Scalar resonances in the hadronic
light-by-light contribution to the muon
(g — 2),: an holographic approach

Luigi Cappiello

Dipartimento di Fisica “Ettore Pancini”, Universita di Napoli “Federico II”
and
INFN-Sezione di Napoli, Italy

IFAE Virtual Seminar, Barcelona, February, 24, 2022



vvyyy

Plan of the talk

Holographic models of QCD
2-point functions: VV, AA and SS Current-Current Correlators

3-point functions: The Pion Transition Form Factor
4-point functions: The HLbL Tensor
» The pion and axial vectors exchange contributions
[C., Cata, D'Ambrosio, Greynat, lyer]
» Short distance constraints: Quark loop and
Melnikov-Vainshtein

The scalars contribution
[C., Cata, D'Ambrosio]

» 3-point functions: SVV currents correlator
» Asymptotic behaviour and SD constraints
» Numerical results

Conclusions and Outlook



A first glimpse: Scalar field in a flat 5D slice

Hard-Wal , wo=1/z The Conjecture

% exp(iWa[s(x)])
D(x,2) o,*2 5D = <exp (i /d4x S(X)OA(X)>>
l ‘ strong coupled
90u00 e = 2 X‘IE/ = exp (i sgravity(¢0(z, x)))

For simplicity take a singe flat 5D slice, w(z) =1
a (7 MN
= [dix [T dz [1™oux(x DX (x,2) + VX)L ey = (e 1)
0
Free case V(X) = 0. By parts and assuming X9, X — 0, for |x| = oo:

Sx:f/d“x X(x,2)0:X(x,z)|3° /d4 / dz X(x, z) DX(X z)

701fDsz) 0

On-shell Sx — 4D term depending on the boundary values X(0) and X(z) of
the 5D scalar field.



A first glimpse: Scalar field in a flat 5D slice cont’d

Let X(x,z) = s(q)e"*f(z, q), with f(z, q) solving the 5D EOM, with b.c.
Dirichlet: X(x,z) =0, (or Neumann 9,X(x, zo) = 0) to get rid of b. terms at
zp and (0) = 1.

f(z.) = cos(z) — cot(qz0) sin(az). = 5" = [ dk s(@)x(")s(~0)

Mx(q”) = qtan(q 20)
is a 2-point correlator in 4D momentum space, with single poles at g, = n7/z
due to the presence of the infinite KK tower of 4D scalar resonances of
increasing masses, and normalizable eigenfunctions

¢n(z) x sin(m,z0), m, = nw/zo
Notice that the Large Euclidean limit Q> = —g® — oo is not the good one to
match with pQCD
Nx(-Q%) —» —Q
Clearly the z — 0 behaviour of f(z) is wrong. More on this later.
Interacting case V/(x) # 0. If V(X) = csX® + cX* 4+ --- we have local
interaction terms in 5D space. 5D EOM can be solved only perturbatively,
using the 5D Green function.
O,z Gx(x, z; X',z = (54(x - x"Yo(z - 2")

The analytic expressions, can be more easily understood , using the socalled
Witten diagramms in 5D, as we shall see.



Holographic models of QCD: SS, HW1, HW2, SW

SS:  [Sakai,Sugimoto(05)]
HW1: [Erlich, Katz, Son, Stephanov(05)],[Da Rold, Pomarol(05)]
HW?2:  [Hirn,Sanz(05)]

SW: [Karch, Katz, Son, Stephanov(06)]



Holographic models of QCD: recipes & ingredients

HQCD models inspired by AdS/CFT duality between a 4D (conformal)
(Large-N.) gauge theory at strong coupling and a (classical) 5D field
theory in a curved Anti-de Sitter space

exp(iW[s(x)]) = <exp (i / d4xs(x)OA(x))> = exp (i S5(Po(z, x)))

