

BARCELONA

Claudio Andrea Manzari

Lepton Flavour Universality Violation: new hints from the Cabibbo Angle Anomaly?

I.F.A.E. 18.10.2021

PAUL SCHERRER INSTITUT

Lepton Flavour Universality

In the SM there are 3 lepton families

* The only distinctions at the fundamental level are...

... the Couplings with H!

 $\mathscr{L}_{\rm YUK} = -\frac{Y_e \bar{e}_L e_R H - Y_\mu \bar{\mu}_L \mu_R H - Y_\tau \bar{\tau}_L \tau_R H}{\tau_R H - Y_\tau \bar{\tau}_L \tau_R H}$

Lepton Flavour Universality

Small Yukawas...

 $Y_e \approx 2 \times 10^{-6}$ $Y_u \approx 4 \times 10^{-4}$ $Y_\tau \approx 7 \times 10^{-3}$

at high energies, the differences are negligible

E.g.:

$$\sigma(Z \to \ell \ell) \propto |\mathcal{M}|^2 \sqrt{1 - 4 \frac{m_\ell^2}{m_Z^2}}$$

 $Br(Z \to e^+e^-) \approx (3.3632 \pm 0.0042)\%$ $Br(Z \to \mu^+ \mu^-) \approx (3.3662 \pm 0.0066) \%$ $Br(Z \to \tau^+ \tau^-) \approx (3.3696 \pm 0.0083)\%$

...but large ratios!

 $Y_e: Y_u: Y_\tau \approx 1:212:3560$

responsible for the large visible breaking of LFU:

1. Different masses $m_e \simeq 0.5 \text{ MeV}$ $m_u \simeq 106 \text{ MeV}$ $m_\tau \simeq 1780 \text{ MeV}$

2. Different decay channels

e is STABLE!

$$\mu$$
 decays to " $e \bar{\nu}_e \nu_\mu$ " only
 $\tau_\mu \simeq 2 \times 10^{-6} s$

 τ has several decays channel into $\tau_{\tau} \simeq 3 \times 10^{-13} s$ leptons and hadrons: e, μ, π, K, η , etc.

Lepton Flavour Universality

$$b \rightarrow s \ell \ell data$$

 $(g-2)_{\mu}$ vs $(g-2)_{e}$

In the SM LFUV arises only from the Higgs sector. Can we test this property of the SM?

Cabibbo Angle Anomaly

 $\ell \to \ell' \nu \nu \, data$

Neutral Current B decays

A perfect environment to search for LFUV are the flavour-changing neutral-current transitions in semileptonic B decays

Due to their suppression in the SM, they have a high sensitivity to potential NP contributions.

$$b \rightarrow s\mu^+\mu^- \text{ vs } b \rightarrow se^+e^-$$

Huge experimental effort from LHCb and Belle

Neutral Current B decays

TV (TH

Clean SM predictions

$$R(A) = \frac{\int \frac{d\mathscr{B}}{dq^2} (B \to A\mu^+\mu^-) dq^2}{\int \frac{d\mathscr{B}}{dq^2} (B \to Ae^+e^-) dq^2}$$

 $B_s \rightarrow \mu^+ \mu^-$ theoretically very clean but chirality suppress

> There is a coherent pattern of deviations from the SM

> This is a first hint of LFUV

Neutral Current B decays

We need to study systematically the possible NP contributions

 $O_9 = (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell) \quad O_{10} = (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma^5 \ell)$

Global Fits to all observables strongly prefers NP hypothesis over SM.

Sce	nario	Best-fit point	1σ	2σ	F
Sconario 6	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.52	[-0.60, -0.44]	[-0.68, -0.36]	
Scenario 0	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	-0.41	[-0.54, -0.28]	$\left[-0.66,-0.15\right]$	
Scenario 7	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.76	[-1.00, -0.52]	[-1.25, -0.30]	
Scenario 1	$\mathcal{C}_9^{\mathrm{U}}$	-0.39	$\left[-0.68,-0.09\right]$	[-0.94, +0.19]	
Sconario 8	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.30	$\left[-0.39,-0.21\right]$	[-0.47, -0.13]	
Stellar 10 0	$\mathcal{C}_9^{\mathrm{U}}$	-0.92	[-1.10, -0.72]	[-1.27, -0.51]	

Angular observable in $B \rightarrow K^* \mu \mu$, constructed in such a way that the form factor dependence is minimized

STRONG SUPPORT FOR R(K) & $R(K^*)$

With C_9 fitted from R(K) and $R(K^*)$, the prediction for P'_5 is in perfect agreement with measurements!

