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Part 1.
Measuring v,CC1mt" on Carbon using the ND280

with 4t solid angle acceptance



T2K experiment

+ T2K s a long-baseline neutrino oscillation experiment.

 Goal: make precise measurements of oscillation parameters via observation of v, /v, disappearance and v, /v, appearance.
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Off-axis ND280 detector

* 0.2 T magnetized tracking detector
+ 7° detector (POD)
» Electromagnetic calorimeters (ECals)

+ Side Muon Range Detectors (SMRD)

* The tracker (located downstream of the POD) is made up of :

+ 3 gas Time Projection Chambers (TPCs)
* 2 Fine Grained Detectors (FGDs)
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Motivation

CC1m*t constitutes the main background for the muon neutrino disappearance measurement
when the charged pion is not observed.

Its precise knowledge is relevant for all current and planned neutrino oscillation experiments.

The aim of the distributions presented here is to provide results in a model independent way,
to make their comparison to other experiments easier and to contribute to the improvement
of current models.

The CC1m* cross section will be extracted using the present event selection (with 41 solid
angle acceptance).

Single pion production is sensitive mainly to resonant processes but also to non-resonant
contributions.

We can study the nuclear effects, FSI and Fermi momentum by computing and comparing
the Adler angles.

Adler’'s angles were measured for single charged pion production in neutrino interactions
with heavier nuclei as target.
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Neutrino interaction and Final state interaction role

Three dominant scattering processes: Charged Current Quasi Elastic §1.4
(CCQE), Charged Current Resonant Pion Production (CCRES), Charged %1.2
Current Deep Inelastic Scattering (CCDIS). g1
0.8

S06

Interaction Modes (nucleon level) %04

v CCQE i y, CCRES i yw CCDIS |, g"‘:

102
E, (GeV)

v

hadrons * Pions or nucleons can re-interact with the nuclear medium, or each other
before leaving the nucleus.

d u
(n d ) o ‘ p) P u
u 1 u

d d u dd
Sl u

+ Changes outgoing particle content or kinematics in final state.
Interaction Topologies (nucleus level)

L ]
E: o
, ¢ccom ., cCim , CCOther, o VL7200 \‘ ‘,)4
Y ol S 0
~< + e. é, + © +
7 ”u n M o1 il
Fadviiis Free Initial Nuclear Extra Nuclear Final State

Nucleon State Effects Interactions (FSI)




Selection development

For each of the
directions, we
separated the events
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Selection development

ND280 Events

General event quality,
multiplicity, ToF, FV

Selecting the direction of
the main track and apply
PID for muons

For each of the
directions, we
separated the events
by pion multiplicity

Additional steps for
improving the purity of
the samples
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Selection development

For each of the
directions, we
separated the events
by pion multiplicity

Additional steps for
improving the purity of
the samples

Selecting the direction of
the main track and apply
PID for muons

General event quality,

ND280 Events multiplicity, ToF, FV
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Selection development

P
; : ; For each of the L
. Selecting the direction of . : Additional steps for
General event quality, : directions, we : : .
ND280 Events multiplicity, ToF, FV the mF?IIB ]E:Je;cnlfu?ggsapply separated the events |mprot\;l|2%;rrlne ﬁ:)eusrlty of
by pion multiplicity p
.
= = (i CCin™ Clother
E - - EBOOO EP—'
CCinclusive : CCOm . W — 314 i
d
= mcioe | = i + The signal is defined in terms of the experimentally observable particles exiting the
= sand 4, 0.07% N = sand g, 0.60% nUC|eUS.
z + Using NEUT as the default MC generator. We select events with a CC1rn* topology in
: CCim* CC other FGD1.:
” * 1 muon in 41 solid angle acceptance.
- e o - * One and only one pion of positive charge is required.
Distribution of the reconstructed muon momentum in the events « The event is rejected if additional pions, either charged or neutral, or photons are
selected at ND280 for CC inclusive, CCOm, CC1z* and CC other identified in the event either by looking at TPC tracks or electromagnetic showers in ECal.

interactions by topology.




Selection: efficiency
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Efficiency distributions for CC1nt* with 41 solid angle acceptance vs. the
muon and pion kinematics variables.

The efficiency is computed as:

Number of selected true CC1n™ events in kinematic bin in branch
Total number of true CC1mt*in kinematic bin

« For muons with momentum higher than 500 MeV the efficiency is quite
flat.

+ For BWD muons the efficiency is close to zero but flat.
» For positive pions the efficiency is quite flat regardless of the direction.
* The positive pion momentum has a dip at ~ 1600 MeV.

* that correspond to the energy where the TPC is incapable of
distinguishing pions from protons based on the dE/dx.



Selection: purity
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Selection background
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* Similar distribution of true invariant mass

+ DIS purity is also similar between my contamination and CC1n*1r® .
+ DIS purity is lower for CC1m*1m°



Part 2.
Interesting angular variables



Events per bhin

Adler’s angles

How are the Adler angles defined and calculated?

« The Adler reference system describes the p — % final state in the A

reference system (rest frame).

* The angles 0y14nqr aNd ¢pianar are defined in this system.

* They are computed with particles leaving the nucleus (Adler angles at
the nuclear level) keep the information about the interaction at the nucleon

level.

What can we learn with them?

* They are altered by the final state interactions and the Fermi
momentum of the target nucleon.

* They carry information about the polarization of the A resonance and
the interference with non resonant single pion production

* They can provide hints of parity violation due to the lack of preference
in the A direction.
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Adler’s angles

To evaluate the relative contributions to the Adler's angles of the Fermi momentum and the FSI, we should compute the Adler's angles under three assumptions:

+ True: We should estimate the parameters using the full kinematic information at the level of the nucleon. These results are experimentally measurable only with a
hydrogen target,

+ Pre-ESI: We should use the true kinematics of the pion at the level of the nucleon but we ignore the target nucleons momentum. In this case, the effect of the Fermi
momentum is taken into account but the FSls are ignored,

+ Post-FSI: We should use the information of the pion leaving the nucleus and ignore the kinematic information of the target nucleon. These are the actual experimental
observables and they contain the effect of both the Fermi momentum and of the FSI.
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Underneath there is a nucleon-level effect that has information about the neutrino-nucleon interactions in relation to the polarization
of the A. The problem is that the nuclear effects are large, but comparison of data with MC can still give valuable insights.



Summary

Part 1.

« The CClmt cross section will be extracted using the present event
selection (with 41T solid angle acceptance and for 4 dimensions).

« Using NEUT as the default MC generator we observe a purity of the
CC1m* signal of ~65%. CCother events being the main contamination.

Part 2.

* Negative values of the cos Opan,, COrrespond to pions with low
momentum after the boost. We are missing low momentum pions in the
reconstruction due to nuclear effects.

WHYIS THIS
HAPPENING
TO MEEEE

» This is the second time those angles are measured in interactions of misselled

neutrinos on heavy nuclei (first time was also in ND280, 2 years ago in a
constrained phase space and with less statistics).

« The Adler angles can be used to improve our interaction models.

General
» The selection review just started.

« Writing the thesis (defense in December)

Backup slides mp




Part 3.
Backup slides
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Detector systematics

» 10 variation systematics
+ 20 weigth systematics
* 500 toys

Relative errors (using NEUT) as function of kinematics

variables when ToF systematics are thrown for CC1mt* sample.

Still running syst plots,

Sorry

* 16 bins used for the template parameters.

* 20 bins used for the flux covariance matrix for muon neutrinos.

* 43 bins used for the detector covariance and correlation matrix.
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0.03

0.02

0.01

0.00

-0.01

—-0.02

—-0.03