QCD

4D 5D
Hard-Wall ; wo2=1/2 operator Op (x) dual field ®(x, z)
source s(x) coupled to Oa(x) on-shell ®g(x, z) — s(x)
7 conformal dimension A mass me:
my = (A—p)(A+p—4)
(x.2) LA U(Nf)e x U(Nf)r U(Nr) x U(Nr)r
l global symmetry gauge symmetry
j 4D vector current gv#t? q Vi (x) <  gauge field Vi(x, z)
S(X) Ox(X) g = n® x#/ axial current gy*7s5t? q af (x) +  gauge field A? (x, 2)
quark bilinear gt? q s(x) < scalar field X?(x, z)
. {Hard—WaII: sharp cut-off 0 < z < z
confinement R .
Soft-Wall: dilaton potential

5D profile X(z)

Chiral S try Breaki
ral Symmetty Breaking {SD parity/ ChSB boundary conditions
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Holographic models of QCD: minimal 5D Lagrangian

S5 = /d5x\/§(£YM + Lcs + CX)

Lymics = —Atr [F(AL/’)NF(L)MN + F(%?IF(R)MN] +ctr [W5(L) - W5(R)]

Lx = ptr[DMXTDMX —mXTX — z8(z — zo)V(X)]

5D metric dsz = w(z)? (dx; — dz*). For AdS, w(z) =1/z.
X transforms as a bifundamental of U(3); x U(3)r: X — g1 Xg}
Fun = OmAn — OnAm — i[Am, An] and AL r =V F A,

In the HW1 models the 5D scalar field X(x, z), dual to gq, induces
ChSB, by acquiring a non trivial 5D profile
3
z
+ o (*) .
20

coxi-m (5)- (5)

In HW2 there is no 5D scalar field. ChSB broken by different boundary
conditions for V), and A, on the IR wall zy and the 4D chiral field U(x)
appears as the remnant of non trivial 5D Wilson line of A,.




Holographic models of QCD: non minimal 5D Lagrangian

S5 = /dSX\/E(L:YM + Los + Lx + LX)

Lymics = —Atr [F(T)NF(L)MN + F(’%SVF(R)MN] + ctr [w5(L) — w5(R)}
Lx = ptr[DMX*DMX —mAXTX — z8(z — zo)V(X)}

,C;( = (:Jr tr [XTXF(I%VF(R)MN + XXT F(I\L/’)NF(L)MN] + §,tr I:XTF(ALA)NXF(R)MN] .

> V(x) = Ip?tr[XTX] — ntr[(XTX)?] is a scalar potential on the
boundary, used it to enforce b.c. on the scalar field.

»> Very important! L% generates sy~ vertices from
Xo(2)X(x, z)F(’\\”/)VF(V)MN, depending on the parameter ( = (4 + %Q,.



2-point Functions: VV, AA and SS Current-Current Correlators

. 525;
(T{RCRO) = 5009500
(T{IR)IA)}) = <wg<)§5y@)

52Ss

(T{Js(x)Is(y)}) = 5s(x)0s(y)



2-point Function: Fixing the parameters of HW2

2"/ d'x e <T {J{’/fﬁ\(X)J\t}’,ZA(O)D =" (q”q” - ng“”) Mv.a(a®)

L107 Hy 92 1 v
I'Iv(q2) = 72 / dz/ dZ - q2g2 8282/®:(§§|z:z/:0
g 5
p7p RAR
f2 fr  fr Lig, Hh g
W) = B+ @ + @D + 5 [T [Targ—
317 317
1 A
= g 0 e
QCD OPE for Large Euclidean momentum Q% = —¢°
2
) Q ) _ Nc _ Nc
Mv,as(=Q%) oc Ne <|°g?) T AT g P g
Low momenta: pion field canonical normalization: f2 = 6 ,\éc >
T z5

Y,1 2.405

= m, = 776MeV fixes the size of the extra-dim.zy = 3.103GeV !
29 29

m, =




3-point Functions: The Pion Transition Form Factor

535S
5v6L(y)5v(’J’(z)

(TOIT {Jem. V) em (2)}]) = 57(x)



3-point Function: The Pion TFF from HW2

/d4x e M (P(q1 + @I T {Jhim (x)Lm (O} ) = 7 G1 p G2 Fors - (QF, @)

2 2
where Q> = —qi

For P = 7%, real photons normalization

Fro4+(0,0) = (pointlike WZW vertex)

127°f,
Normalized TFF K(Q%, Q%) = Fryrr+(QF, @3)/Fp(0,0) — K(0,0) = 1

Where is the pion field in HW2?