• Data consistently below SM prediction

•Confirmed by latest LHCb analysis for the charged mode

* Tree level processes in the SM, suppressed by V_{ch}

* Processes measured so far:

$$B \to D^- \tau^+ \nu_{\tau}, \quad B \to D^{*-} \tau^+ \nu_{\tau}, \quad B \to J/$$

* Form factors needed for SM predictions

LFU Testing Ratios to reduce QCD uncertainties

$$R(A) = \frac{\mathscr{B}(B^0 \to A)}{\mathscr{B}(B^0 \to A)}$$

* Sensitive to NP coupling with 3rd generation leptons

Charged Current B decays

R(D*)

- All measurements lie consistently above the SM!
- $R(J/\Psi)$ known with less precision but support R(D) and $R(D^*)$
- O(10%) constructive effect needed

Charged Current B decays

EFT analysis:

SM contribution

Coefficient(s) C_{V_L}

Best fit value(s) ($\Lambda = 1$ TeV) $0.18 \pm 0.04, -2.88 \pm 0.04$

New Physics: The same operator as in the SM gives the best fit

Future Improvements

Analysis of different channels:

Analysis of Baryonic Counterparts:

$$B \to D^{**} \tau \nu, \quad B_s \to D_s^* \tau \nu$$
$$\Lambda_b \to \Lambda_c \tau \nu$$

More Statistics:

Belle II	2023	2030
	5 ab^{-1}	$50 { m ~ab^{-1}}$
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)$
R_{D^*}	$(\pm 3.0\pm 2.5)\%$	$(\pm 1.0 \pm 2.0$

Charged Current B decays

 $\Delta A_{FR} \equiv A_{FR}(b \to c\mu\nu) - A_{FR}(b \to ce\nu)$

Another hint of LFUV between muons and electrons but in charged current B decays!

• 4 σ tension found by <u>2104.02094</u>, studying Belle data <u>1809.03290</u>

- Tensor operators needed to explain angular asymmetry
- Upcoming LHCb analysis on the muon mode will give more insights

- * Chiral enhancement necessary for heavy NP

Leptonic tau decays are the simplest processes to test LFU

$$\begin{split} & \frac{\mathcal{A}\left[\tau \to \mu\nu\bar{\nu}\right]}{\mathcal{A}\left[\mu \to e\nu\bar{\nu}\right]} \bigg|_{\mathrm{EXP}} = 1.0029 \pm 0.0014 \,, \\ & \frac{\mathcal{A}\left[\tau \to \mu\nu\bar{\nu}\right]}{\mathcal{A}\left[\tau \to e\nu\bar{\nu}\right]} \bigg|_{\mathrm{EXP}} = 1.0018 \pm 0.0014 \,, \\ & \frac{\mathcal{A}\left[\tau \to e\nu\bar{\nu}\right]}{\mathcal{A}\left[\mu \to e\nu\bar{\nu}\right]} \bigg|_{\mathrm{EXP}} = 1.0010 \pm 0.0014 \,, \end{split}$$

At the amplitude level! In the SM they all = 1.

 $\mu \rightarrow e\nu\nu$ very well constrained by experiments therefore NP in τ sector needed

So far...

$b \rightarrow s\ell\ell data (R(K), RK^*, P_5')$

LFUV required between e and μ .

New Physics in the lepton sector

Very similar to SM fermion mass pattern!

$$b \to c \ell \nu \, data \quad \tau \to \mu \nu \nu \, data$$

LFUV required between τ and e, μ .

