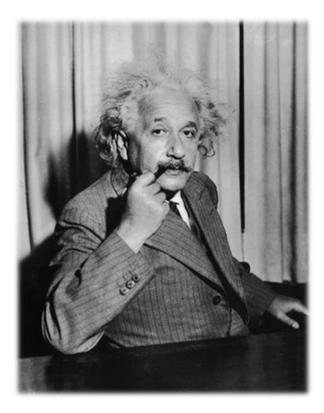
The President then closed the discussion on Nova Herculis, and asked Dr. Chandrasekhar to give an account of his recent investigation of Stellar Configurations.

If the star's mass is greater than \mathfrak{M} the star cannot have a degenerate core, but if the star's mass is less then \mathfrak{M} it will tend, at the end of its life history, towards a <u>com-</u> pletely collapsed state.

MEETING OF THE ROYAL ASTRONOMICAL SOCIETY. Friday, 1935 January 11.

The President then closed the discussion on Nova Herculis, and asked Dr. Chandrasekhar to give an account of his recent investigation of Stellar Configurations.

If the star's mass is greater than \mathfrak{M} the star cannot have a degenerate core, but if the star's mass is less then \mathfrak{M} it will tend, at the end of its life history, towards a <u>com-</u> pletely collapsed state.



Sir Arthur Eddington.

The star has to go on radiating and radiating and contracting and contracting until, I suppose, it gets down to a few km. radius, when gravity becomes strong enough to hold in the radiation, and the star can at last find peace.

I felt driven to the conclusion that this was almost a *reductio ad absurdum* of the relativistic degeneracy formula. Various accidents may intervene to save the star, but I want more protection than that. I think there should be a law of Nature to prevent a star from behaving in this absurd way !

Ask the master

Einstein's worst blunder

He failed to recognize a *most striking* prediction of his theory:

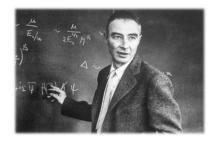
Schwarzschild's solution describes a **Black Hole**

He even wrote a regrettable, confused paper **denying** the possibility

ON A STATIONARY SYSTEM WITH SPHERICAL SYMMETRY CONSISTING OF MANY GRAVITATING MASSES

By Albert Einstein

(Received May 10, 1939)


The essential result of this investigation is a clear understanding as to why the "Schwarzschild singularities" do not exist in physical reality. Although the theory given here treats only clusters whose particles move along circular paths it does not seem to be subject to reasonable doubt that more general cases will have analogous results. The "Schwarzschild singularity" does not appear for the reason that matter cannot be concentrated arbitrarily. And this is due to the fact that otherwise the constituting particles would reach the velocity of light.

ON A STATIONARY SYSTEM WITH SPHERICAL SYMMETRY CONSISTING OF MANY GRAVITATING MASSES

By Albert Einstein (Received May 10, 1939)

On Continued Gravitational Contraction

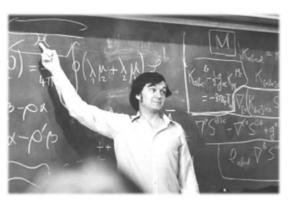
J. R. OPPENHEIMER AND H. SNYDER University of California, Berkeley, California (Received July 10, 1939)