V.(x,2) = vu(x) + V}(L'eso")(x7 z)
Au,2) = (3.0 + 258 ) a(a) + A=, 2

™

Anomalous AVV amplitudes from trilinear terms in the CS action

S8 — 22"2 /tr (L(dL)2 - R(dR)z) with L=V +A R=V—A
v



3-point Functions: The Pion Transition Form Factor cont’nd

K(QF Q) = = [5° v(Q1, 2)V(@, 2)0:0(2)dz = ---

Vector bulk-to-boundary propagator v(q?,z) = —w(2')d, Gv(z,2"; ¢*)|» -0

F(Q,0) [GeV']
0.3
¢ F(0) (PDG 2018)
2 4 CELLO |
Low-Q o # CLEO
4+ BESIII preliminary

0.2 \. —— 88 1
\ —— HW1 e DIP1

K(Q, Q) =1+a(Qf + @)
TR +7(Q + @)+ ...

0.15 -
CELLO(91) : @ = —1.76(22)GeV 2 “T
NA62(17) : @ = —1.76(22) GeV ~2 oosl
— WA : &= —1.84(17)GeV 2
0 R e

[Leutgeb,Mager,Rebhan(19)]



3-point Functions: The Pion Transition Form Factor cont’nd

Large Euclidean momentum Q2 > Aqcp
87r2f73

3Q?

8 2f2
T‘-QQW KPQCD(Q2, Q2) —_

KpQCD(QZ’ 0) _

— 88

P> The same expressions obtained in HW1 and
HW?2 and SW due to AdS metric

»> However, with zg = 3.103GeV~1, in order to
reproduce the value of the p meson mass, fr
is underestimated in HW2, and since
87r2f7$ =4/zy , one gets 61.6% of the pQCD
result, as shown in the figure.

QPF(QR,QP)/F,1(0,0)

» Possible solution: shrinking

7o = 3.103GeV ! one gets the physical value laev?)
of fr = 92.4MeV, at the cost of Double-virtual TFF with
overestimating m, = 987MeV experimental data for n’ from

BaBar rescaled byf,T/ﬂ;
[Leutgeb,Mager,Rebhan(19)]



3-point Func.:

Ansatze for Fp«

Wwzw : —

VMD : —

LMD :

LMD + V :

flq1+q2
'3

fr

3

¥ (Qi q%)
Nec
1272f,
Nc m? m?

12 fr (i — my) (g3 — miy)
— (Nemy, /(47%2))

(@i — my)(a5 — mi)
Pe(q%, q%v M2Vl M\2/2; h17 h27 h5)

2

(ai — my ) (@5 — my,)(ai — mi,) (g — mi,)

[Knecht, Nyffeler(01))]

N q %
— (142 +
127r2fﬂ< ((qf—ma) (¢ - m3,)

9 .
+n [C, Cata,D’Ambrosio(10))]
,212 (g7 —m2 )(q3 — m} ))

V;

TFF and one-pion exchange HLbL diagrams

HLbL One-pion
exchange diagrams.



HLbL, 70

3-point Func.: a; estimates
HLbL. 0 b / d*q1 d*qo 1 1 1
QHLBL.mO _
" 48my J (2m)* (2m)* 243 (q1 + @2)* (P + @1)* — mj, (p — q2)> — m,

Fry (G2, @) F 0y (63, 0)
X [ 1 S T1(q1, q2; p)
qz — my

F 0 (G2, G3) F 0, (03, 0)
AR ] e e To(q1, q2: p)

™

2
9 —m

Using Gegenbauer polynomials techniques [Knecht Nyffeler 01] only a triple
integral remains

2 3 ¢S] ¢S] 1 2 _ _
ot = 220 [T ey [T d: [ arvi= TR0t S TiQu @ (1, e,
0 0 -1 i=1

T 32

where Q1 1= |Q1], @ = |Q2]. MN; evaluated for the reduced kinematics

EF=-Q $#=-Q G=-&F=-Q -2QQr—-Q, qgi=0.