• Large effects in τ

• Smaller effect in μ

• Negligible effect in e

 $\Lambda_{\tau} \sim 3 \,\mathrm{TeV}$ $\Lambda_{\mu} \sim 30 \,\mathrm{TeV}$

The unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix parametrizes the misalignment between interaction and mass bases in the quark sector.

$$\begin{aligned} \mathscr{J}_{CC}^{\lambda} &= (\overline{v}_{e_{L}}, \overline{v}_{\mu_{L}}, \overline{v}_{\tau_{L}}) \gamma^{\lambda} \begin{pmatrix} \mathbf{e}_{L} \\ \mu_{L} \\ \tau_{L} \end{pmatrix} + (\overline{\mathbf{u}}_{L}, \overline{\mathbf{c}}_{L}, \overline{\mathbf{t}}_{L}) \gamma^{\lambda} \begin{pmatrix} \mathbf{d}_{L}' \\ \mathbf{s}_{L}' \\ \mathbf{b}_{L}' \end{pmatrix} \\ &= (\overline{v}_{e_{L}}, \overline{v}_{\mu_{L}}, \overline{v}_{\tau_{L}}) \gamma^{\lambda} \begin{pmatrix} \mathbf{e}_{L} \\ \mu_{L} \\ \tau_{L} \end{pmatrix} + (\overline{\mathbf{u}}_{L}, \overline{\mathbf{c}}_{L}, \overline{\mathbf{t}}_{L}) \gamma^{\lambda} \mathbf{V} \begin{pmatrix} \mathbf{d}_{L} \\ \mathbf{s}_{L} \\ \mathbf{b}_{L} \end{pmatrix} \end{aligned}$$

 K^{-}

In the SM
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

• V_{ud} from super-allowed β decays

• $V_{\mu s}$ from semileptonic *K* decays

•
$$\frac{V_{us}}{V_{ud}}$$
 from $\frac{K \to \mu\nu}{\pi \to \mu\nu}$

 $|V_{ud}^{\beta}|^{2} + |V_{us}^{K,\pi}|^{2} + |V_{ub}|^{2} = 0.9985(5)$

Note: there is also a (less significant) deficit in the first column of the CKM unitarity relation. This further strengthen the idea of a modification in V_{ud} from β decays.

 $|V_{\mu d}|^2 (1 - \varepsilon)^2 + |V_{\mu s}|^2 + |V_{\mu b}|^2 = 0.9985(5)$ In the SM $\bar{\nu}_e$ NP in β decay

Two possibilities:

 $x = (1 - 1)^{-1}$ $G_F^{\mu} = G_F$

The Cabibbo Angle Anomaly

NP in
$$\mu$$
 decay
 $x = 1$
 $G_F^{\mu} = G_F(1 + \epsilon)$

• WE RECENTLY PROPOSED TO STUDY THIS ANOMALY AS A HINT OF LFUV

• MINIMAL SCENARIO: WE MODIFY ONLY THE COUPLINGS OF W TO LEPTONS

1912.08823 A.Coutinho, A.Crivellin, C.A.M.

$$\begin{vmatrix} V_{ud}^{\beta} \end{vmatrix} \simeq \begin{vmatrix} V_{ud}^{\mathscr{L}} \end{vmatrix} \frac{\left(1 + \varepsilon_{ee}\right)}{\left(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu}\right)} \simeq \begin{vmatrix} V_{ud}^{\mathscr{L}} \end{vmatrix} \left(1 - \varepsilon_{\mu\mu}\right)$$

EFT APPROACH

- IN GENERAL $SU(2)_L$ HAS TO BE TAKEN INTO ACCOUNT
- THERE ARE 3 OPERATORS AT THE DIM-6 LEVEL IN SMEFT

 $Q_{\phi\ell}^{(3)ij} = \phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \phi \bar{\ell}^{i} \tau^{I} \gamma^{\mu} \ell^{j}$ $Q_{\phi\ell}^{(1)ij} = \phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi \bar{\ell}^{i} \gamma^{\mu} \ell^{j}$