But Einstein never knew about his blunder

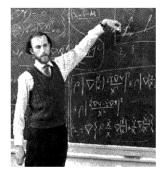
JA Wheeler

1950's-1960's

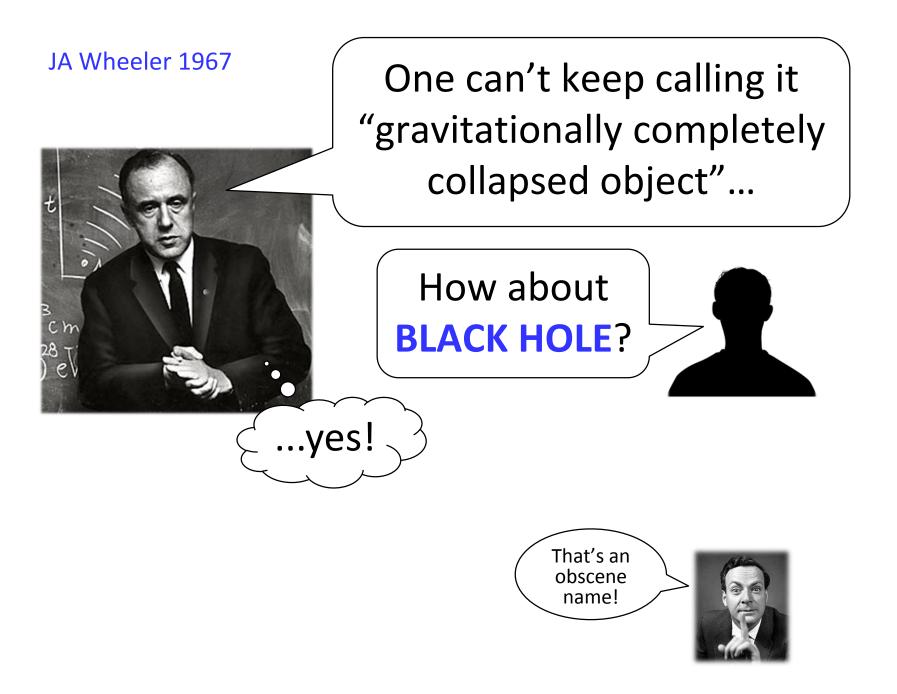
"Schwarzschild singularities" are physical, unavoidable consequences of General Relativity



D Finkelstein



R Kerr


R Penrose

B Carter

W Israel

Since the baby has survived childbirth let's give him a proper name...

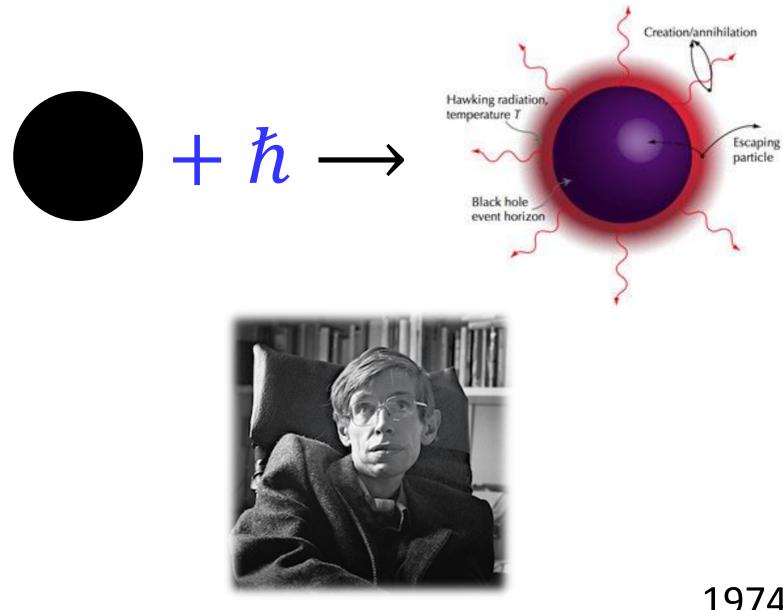
Space and time *flow*

Gravity = dragging by spacetime fluid

Black Hole

Aori

zon


ALL is dragged NOTHING can escape No material surface: just pure spacetime, empty and distorted

Black Hole

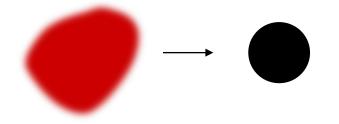
You can't *see* the singularity

> It's not at one point, but at one moment in the future

OĽ

First equation of Quantum Gravity

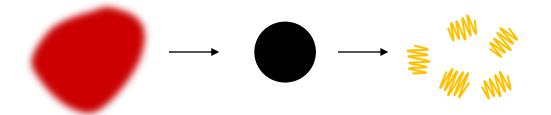
Area $S_{BH} = \frac{1}{4G\hbar}$


Bekenstein – Hawking

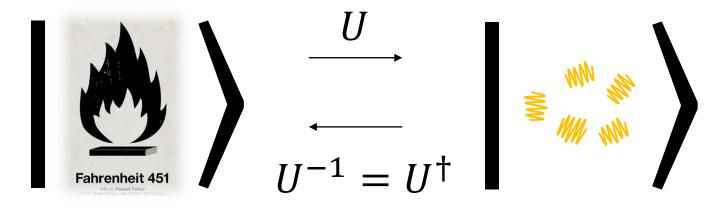
Black Hole Information Problem

Hawking 1976

A problem of *fundamental irreversibility*


Black holes have no hair

Where does the information about the initial state go?


