

Cross section measurement of the muon neutrino charged current single positive pion interaction on Hydrocarbon using the T2K near detector with 4π solid angle acceptance

PhD defense

Danaisis Vargas Oliva

Institute de Física d'Altes Energies (IFAE)

dvargas@ifae.es

March 3rd, 2022

Overview

- Neutrino oscillations
- Neutrino interactions
- The T2K experiment
- Motivation

- $CC1\pi^+$ analysis overview
 - Selection development
 - Adler angles
 - Data and MC input
 - Likelihood fit and unfolding
 - Calculate cross section
 - Results
- Conclusions

Neutrino in the Standard Model

Neutrino Facts:

- Have no charge
- Are nearly massless
- Are spin $\frac{1}{2}$ leptons
- Only interact weakly
- Only left-handed interact

Detector

Neutrinos interact with matter and produce a lepton of the same flavor of the neutrino.

Fermions (matter)						
Quark	up quark	charm quark	top quark			
Lepton	electron electron electron neutrino	muon muon muon neutrino	tau tau tau tau tau tau			
Bosons						
Gauge boson	photon	gluon	W and Z bosons			
Higgs boson		Higgs boson				

Neutrino oscillations

Neutrino oscillation

PNMS (Pontecorvo–Maki–Nakagawa–Sakata) rotation matrix.

• 2 mass differences: Δm_{21}^2 , Δm_{32}^2 Sign still unknown

 $\Delta m_{\rm sol}^2$

 $\wedge \nu_{\mu} \nu_{\tau}$

 ν_e

Mass

Two flavor oscillation

Neutrino interactions

Interaction Modes (nucleon level)

Nuclear effects and final state interaction

Interaction Modes (nucleon level)

As consequence of this, the kinematics and/or interaction topology can be altered.

Nuclear effects and final state interaction

Interaction Modes (nucleon level)

As consequence of this, the kinematics and/or interaction topology can be altered.

?

The T2K experiment

The T2K experiment

- Measure neutrino oscillations: $\bar{\nu}_{\mu}/\nu_{\mu}$ disappearance and $\bar{\nu}_{e}/\nu_{e}$ appearance.
- Measure the oscillation parameters θ_{13} , θ_{23} , δ_{CP} and Δm_{32}^2

 $N_x \rightarrow$ Number of neutrino-

- matter interactions
- $E_{\nu} \rightarrow$ Neutrino energy
- $\Phi \rightarrow$ Neutrino flux
- $\sigma \rightarrow Cross section$
- $\epsilon \rightarrow$ Detector efficiency
- $P \rightarrow Oscillation probability$

Beam

- 30 GeV protons collide with a graphite target and produce pions and kaons
- magnetic horns will focus the pions:
 - Forward horn current (FHC): $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
 - Reverse horn current (RHC): $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}$
- all particles except neutrinos stopped in beam dump

Flux

- Use off-axis beam for narrower energy spectrum.
- Off-axis angle flux peaked at 0.6 GeV, which is at an oscillation maximum.
- Only one oscillation maximum can be measured at a fixed distance.

Off-axis (2.5 degrees) ND280

ND280 is used to:

- constrain the flux and cross section parameters.
- measure background processes to oscillation.

no 1

ND280 is form by:

- π^0 Detector (PØD): neutral pion detector, optimized for NC interactions.
- Time Projection Chambers (TPCs): energy, angle and identification
- Fine grained detector (FGDs): active target
 - FGD1: Hydrocarbon
 - FGD2: Hydrocarbon + Water
- Electromagnetic Calorimeters (ECals): separated tracks from showers and as veto.
- Side Muon Range Detector (SMRD): energy of muons based on the range and as veto.
- Magnet: charge of the particles and momentum.