3-po

int Func.

:a,

HLbL, 7

0 —
HLbL,w0 199

estimates contn’d

A (HQCD's)LMR(19)
VMD 5.7 KN(O].) aHLbL’ﬂ-D % 10_9
LMD+V 6.3 KN(01) S;
DIP 6.58 CCD(11) AW1 g?g
(HQCD's) 5.9(2) LMR(19) W3 5.66
DVR interp. 5.64(25) DVR(19) SW 5020
Lattice | 5.97+ 0.23 | GMN(19)

[Danilkin,Redmer,Vanderaeghen(19)], [Gérardin,Meyer, Nyffeler(19)]

However, there is a problem: The value for HW?2 is obtained with the physical
value fr = 92,4MeV while taking Nc = 3 and m, = 776 MeV/, but as we
already saw, these three parameters are not independent in HW2 !
Different choices of fixing two of the parameters to their physical values (but

. . . o
not the third) all lead to a sensible increase of the value of aj,""*™ ~ 30%



4-point Function: The Hadronic Light-by-Light Tensor

(T { e ()2 (1) (2) I (W)} )
5%Ss
00 ()0 (2)0vE (w)




4-point Function I:The Hadronic Light-by-Light Tensor

A% (qu, g2, q3) = _’/d4xc’4yd4z e Moty tas2) < | Tk (x)itm (Y )i (2)im (0)}] >
gs=q1+ g2+ g3

138 Lorentz structures The HLbL tensor in the HLbL diagram

I—I/,LV)\O' — g,u,ug)\d I-Il + g,u)\gua |-|2 + guogu)\ |-|3

(129
A 4 A 5 A s qa
+ > (&™atar M+ g araf MG+ "7 af a1
ij=1,2,3
A A A
84!’} M) +8"7q"a} M} + 827 q/'a} 1)
q2 q
A 10 9
+ Z qt'aj ai ai My ,
ijk,=1,2,3 M’(P)/ P—q P+a \Hi(P)
95 linearly independent relations 43 linearly independent tensor structures
from gauge invariance =

BTT basis: 54 (redundant) tensor
{914, 920, G3p5 q4(,}l'|“”>“’(ql7 q2,q3) =0 structures, with scalar functions I1; free of
kinematic singularities [Colangelo et al.15]
Complete crossing symmetric,

e.g. under 54

e Z S e,
Cia={q1 & —qa,p 0}, Ciz={q1 < gz, p A} oy



4-point Function:The Master Formula for a""-b'-

HLbL _ _ e® / d*qr d*qe 1 1 1
48my | (2m)* 27)* aigz(ar + q2)2 (p+ q1)2 — m2 (p — q2)2 — m?,

T ((p+ mi)lr” N+ m)y" (p o+ g+ m)y (P — g, + m)y”)
X ; (8iqf T[uxka(ql, Q2,94 — q1 — q2)>

Only 19 independent linear combinations of the 54 T/*“”* contribute to a:
Using Gegenbauer polynomials techniques [Knecht NyfFeIer 01], the symmetry
of the loop integral and the propagators, there remain 12 different integrals
containing 12 coefficients M;(q1, g2, —q1 — q2).

HLbL 37r2/ dQ1/ ng/ dT\/ﬁQlezT Qi, Q, PN Q1, @2, 7),

Mi(q1, g2, —q1 — q2).
q4=0

HLbL

where Q1 1= |Q1],
a=-Q, q§=—o§, G=-Q=-QF -2Q:Qr - Q, ¢ =0.

