Measuring $v_{\mu} \mathbf{C C 1} \pi^{+}$on Carbon using the ND280 with 4π solid angle acceptance (summary)

Danaisis Vargas

Institut de Física d'Altes Energies (IFAE)
dvargas@ifae.es
IFAE - Sevilla meeting
July 1st, 2021

Part 1.

Measuring $v_{\mu} \mathrm{CC} 1 \pi^{+}$on Carbon using the ND280 with 4π solid angle acceptance

T2K experiment

- T2K is a long-baseline neutrino oscillation experiment.
- Goal: make precise measurements of oscillation parameters via observation of \bar{v}_{μ} / v_{μ} disappearance and \bar{v}_{e} / v_{e} appearance.

Flux: Depends on the neutrino source Number of protons on

$$
\boldsymbol{R}=\boldsymbol{\phi}\left(\boldsymbol{E}_{v}\right) * \boldsymbol{\sigma}\left(\boldsymbol{E}_{v}\right) * \boldsymbol{N}_{t}
$$

Ratio of interactions in the detector

Off-axis ND280 detector

- 0.2 T magnetized tracking detector
- π^{0} detector (POD)
- Electromagnetic calorimeters (ECals)
- Side Muon Range Detectors (SMRD)
- The tracker (located downstream of the POD) is made up of :
- 3 gas Time Projection Chambers (TPCs)
- 2 Fine Grained Detectors (FGDs)

Motivation

- CC1 π^{+}constitutes the main background for the muon neutrino disappearance measurement when the charged pion is not observed.
- Its precise knowledge is relevant for all current and planned neutrino oscillation experiments.
- The aim of the distributions presented here is to provide results in a model independent way, to make their comparison to other experiments easier and to contribute to the improvement of current models.
- The CC1 π^{+}cross section will be extracted using the present event selection (with 4π solid angle acceptance).
- Single pion production is sensitive mainly to resonant processes but also to non-resonant contributions.
- We can study the nuclear effects, FSI and Fermi momentum by computing and comparing the Adler angles.
- Adler's angles were measured for single charged pion production in neutrino interactions with heavier nuclei as target.

4r acceptance

4π acceptance

Neutrino interaction and Final state interaction role

Three dominant scattering processes: Charged Current Quasi Elastic (CCQE), Charged Current Resonant Pion Production (CCRES), Charged Current Deep Inelastic Scattering (CCDIS).

Interaction Modes (nucleon level)

Interaction Topologies (nucleus level)

- Pions or nucleons can re-interact with the nuclear medium, or each other before leaving the nucleus.
- Changes outgoing particle content or kinematics in final state.

Selection development

Selection development

Selection development

\square BrECal

In the case of true protons that are identify as positive pion and viseversa, this occur for energies superior to 1500 MeV in the TPC. In the case of iso FGD tracks comes from the contamination of the pull.

Selection development

Distribution of the reconstructed muon momentum in the events selected at ND280 for CC inclusive, CC0 π, $\mathrm{CC} 1 \pi^{+}$and CC other interactions by topology.

- The signal is defined in terms of the experimentally observable particles exiting the nucleus.
- Using NEUT as the default MC generator. We select events with a CC1 π^{+}topology in FGD1:
- 1 muon in 4π solid angle acceptance.
- One and only one pion of positive charge is required.
- The event is rejected if additional pions, either charged or neutral, or photons are identified in the event either by looking at TPC tracks or electromagnetic showers in ECal.

Selection: efficiency

Selection: purity

Selection background

$\operatorname{CC} 1 \pi^{+} 1 \pi^{0}$

True invariant mass of the CCother contamination of the samples CC1 π^{+}(left column), $\mathrm{CC} 1 \pi^{+} 1 \pi^{ \pm}$(central column), and CC1 $\pi^{+} 1 \pi^{0}$ (right column) with 4π solid angle acceptance. Using the true reaction definition.

- Similar distribution of true invariant mass
- DIS purity is also similar between my contamination and CC1 $\pi^{+} 1 \pi^{ \pm}$.
- DIS purity is lower for $\mathrm{CC} 1 \pi^{+} 1 \pi^{0}$

Part 2. Interesting angular variables

Adler's angles

How are the Adler angles defined and calculated?

- The Adler reference system describes the $p-\pi^{+}$final state in the Δ reference system (rest frame).
- The angles $\theta_{\text {planar }}$ and $\phi_{\text {planar }}$ are defined in this system.
- They are computed with particles leaving the nucleus (Adler angles at the nuclear level) keep the information about the interaction at the nucleon level.

What can we learn with them?

- They are altered by the final state interactions and the Fermi momentum of the target nucleon.
- They carry information about the polarization of the Δ resonance and the interference with non resonant single pion production
- They can provide hints of parity violation due to the lack of preference in the Δ direction.

Definition of the Adler angles at the nuclear level. The momenta of the particles are defined in the $\vec{q}=\vec{P}_{v}-\vec{P}_{\mu}$ rest frame.