D. Vargas || Ph.D. defense || March 3rd, 2022

Off-axis (2.5 degrees) Super-Kamiokande

D. Vargas || Ph.D. defense || March 3rd, 2022

Milestones

https://link.aps.org/doi/10.1103/PhysRevLett.112.061802 https://www.nature.com/articles/s41586-020-2177-0 https://arxiv.org/abs/1901.03750 https://iopscience.iop.org/article/10.1088/1742-6596/888/1/012020

Motivation

Why we look at ND280 4π solid angle acceptance?

Why we look at ND280 4π solid angle acceptance?

Why ν_{μ} CC1 π^+ events?

- ν_{μ} CC1 π^+ events constitute the main background for the ν_{μ} disappearance measurement.
- $CC1\pi^+$ events (2 rings) is a new signal at SK.
- Pion production is dominated by resonant interactions in the T2K energy range.

Single pion production issues

- Missing models of nuclear effects
- No consistent way to model RES/DIS transition
- Nucleon-level model is much shakier that CCQE

Why measure the cross section?

Neutrino oscillation parameters require a precise knowledge of the interaction cross section

Systematic errors are currently dominated by cross section and flux uncertainties

- Cross sections are used to:
 - understand how neutrinos interact with matter.
 - control the bias on the reconstructed energy
 - reduce uncertainties on the event rate at Super-Kamiokande.

	1-Ring μ	
Error source	FHC	RHC
SK Detector	2.4	2.0
SK FSI+SI+PN	2.2	2.0
Flux + Xsec (ND unconstrained)	14.3	11.8
Flux + Xsec (ND constrained)	3.3	2.9
Nucleon Removal Energy	2.4	1.7
$\sigma(u_e)/\sigma(\overline{ u}_e)$	0.0	0.0
$ m NC1\gamma$	0.0	0.0
NC Other	0.3	0.3
$\sin^2\theta_{23} + \Delta m_{21}^2$	0.0	0.0
$\sin^2 \theta_{13} \text{ PDG2018}$	0.0	0.0
All Systematics	5.1	4.5

$CC1\pi^+$ analysis overview

Signal definition

Target:

• Hydrocarbon $(C_8H_8) \rightarrow carbon$

$CC1\pi^+$ signal:

- one negatively charged muon,
- one positively charged pion,
- no other pions,
- any number of nucleons.

Signal definition

Target:

• Hydrocarbon $(C_8H_8) \rightarrow carbon$

CC1 π^+ signal:

- one negatively charged muon,
- one positively charged pion,
- no other pions,
- any number of nucleons.

$CC1\pi^+1\pi^{\pm,0}$ side band or control region:

- one negatively charged muon,
- one positively charged pion,
- one other pion,
- any number of nucleons.

Selection development

Selection development

Input samples $CC1\pi^+$

- model independent way
- comparison to other experiments
- improvement of current models

Input samples $CC1\pi^+$

- More statistics
- Similar:
 - data agreement
 - distribution shape
 - purity

Detection efficiency

- For muons with momentum higher than 500 MeV the efficiency is quite flat.
- For BWD muons the efficiency is close to 5%
- For positive pions the efficiency is quite flat regardless of the direction.

Beam And Nd280 Flux measurement task Force

Corrected flux and cross-section model

covariance matrix

BANFF

Adler angles and asymmetry definitions

The angles θ and ϕ are defined in the Adler system which corresponds to the Δ rest frame.

- The Adler's angles carry information about:
 - the polarization of the Δ resonance
 - the interference with non resonant single pion production.
- These Adler angles can allow us to study nuclear effects, FSI and Fermi momentum by computing them at different levels.

• The FWD-BWD asymmetry of the two Adler angle with respect to the direction of the $p\pi^+$ plane:

$$A_{FB}(\theta) = \frac{N_{\cos\theta>0} - N_{\cos\theta<0}}{N_{\cos\theta>0} + N_{\cos\theta<0}} \quad \text{and} \quad A_{FB}(\phi) = \frac{N_{\cos\phi>0} - N_{\cos\phi<0}}{N_{\cos\phi>0} + N_{\cos\phi<0}}$$

Adler angles definition

Level 1: Nucleon level

• Fermi momentum effect

Level 2: Nucleus level

• Fermi momentum + FSI effects

Level 3: Reconstructed nucleus level

• Fermi momentum + FSI + nuclear medium effects

Adler angles reconstruction

comparison between reconstructed and true Adler angles distributions for ϕ and $\cos \theta$ reconstructed in CC1 π^+ or CC1 π^+ N $\pi^{\pm,0}$ N ≥ 0 .