=|Q:|. N; evaluated for the reduced kinematics

Integral kernels expressions T;(Q1, @2, 7), in [Colangelo et al.15&17]



4-point Function: HLbL tensor from HW2
[Cata, C., D'Ambrosio, Greynat, lyer]

Propagators (from Syw)

Wy

(Massive) axial resonances

pny
GA

5D axial Green function

G}ﬁ‘“'(z7 z'; q2) =

(c) (d) GA (2,2 )P (a) + G4(z, 2 )P} (q)
K A K A =y
v »  9"q
q%f q><3 o= <gu 7 )
o v qtq”
o o P (q) =
% Wy W ' 7

Pion propagator

Pion and Massive axial resonances anomalous AVV
vertices from Scs T



4-point Function: HLbL tensor from HW2 contn’d

n Hrio

(m, A) prAo (A) uvro
rlL H + |—|T H

N———r N——
pion & massive axial reson. massive axial reson.

where, for the massive resonances contributions

/ ’ AN ’
|_|(A) HvAo gﬂ#' _ q#qf guu/ _ ngé’ g)\A’ 9343 go'o" _ qz‘quflf
T a7 a @ a;

transverse projectors on external vector legs

oy Bé
X E/,L’L/aﬁ E)\’a"yé X PL,T X AL,T
N—————
anomalous couplings L, T proj. in G4z and z’ integrals

AffT contains combinations of the form qqu QZ’T(qa, Gb; Gc, q4) with the convolution
integrals

L Z° o 2 P N /2
G4(9s, bi Gc, 94) = | dz A dz'v(z,q3)0:v(2,4,)Ga(z, 2') (2, 42) 0z v(2', qq)

T # # ’ 2 2\ ~T / 2 2
gA (q37 dbi 9c; qd) = o dz 0 dz V(Zv qa)an(Z7 qb)GA (sz ) qa—‘,—qb)V(Z ) qc)az’ V(Z 7qd)



4-point Function: Short distance constraints

Asymptotic behaviour of the HW2 4-point amplitude for large Euclidean
momenta

>

>

>

Main result: Melnikov-Vainshtein [Melnikov,Vainshtein(04)] QCD OPE
constraints are satisfied by the sole contributions of pions and the whole
tower of massive axial vectors. No contributions from other fields, at least
in the chiral limit.
While the pion contribution is dominating at low momenta, the massive
axial resonance contribution gives the MV OPE behaviour for Large
Euclidean momenta.
In the literature the MV constraint
» lead to an increase of the accepted estimate of the HLbL
» was difficult to implement in models:
For instance MV proposed a model with pointlike WZW at the
vertex with physical photon, while [JegerlehnerNyffeler(09)] got
the MV behaviour using LMD+V TFF's, with an elaborate
choice of the parameters.
the HW2 seems the first model to satisfy MV, without any of the above
assumptions dispite its simplicity
axial anomaly plays a fundamantal role incontrolling the MV constraint.
Nothing similar for other SD constraints, such as the quark loop limit.



Pions and axial vector contrib’s: Numerical results

Set 1 Set 2

— quark loop
--MV

HW?2
HW2 (UV-fit)
— excited PS

- CCDGI (Set 1)
-.CCDGI (Set 2)

a3 (7% +n+ ')

(a1 + i + )

8.1 (5.7+1.4+1.0) 11.2 (7.5+2.141.6)

1.4 (0.440.44+0.6) 1.4 (0.4+0.4+0.6)

A
ah(ags +apt)

9.6 12.6

Estimates of corrections to the

HLbL from SD constraints on the
asymptotic behaviour (from White

Paper), using different models.

0.5 1 15 2 25 -
Quin [GeV]

al(a1+ A+ 1)

1.4 (0.440.44+0.6) 1.4 (0.4+0.4+0.6)

ap

11.0 14.0

Table: Results for the longitudinal and transverse contributions
to af}LbL x 1019, (In good agreement with the HQCD results
of [Leutgeb, Rebhan] (HW2, HW2 (UV-fit) curves in the Figure).