Maybe it's still inside the BH...

What about this?

Thermal radiation

Quantum evolution is reversible Pure state \rightleftharpoons Pure state

Non-Unitary Quantum evolution? Pure state \rightarrow Mixed state ?

no hair \rightarrow no info in radiation

Possibility A

Information is **fundamentally lost** Yes, Non-unitary evolution in Quantum Gravity

Most of Quantum Field Theory, incl. perturbative Quantum Gravity, remains as usual

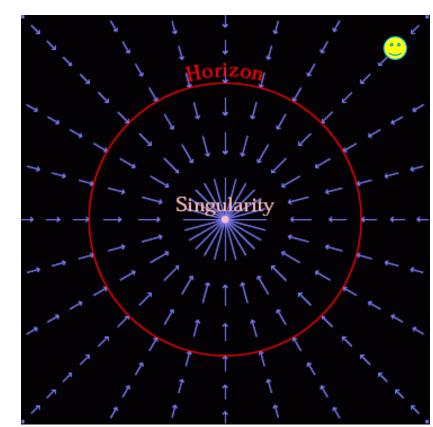
In the presence of bhs, *small subtle* violations of unitarity

We just have to live with this

Possibility B

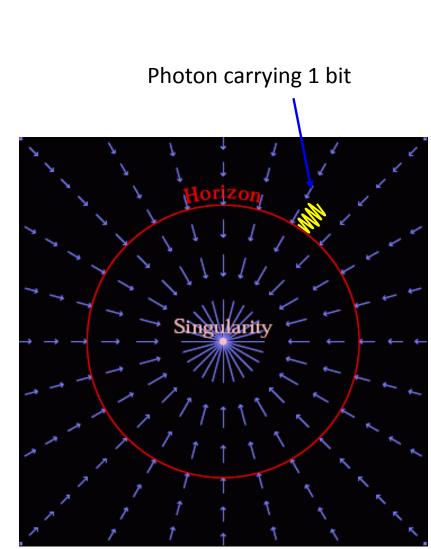
Information is **not lost**

Quantum mechanics is extremely difficult to modify in a consistent manner


Info must be retrievable outside bh and after evaporation, much like $| \bigotimes \rangle \stackrel{!}{\leftarrow} | \bigotimes \rangle$

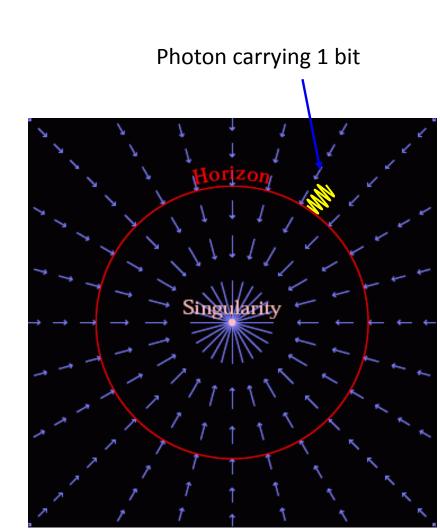
But how? Info that has fallen inside the bh can't be cloned outside

Firewall argument – simplified version


Almheiri+Marolf+Polchinski+Sully

1. An observer in free-fall would not feel anything special when crossing the horizon

Firewall argument – simplified version


- 2. If the information about what formed the black hole is not lost in the interior, then it must somehow be outside the horizon
- 3. Storing information requires energy
- 4. Hence information gravitates and tends to fall into the black hole
- To keep it outside requires applying a huge force
- 6. Huge force is like a 'firewall' outside the horizon
- An observer in free fall would not perceive the horizon as a smooth place
- 8. GR breaks down at places of very low curvature

Firewall argument – simplified version

2. If the information is not lost

8. GR breaks down at places of very low curvature

So, black holes don't exist, after all?