 $Z \to \ell \ell \propto C^{(1)}_{\phi \ell} + C^{(3)}_{\phi \ell}$

 $Z \to \nu \nu \propto C^{(3)}_{\phi \ell} - C^{(1)}_{\phi \ell}$

1912.08823 A.Coutinho, A.Crivellin, C.A.M.

• MINIMAL SCENARIO: ONLY OPERATORS WHICH MODIFY THE COUPLINGS OF W AND Z TO LEPTONS

 $Q_{\phi e}^{ij} = \phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi \bar{e}^{i} \gamma^{\mu} e^{j}$

 $Z \rightarrow ee \propto C_{\phi e}$

 $W \to \ell \nu \propto C^{(3)}_{\phi\ell}$

Also Z couplings to leptons are modified. Strong constraints from Electroweak measurements performed at the Z resonance with the $e^+e^$ colliders SLC & LEP

High precision test of the SM!

EW precision observables

Observable Measurement		Observable	Measurement
$M_W [{ m GeV}]$	80.379(12)	$\sigma_{h}^{0}\left[\mathrm{nb} ight]$	41.541(37)
$\Gamma_W [{ m GeV}]$	2.085(42)	$R_{ m e}^0$	20.804(50)
$BR(W \rightarrow had)$	0.6741(27)	R^0_μ	20.785(33)
${ m sin}^2 heta_{ m eff(CDF)}^{ m e}$	0.23248(52)	$R_{ au}^0$	20.764(45)
${ m sin}^2 heta_{ m eff(D0)}^{ m e}$	0.23146(47)	$A_{ m FB}^{0,e}$	0.0145(25)
$\sin^2 heta^{\mu}_{ m eff(CDF)}$	0.2315(20)	$A_{ m FB}^{0,\mu}$	0.0169(13)
$\sin^2 \theta^{\mu}_{ m eff(CMS)}$	0.2287(32)	$A_{ m FB}^{0, au}$	0.0188(17)
${ m sin}^2 heta^\mu_{ m eff(LHCb)}$	0.2314(11)	R_b^0	0.21629(66)
$P_{ au}^{\mathrm{pol}}$	0.1465(33)	R_c^0	0.1721(30)
A_e	0.1516(21)	$A_{ m FB}^{0,b}$	0.0992(16)
A_{μ}	0.142(15)	$A_{ m FB}^{0,c}$	0.0707(35)
$A_{ au}$	0.136(15)	A_b	0.923(20)
$\Gamma_Z [{ m GeV}]$	2.4952(23)	A_c	0.670(27)

EW sector completely parametrized by 3 parameters (+ fermion masses)

For practical purposes better to trade them with the most precise parameters

 $G_F = 1.1663787(6) \times 10^{-5} \,\mathrm{GeV}^{-2}$

 $M_{\rm Z} = 91.1875(21)\,{\rm GeV}$

 $\alpha = 7.2973525664 \times 10^{-3}$

EW precision observables

 $\mathscr{L}_{\rm EW} = \sum_{i} \bar{\psi}_i (\mathcal{D} - \frac{m_i}{v} H) \psi_i + (D_\mu H) (D^\mu H)$

 $D_{\mu} = \partial_{\mu} - ig_1 B_{\mu} - ig_2 \tau^a W^a_{\mu}$

/		
	Parameter	Prior
	$\Delta \alpha_{\rm had} \times 10^4 \ [16, 17] \ lpha_s(M_Z) \ [8, 33]$	276.1(1.1) 0.1179(10)
	$M_H [GeV] [8, 38-40]$	125.10(14)
	$m_t [\text{GeV}] [8, 41-44]$	172.76(30)

Needed for higher order corrections

$$\left| V_{ud}^{\beta} \right| \simeq \left| V_{ud}^{\mathscr{L}} \right| \frac{\left(1 + \varepsilon_{ee} \right)}{\left(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu} \right)} \simeq \left| V_{ud}^{\mathscr{L}} \right| \left(1 - \varepsilon_{\mu\mu} \right)$$

• Modified electron couplings do not affect the CAA!