$\cos \theta$ distribution:

- Negative values will have low momentum after the boost.
- We miss low momentum pions in the reconstruction.

ϕ distribution:

- it shows a peak around zero
- This is due to FSI and nuclear effects

Asymmetry

_		FWD-BWD	FWD-BWD asymmetry	
Level		$\cos \theta$	$\cos \phi$	
	Reported by [39]			
1	True value	-0.007 ± 0.003		
	Reconstructed using true MC	-0.179 ± 0.003		
	Reconstructed using true MC with different NEUT	C configurations		
2	neut_C_noFSI_LFG	-0.305 ± 0.001	0.011 ± 0.003	
	neut_CH_RFGRPA_lessNucFSI	-0.317 ± 0.001	0.011 ± 0.003	
	neut_CH_RFGRPA_moreNucFSI	-0.244 ± 0.001	0.037 ± 0.003	
	neut_CH_RFGRPA_noNucFSI	-0.251 ± 0.001	0.061 ± 0.004	
	neut_CH_SF_MA103_flatSF	-0.283 ± 0.001	0.021 ± 0.003	
	neut_CH_SF_MA103_lessNucFSI	-0.272 ± 0.001	-0.049 ± 0.003	
	neut_CH_SF_MA103_moreNucFSI	-0.298 ± 0.001	-0.086 ± 0.003	
	neut_CH_SF_MA103_noNuclFSI_noPB	-0.271 ± 0.002	0.095 ± 0.006	
	neut_CH_SF_MA103_noNuclFSI_noPB_flatSF	-0.255 ± 0.002	-0.013 ± 0.006	

FSI effects by comparing level 2 and 1.

Flux-integrated cross section measurement

- completely model-independent → no assumption needs to be made on the particular neutrino energy distribution in each kinematic bin.
- experiment-dependent results \rightarrow no bin-by-bin correction for the flux is applied.

Likelihood fit and unfolding

- Binned maximum likelihood fit to ND280 data signal and control sample.
- Fitting control samples \rightarrow constraint on the background contribution in the signal samples.
- Fit attempts to remove the detector effects from the data \rightarrow unfolding

Simulation is not perfect:

- Includes systematic/nuisance parameters for the flux, interaction, and detector models.
- Parameters controlling number of signal events (template), as well as the flux, interaction model and detector response are simultaneously fit.

Fit results (NEUT)

- Flux and detector parameters:
 - deviations from nominal values
 - stay at 12%
 - within the pre-fit errors limit
- Detector parameters:
 - fit reduced the relative errors
- Cross section model parameters:
 - Impacted were those related to the signal.
 - CC Multi pions
 - CC1pi ($E_{\nu} > 2.5 \text{ GeV}$)
- Template parameters move to correct these values.

Fit results (NEUT)

Red: correlated Blue: anticorrelated

- Highly correlated flux
 - Flux anticorrelated to template parameters
 - Highly anticorrelation between template and some cross section model parameters that affect signal events
- Highly correlation between reconstructed detector bins

Quadruple differential cross section

How to read!