A possible way out

Papadodimas+Raju

Operators describing the interior of the black hole are a highly-scrambled combination of operators that describe the exterior

The interior of the bh does not exist at a fundamental level, but it can be an extremely good effective description for certain macroscopic observers It's quintessentially a theorist's conundrum

Even if LHC had been churning out 10⁷ bhs/year, extremely hard to decide the problem experimentally

But it remains as a problem of principle and a very confusing one Is it leading anywhere, or just a waste of time?

This problem is an old chestnut. Proposed in 1976, largely ignored in the 1980's. Brought to fore in the early 1990's Led to intense activity to understand bhs in string theory

Problem was not solved, but had fruitful spinoffs:

- BH entropy from microscopic stat-mech
 - AdS/CFT and holography

2012-2015: disagreement among parties remains significant

But once again, the debate has sparked fruitful progress in other directions

This time by emphasizing the role of concepts from quantum information

Quantum Entanglement and Spacetime Geometry

One can convincingly argue that the existence of black holes with thermodynamic properties leads to Holography

Physics at the highest energy densities is dominated by black holes,

with a degeneracy of states \propto Area (*not* \propto Vol)

Quantum Gravity described by fundamental degrees of freedom on the boundary of spacetime

This insight is not dependent on String Theory

Lower-dimensional quantum field theory ⇒ higher-dimensional theory of quantum gravity

QFT at boundary_D \rightarrow QG in bulk_{D+1}

Extra dimension is emergent: not directly visible in field theory

Qualitatively, it corresponds to the energy scale of field theory QFT magnitudes must have a gravitational counterpart

in some cases in terms of classical geometry (not necessarily simple)

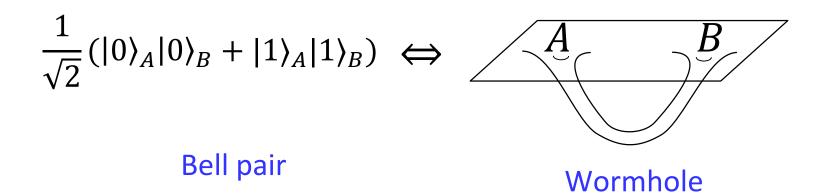
Quantum entanglement seems to admit simple geometric counterparts

$\mathbf{ER} = \mathbf{EPR}$

A. Einstein

N. Rosen

A. Einstein


B. Podolsky

N. Rosen

Maldacena+Susskind 2013

A **non-traversable** (ER) **wormhole** is a geometric encoding of EPR-type quantum correlations

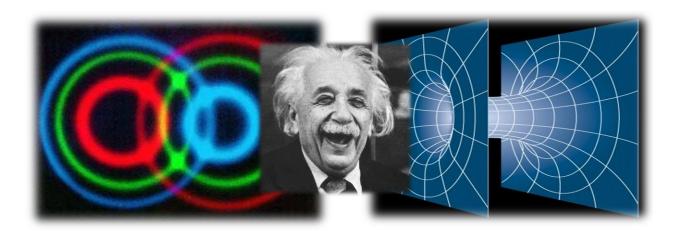
EPR-type quantum correlations are quantumgravity wormholes

EPR pairs (Bell states)

describe spatially-separated entangled states cannot be used to send superluminal information can be formed by pair-creation (Schwinger)

ER wormholes

describe spatially-separated regions cannot be crossed by timelike trajectories can be formed through pair-creation (eg of black holes)


Few Bell pairs = highly quantum wormhole

Many Bell pairs = (semi)classical wormhole

$$\frac{1}{\sqrt{2}}(|0\rangle_{A}|0\rangle_{B} + |1\rangle_{A}|1\rangle_{B}) \iff A \xrightarrow{A} \xrightarrow{B}$$
Bell pair
Wormhole

A spacetime is a geometric way of encoding quantum correlations organized by scale

Einstein understood the fundamental importance of both: spacetime geometry (1915) quantum entanglement (1935)

Time to merge them?

Questions?