LFUV needed

- Necessary to fit several observables: EW, LFU, ...
 - The global fit prefers also non zero electron couplings, with opposite sign than for muons

2008.01113 Crivellin, Kirk, Manzari, Montull $0.0015 \,\mathrm{F}$ 0.001 Λ^2 v^2 0.0005 $\frac{v^2}{\Lambda^2}$ 0 -0.0005-0.001-0.002() $\frac{v^2}{\Lambda^2}C_3^{ee} =$ 2

Solving the CAA

Solving the CAA: EFT Approach

BSM explanations can be grouped into 4 classes using an EFT approach with gauge-invariant dimension 6 operators (<u>2102.02825</u> *Crivellin, Hoferichter, Manzari*)

*****Four-fermion operators in $\mu \rightarrow e\nu\nu$

*****Four-fermion operators in $u \rightarrow dev$

Modified W - u - d couplings

*Modified $W - \ell - \nu$ couplings

Solving the CAA: From EFT to Model Building

- W W' mixing
- Vector-like Leptons

- W W' mixing
- Vector-like Quarks

Solving the CAA: Vector-like Leptons

There are 6 possible representations under $U(1)_Y \times SU(2)_L$ generating different patterns of modified *W* and *Z* couplings.

- Each representation alone does not improve the fit w.r.t the SM
- Minimal model strongly improving the agreement with data: a singlet N coupling with electrons and a triplet Σ_1 coupling with muons!

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$
ℓ	1	2	-1/2
e	1	1	-1
ϕ	1	2	1/2
Ν	1	1	0
\mathbf{E}	. 1 .	1	-1
$\Delta_1 = (\Delta_1^0, \Delta_1^-)$	1	2	-1/2
$\Delta_3 = (\Delta_3^-, \Delta_3^{})$	1	2	-3/2
$\Sigma_0=(\Sigma_0^+,\Sigma_0^0,\Sigma_0^-)$	1	3	0
$\Sigma_1 = (\Sigma_1^0, \Sigma_1^-, \Sigma_1^{})$	1	3	-1

Solving the CAA: Singly Charged Scalar Singlet

- $SU(2)_L \times SU(2)_C$ scalar singlet with hyper charge +1
- Cannot couple to quarks because of quantum numbers
- Can only couple off diagonally to leptons \implies naturally introduce LFV

2012.09845 Crivellin, Kirk, Manzari, Panizzi

Very simple solutions for Model Building attempts to solve several anomalies

It affects the μ decay and the induced shift in G_F is in the direction needed by the CAA

Simultaneous Explanations

A vector triplet for...CAA & $b \rightarrow s\ell\ell$

- The W' generates 4-fermion operators and modified W couplings via W W' mixing
- The Z' allows for interesting correlations with $b \rightarrow s\ell\ell$ data

Let supplement the SM by a $SU(2)_L$ Triplet of Heavy Vector Bosons with 0 hypercharge: W' + Z'

A vector triplet for...CAA & $b \rightarrow s\ell\ell$

2005.13542 Capdevilla, Crivellin, Manzari, Montull

Several observables need to be considered: CAA, EW data, LFU tests, LHC bounds, parity violation experiments, $b \rightarrow s\ell\ell$ data and $B_s - \bar{B}_s$ mixing

The global fit improves the agreement with $b \rightarrow s\ell\ell$ data compared to the SM and solve the CAA

Correlations between $R(K^*)$ and $\frac{\pi \to \mu\nu}{\pi \to e\nu}$ are predicted

Solutions with ϕ^+

$CAA + b \rightarrow s\ell\ell + Z \rightarrow \bar{b}b + \tau \rightarrow \mu\nu\nu$

2010.14504 Crivellin, Manzari, Algueró, Matias

2104.05730 Marzocca, Trifinopoulos

Solutions with ϕ^+

give a very good fit to $b \rightarrow s\ell\ell$ data

Conclusions

- * So far, several evidences of LFUV have been collected at high and low energies
- * Specific patterns of New Physics emerged and many directions are possible at the moment
- New observations and data will help to disentangle directions

Conclusions

- * So far, several evidences of LFUV have been collected at high and low energies
- * Specific patterns of New Physics emerged and many directions are possible at the moment
- New observations and data will help to disentangle directions
- For this reason we proposed to interpret the Cabibbo Angle Anomaly as New Hint of LFUV

Conclusions

- * The CAA is a deficit in the first row CKM unitarity
- * Effects in β and / or μ decay can solve it
- In terms of modified W coupling with leptons, an effects in muons is needed (intriguing in connection with other anomalies)
- * Simplified models introduce correlations with $b \rightarrow s\ell\ell$, $(g 2)_{\mu}$, etc., suggesting directions to follow for direct and indirect searches

Exciting Times are Ahead of Us...

