

César JESÚS-VALLS

July - 2021

<u>cjesus@ifae.es</u>

Study of single π^+ production in ν_{μ} NC interactions in the T2K experiment and the upgrade of its near detector ND280

A comprehensive summary

Part 1: Measuring NC1π+

Introduction and motivations

Why do we care about NC1 π ?

Existing published data

The selection

Look for a single positive pion starting in FGD1 and nothing else.

 ν_{μ} CC0 π signals with backward going muon are more numerous than NC1 π^+ and difficult to reject.

 ν_{μ} CC1 π signals with a low momentum μ^{-} (absorbed, not tracked) + low momentum proton (not tracked)

 $\bar{\nu}_{\mu}$ CC0 π signals with μ^+ looking like π^+ and low momentum proton (not tracked)

C. Jesús-Valls | IFAE - Sevilla meeting

The selection

Signal definition: $1\pi^+ + 0/N$ neutrons

Additional backgrounds

OOFV Interactions created by neutrons

NCother interactions created with additional mesons which are not tracked, typically π^0 .

 $NC0\pi$ interactions with a proton miss-identified as a $\pi^+.$

Selection strategy in a nutshell:

- > Select positive tracks starting in FGD1 consistent with π^+ ionization in TPC.
- ► Veto events with upstream activity.
- Rely on FGD1 ionization to reject additional short tracks and discriminate stopping backward muons from outgoing forward pions.
- ► Add control regions for $\bar{\nu}_{\mu}$ CC0 π and NC0 π .
- Possibly limit the measurement to low momentum.

Preliminary results

preliminary signal:

183 signal events with 45% pur & 34% eff

if $\mathbf{p}_{\pi} \in [0.2,1]$ GeV/c

168 signal events with 56% pur & 36% eff

efficiency is quite flat in momentum:

Part 2: ND280 upgrade

The ND280 upgrade

Direct benefits for the OA

SFGD concept

Characterizing SFGD prototpye

Improvements in tracking Current FGDs PID is much worse than TPCs

Charge particles beamtest @CERN (2018)

The SuperFGD Prototype charged particle beam tests **JINST 15 P12003**

Studying other possibilities with SFGD

Improvements in tracking for low momentum tracks

HA-TPC characterisation

Waveform

HA-TPC characterisation

C. Jesús-Valls | IFAE - Sevilla meeting

Conclusions

 \sim 1 year ahead to finish PhD:

► Upgrade activities 'done' (SuperFGD + TPC studies), prototypes look good, upgrade in 2023

► NC1 π analysis ongoing!

Back Up