Adler's angles

To evaluate the relative contributions to the Adler's angles of the Fermi momentum and the FSI, we should compute the Adler's angles under three assumptions:

- True: We should estimate the parameters using the full kinematic information at the level of the nucleon. These results are experimentally measurable only with a hydrogen target,
- Pre-FSI: We should use the true kinematics of the pion at the level of the nucleon but we ignore the target nucleons momentum. In this case, the effect of the Fermi momentum is taken into account but the FSIs are ignored,
- Post-FSI: We should use the information of the pion leaving the nucleus and ignore the kinematic information of the target nucleon. These are the actual experimental observables and they contain the effect of both the Fermi momentum and of the FSI.

Underneath there is a nucleon-level effect that has information about the neutrino-nucleon interactions in relation to the polarization of the Δ. The problem is that the nuclear effects are large, but comparison of data with MC can still give valuable insights.

Summary

Part 1.

- The CC1 π^{+}cross section will be extracted using the present event selection (with 4π solid angle acceptance and for 4 dimensions).
- Using NEUT as the default MC generator we observe a purity of the CC1 π^{+}signal of $\sim 65 \%$. CCother events being the main contamination.

Part 2.

- Negative values of the $\cos \theta_{\text {planar }}$ correspond to pions with low momentum after the boost. We are missing low momentum pions in the reconstruction due to nuclear effects.
- This is the second time those angles are measured in interactions of neutrinos on heavy nuclei (first time was also in ND280, 2 years ago in a constrained phase space and with less statistics).
- The Adler angles can be used to improve our interaction models.

General

- The selection review just started.

- Writing the thesis (defense in December)

Part 3.

Backup slides

Binning

Bin Edges - Reconstructed CC1 ${ }^{+}$

$\cos \theta_{\mu}$		P_{μ}		$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}_{\boldsymbol{\pi}^{+}}$		$\mathbf{P}_{\boldsymbol{\pi}^{+}}$	
-1.0	0.6	-	30000	-1.0	0.7	0	30000
-1.0	0.6	0	400	0.7	1.0	0	30000
-1.0	0.6	400	30000	0.7	1.0	0	30000
0.6	0.8	0	600	-1.0	0.7	0	30000
0.6	0.8	600	30000	-1.0	0.7	0	30000
0.6	0.8	0	600	0.7	1.0	0	400
0.6	0.8	0	600	0.7	1.0	400	30000
0.6	0.8	600	30000	0.7	1.0	0	400
0.6	0.8	600	30000	0.7	1.0	400	30000
0.8	0.9	0	1000	-1.0	0.7	0	30000
0.8	0.9	0	1000	0.7	1.0	0	400
0.8	0.9	0	1000	0.7	1.0	400	30000
0.8	0.9	1000	30000	-1.0	0.7	0	30000
0.8	0.9	1000	30000	0.7	1.0	0	400
0.8	0.9	1000	30000	0.7	1.0	400	30000
0.9	1.0	0	1000	-1.0	0.7	0	300
0.9	1.0	0	1000	-1.0	0.7	300	30000
0.9	1.0	0	1000	0.7	1.0	0	300
0.9	1.0	0	1000	0.7	1.0	300	30000
0.9	1.0	1000	2500	-1.0	0.7	0	300
0.9	1.0	1000	2500	-1.0	0.7	300	30000
0.9	1.0	1000	2500	0.7	1.0	0	300
0.9	1.0	1000	2500	0.7	1.0	300	600
0.9	1.0	1000	2500	0.7	1.0	600	800
0.9	1.0	1000	2500	0.7	1.0	800	30000
0.9	1.0	2500	30000	-1.0	0.7	0	300
0.9	1.0	2500	30000	-1.0	0.7	300	30000
0.9	1.0	2500	30000	0.7	1.0	0	300
0.9	1.0	2500	30000	0.7	1.0	300	500
0.9	1.0	2500	30000	0.7	1.0	500	800
0.9	1.0	2500	30000	0.7	1.0	800	30000

Bin Edges - Reconstructed SB1 \& SB2

$\cos \boldsymbol{\theta}_{\boldsymbol{\mu}}$		$\mathbf{P}_{\boldsymbol{\mu}}$		$\cos \boldsymbol{\theta}_{\boldsymbol{\pi}^{+}}$		$\mathbf{P}_{\boldsymbol{\pi}^{+}}$	
-1.0	0.85	0	30000	-1.0	1.0	0	300
-1.0	0.85	0	30000	-1.0	1.0	300	30000
0.85	1.0	0	30000	-1.0	0.8	0	300
0.85	1.0	0	30000	-1.0	0.8	300	30000
0.85	1.0	0	30000	0.8	1.0	0	500
0.85	1.0	0	30000	0.8	1.0	500	30000

- Where we have at least 25 event per reconstructed bin.
- Where we have at least 100 event per true bin.

Detector systematics

- 10 variation systematics
- 20 weigth systematics
- 500 toys

Relative errors (using NEUT) as function of kinematics variables when ToF systematics are thrown for $\mathrm{CC} 1 \pi^{+}$sample.

Good news:

- The flux params are highly correlated and anticorrelated with templates.