Averaging out the results from the two sets of parameters and using the spread
as an estimate of the uncertainty, our final number for the contribution of
Goldstone modes and axial-vector states is

aAvrPS) — 12.5(1.5)- 1071,



HLbL tensor: One scalar exchange contribution

_ [ O ) @) . TR
nuu)\p(qlvq27q37q4) - dz dz [T12 G (Z7Z 'S)T34
—l—T{?‘(a)G(a)(z7 7' t) T2V4p(a) + Tﬁp(a)G(a)(z, Z'iu) T2V3>‘(a)] ,
where s = (q1 + q2)°, t = (qu + g3)°, u = (q1 + qa)* and
T (2) = PP (a1 a) + 97(2)Q" (a1, 4),
where the two gauge-invariant tensors
P*(q1,q2) = a5 — (q1 - @2)n"™""
Q" (q1, @) = Gat'aql + qiaras — (a1 - @2)at' a5 — Gain™

and the holographic form factors

PP(z) = 8¢ 242 (7 gyv(z,q),

z
XO Z) an(Z, q’) 82‘/(27 qj)

@) () — 8¢ 42
Qij (Z) - 8Cd ’Y’Y > CI,2 qu




HLbL tensor:

Non vanishing dynamical coefficients for (g — 2) from scalar exchange

[:|3(Ql, Q2,7)
N4(Q1, Q2,
8(Q1, @, 7)

(Ql,Qz,

One scalar exchange contribution cont’d

/ dz/ dz’ 12 +(Q1 + @+ QleT)Qu] a(z,2; S)sz)»

/dz/ sz12

(z, z’; 5)733

(2)

)= / dz / o' [P +(Qf + & + @)Y Gy (z. 25 )PE,
/ dz/ dz P(Q)G(a (z,7'; u)Q237



Scalar 3-point funct.: Asymptotic behaviour

7 0, ae) = 7 [ dx e (0] T 2, (2 O)}1S2)
= F{" a3, )P (a1, a2) + F" (a2, 63) Quu (a1, a2)
with transition form factors for each scalar meson:

Fl(n,a)(q%’ qg) _ SC(ja'w /Zo dZon(Z) 5(z)v1(z)V2(z)

Xo(2) 5( )8Zv1(z) 8Zv2(z)
z qi a5

~ 2
F et ) = cam [z

The decay width of the scalar into two on-shell photons can be expressed in terms of
Fl(n’a)(O, 0) alone as
p(na) _ ma?

4

)(0,0)[°

with

F{™3(0,0) = 8¢d™17 / ’ 0( ) ©3(z) = 85022 g‘d”“’ [4J3(w,,)—w,,J4(w,,)]

€



Scalar 3-point funct.: Asymptotic behaviour cont’d

For highly virtual photons, i.e. for large Q, v(z, Q) ~ QzK1(Qz). In terms of
the variables Q% = %(Ql2 + Qg) and w = (012 - sz)(Ql2 + sz)fl, such that
Q12 = @1 £ w the model then predicts

. 1536 so Anpwn

lim F"(Q?, Q3 g 2 2 g
Qz'%oo 1 (QLL, Q) = 35 — ¢ 7 Qo 1(w),
. (ma); A2 A2 1152  ~._ . so Apwn

lim F , a2 fr(w),
QZTOO 2 Q@) = C Q8 2(w)

with
fi(w) = 384\/1—W2/ dyy” Ki(yvV1+ w)Ki(yv1 — w)
35 1
e {30w — 26w3 — 3(w* — 6w? + 5)log (%)}
288/ dyy” Ko(yv1+ w)Ko(yv1I—w

2 _
35 {715W+4W37 w15 (1+W)]

fa(w) =

T 1207 2 1-w
Notice that that the model does not match with pQCD, which predicts the
asymptotic scalings
F(Q% @)~ Q% and FR(Q%Q*)~Q"
and the identity fi(w) = f(w)



Scalar 3-point funct.: Asymptotic behaviour cont’d
The model however shows the right asymptotic pQCD scaling for the case of
the < SVV > correlator

r@ (2, o) = / “’4X/ d*y e @) (0| T{jh, (x)jbm(y)j2(0) }0)