Thank you for the Attention

Claudio Andrea Manzari

...stay tuned!

Backup

EW precision observables

Observable	Measurement	SM Posterior	
$M_W[{ m GeV}]$	80.379(12)	80.363(4)	• Good
$\Gamma_W [{ m GeV}]$	2.085(42)	2.089(1)	
$\mathrm{BR}(W \to \mathrm{had})$	0.6741(27)	0.6749(1)	
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324(12)	0.2316(4)	• Stron
${ m sin}^2 heta_{ m eff(Tev)}^{ m lept}$	0.23148(33)	0.2316(4)	0000
$\sin^2 heta_{ m eff(LHC)}^{ m lept}$	0.23104(49)	0.2316(4)	
$P_{ au}^{ m pol}$	0.1465(33)	0.1461(3)	A for
A_ℓ	0.1513(21)	0.1461(3)	• Alev
$\Gamma_Z [{ m GeV}]$	2.4952(23)	2.4947(6)	
$\sigma_h^0 [{ m nb}]$	41.541(37)	41.485(6)	
R^0_ℓ	20.767(35)	20.747(7)	
$A_{ m FB}^{0,\ell}$	0.0171(10)	0.0160(7)	Anywa
R_b^0	0.21629(66)	0.21582(1)	
R_c^0	0.1721(30)	0.17219(2)	
$A_{ m FB}^{0,b}$	0.0992(16)	0.1024(2)	
$\widetilde{A_{ ext{FB}}^{0,c}}$	0.0707(35)	0.0731(2)	
A_b	0.923(20)	0.93456(2)	
A_c	0.670(27)	0.6675(1)	

- d agreement between SM predictions and measurements
- Mixing * ng constraints on NP model modifying the SM : * Modified couplings Loop corrections *
- w tensions arise: M_W , A_ℓ , σ_h^0 , $A_{FB}^{0,b}$, but nothing critical

y LFUV cannot be refused, IN PARTICULAR IN THE W COUPLINGS

Observable	Measurement	SM Posterior
$\Gamma_W [{ m GeV}]$	2.085(42)	2.089(1)
$\Gamma_Z [{ m GeV}]$	2.4952(23)	2.4947(6)

Future Prospects

- ▶ Improvements in the determination of CKM unitarity: a. advances in nuclear-structure and EW radiative corrections treatment
 - b. experimental developments in the determination from neutron decay, $K_{\ell 3}$ and complementary constraint on $|V_{ud}|/|V_{us}|$ via pion β decay
 - c. improved measurements of $|V_{cd}|$ from D decays to bring the precision of the first column CKM unitarity competitive
- \blacktriangleright Improvement in a second G_F determination from the EW fit: Belle-II, FCC-ee, ILC, CEPC, or CLIC $(m_t \text{ and } m_W)$

EW precision observables

4-fermion operators in $u \to de\nu$

$$Q_{\ell q}^{(3)1111} = \left(\bar{\ell}_1 \gamma\right)$$

15

The CAA at 1σ prefers 10 $C_{\ell q}^{(3)1111} = \frac{1.22(4)}{(10 \,\mathrm{TeV})^2}$ $\chi^2-\chi^2_{\rm SM}$ -5 $\label{eq:CMS} \mathrm{CMS} \equiv R_{\frac{e^+e^-}{\mu+\mu^-}} ~\mathrm{di-lepton}~\mathrm{searches}$ -10 -15 $R_{\pi}\equivrac{\pi
ightarrow\mu
u}{\pi
ightarrow e
u}$ -20

We need constructive interference with the SM in β decays. The only possibility is $\gamma^{\mu} au^{I}\ell_{1}ig)ig(ar{q}_{1}\gamma^{\mu} au^{I}q_{1}ig)$