=P, BB)Puv(ar, a2) + O (a3, 43) Quu (a1, a2),

» All momenta much larger than Agep, eg.ql=q2=q3/2=gq

. 1650¢ 277
(@) _ 16s0
Am vl a) = =5 g

To be compared with the QCD OPE result

(9uGv — G Nuv) /OOO dyy®Ki(2y) [Kf(y) - Ki(y)

tim 12(a.9) = 2872 4,0, — ). 3)

qﬁoo

» Vector momenta hard and the scalar one soft. To leading order,
g =—qQ=q

Javy
lim r ( —q) = bdsC d

4200 o 1523 F(qu‘b — q277/»“’) + O(Qiﬁ)' (4)

Again, the scaling is the one expected from the OPE.



Numerical results for the scalars: Fixing the parameters

» The starting action has nine parameters, namely the coefficients of the
different bulk operators (X, ¢, p, (4, mx), the size of the fifth dimension
2y and the parameters from the scalar boundary potential (i, 1).

» For the scalar contributions to the HLbL, only a subset of them are
relevant, namely p, zp, the combination ( = (; + %C_, myx, and the
parameters of the boundary potential, which can be traded for the quark
condensate (gq) and ~.The value of the 5-dimensional scalar mass mx is
the one dictated by the AdS/CFT correspondence, m = —3

» We will require that ¢ and p match the (SVV) short-distance constraint
of eq. (3) and the decay width of the lowest-lying scalars into two photons

» We need to introduce flavour breaking, as we did in our paper for the
Goldstone and axial-vector towers, and generate independent copies of
the original Lagrangian for each of the different light scalar states. Only
v, p and ¢, will be flavour-dependent.



Final results for the scalar contribution

» We have studied also the dependence of  from the mass range (e.g.
my = (450 — 550) MeV). Our estimate for the ¢(500) contribution to the
HLbL is

ay(0) = (-85+2.0)-107"

orientative, but should correctly captures the right order of magnitude for
the uncertainty.

» The contributions of a9(980) and f,(990) can be computed in a less
problematic way: both states are rather narrow.

ay(a0) = —0.29(13) - 107" &) (f) = —0.27(13) - 10~

» Effect of higher massive states are found very small due to the peak of of
kinematic kernels around 1 GeV

n=1 n=2 Total
aS(oc) -8.5(2.0) -0.07(2)  -8.7(2.0)
af(ao) -0.29(13)  -0.025(10) -0.32(14)
aS(f) -027(13) -0.025(9) -0.29(14)
a -9(2) -0.12(4) -9(2)

S

Our final result is a; = —9(2) - 107!, rather close to previous estimates.



Conclusions and outlook

We have provided an estimate of the scalar contribution to the HLbL, including
the o(500), a9(980) and f,(980) states together with an infinite tower of ex-
cited scalar states with a holograpkic model of QCD.

In our final result aﬁ = —9(2) - 10711, we think that we have given conservative
estimate for the uncertainty is given. This includes the uncertainty on the
o(500) parameters, which overwhelmingly dominates.

Our result agrees with previous inclusive scalar estimates and points at a neatly
negative contribution for the scalar contribution to the HLbL.

One of the advantages of the model is that it is minimal with a small number of
free parameters. However, this also entails some limitations. Scalar transition
form fac- tors, with some mismatches with QCD expectations. We have argued
that these shortcomings have a limited im- pact on the HLbL and are in any
case taken into account in the final error band.

The estimate of the contribution of scalar resonances beyond 1 GeV is in
general hindered by the rather uncer- tain knowledge of their couplings to two
photons. with a rather poor description of the states populating the 1-2 GeV
energy window

Adding to other contributions (e.g. pion and axial vectors) errors linearly, one
would find aHLbL a,, = 116(17) - 10~ which is in agreement with all the
recent estimates of the HLbL.

Caveat. The addition of scalar fields into the action, has an effect on the
axial-vector and Goldstone sectors. This will affect the estimate of the
axial-vector and Goldstone contributions to the HLbL and it calls for a
re-analysis of Goldstone, axial-vector and scalar exchange.This is left for a future
work.
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