Bin number

Quadruple differential cross section

Overestimation of the cross section in bins 3, 5 and 12:

- Bin 3: FWD μ^- (P_ μ < 1 GeV) and BWD & HA π^+
- **Bin 5:** FWD μ^- (P_{μ} > 1 GeV)
- Bin 12: FWD μ^- (P $_\mu$ > 2.5 GeV) and FWD π^+

Deficiency in our theoretical models when describing :

- RES to DIS transitions
- π absorption and production models (Rein-Sehgal)

Conclusions

Summary

- It directly addresses important challenges oscillation analyses.
 - interaction cross section \rightarrow systematic errors are currently dominated by cross section and flux.
 - the main background for the v_{μ} disappearance measurement.
 - new 2 ring signal at SK.
- I contributed significantly to general parts of ND280's analysis framework (Highland).
- New selection developed that has been added to BANFF.
- We reported the differential cross sections:

$$\frac{d\sigma}{dP_{\mu}d\cos\theta_{\mu}dP_{\pi}+d\cos\theta_{\pi}+}, \frac{d\sigma}{dP_{\mu}d\cos\theta_{\mu}}, \frac{d\sigma}{dP_{\pi}+d\cos\theta_{\pi}+}, \frac{d\sigma}{dE_{\nu}}, \frac{d\sigma}{dW}, \frac{d\sigma}{dQ^{2}}$$
Model independent
Model dependent

- The preliminary cross section results achieved showed some disagreements between the MC prediction and the post-fit results.
- Base on the results, our models still need a lot of work. Theoretical input will be essential.
- Some of the variables studied were the Adler angles and they asymmetry.

Looking forward

- The selection is currently being used by other analyzers.
- Analysis will enter T2K collaboration review \rightarrow publication foreseen
- Improvements:
 - Michel electrons reconstructed kinematics information can be included.
 - reduce the systematics uncertainties.
 - better cut to reduce the contamination of protons when selecting the FGD pions.
 - timing information and the detector efficiency for BWD and HA tracks.

ND280 upgrade

Thank you for your time!!!

Backup slides

Neutrino physics breve history

1930 → Wolfgang Pauli postulated the "neutron" to compensate for the apparent loss of energy and conserve the moment of decay β -

1932 → The Pauli neutron was renamed "neutrino" by Fermi when the real neutron was discovered by Chadwick

1956 → Clyde Cowman and Federick Reines detected the neutrino experimentally from a reactor source

1962 → Leon Max Lederman, Melvin Schwartz, and Jack Steinberger showed that more than one type of neutrino existed when the muon neutrino was first detected

2000 → The DONUT collaboration at Fermilab announced the discovery of the tauonic neutrino

2015 → Nobel Prize in Physics to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass."

- Neutrinos cover a wide spectrum of energy.
- Detecting them involves using different techniques and detectors.

Neutrino oscillation

 $|\nu_l> = \sum_i U_{li} |\nu_i>$

where flavour (l = e, μ , τ), mass (i = 1, 2, 3) and U_{PNMS} is the PNMS (Pontecorvo–Maki–Nakagawa–Sakata) rotation matrix:

$$U_{PNMS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{pmatrix}$$

Where $c_{ij}=\cos\theta_{ij},\ s_{ij}=\sin\theta_{ij}$ and $\ \Delta m_{ij}^2=m_i^2-m_j^2$

3 mixing angles: $\theta_{12}, \theta_{13}, \theta_{23}$

1 CP violating phase: δ_{CP} Value still unknown

Neutrino oscillation

• Inverted: $m_3 < m_1 < m_2$

Absolute scale of neutrino masses unknown

T2K resent results

For the first time, T2K has disfavored almost half of the possible values at the 99.7% (3σ) confidence level, and is starting to reveal a basic property of neutrinos that has not been measured until now. https://www.nature.com/arti cles/s41586-020-2177-0

- Most of the parameters measured with <10% precision
- θ_{23} mixing angle is known with 15% precision
- Remaining parameters are δ_{CP} and mass hierarchy
- T2K result excludes most of the δ_{CP} >0 values a 99.7% Confidence Level

FGD pions

• A better reconstruction could improve the cut

Data agreements positive pions

Resonance production: Rein-Sehgal model describes single pion production through baryon resonances below W = 2GeV

- the discrepancy must come from imperfect nuclear modeling.
- models predict more pion absorption that what it is in reality.

Input samples $CC1\pi^+1\pi^{\pm,0}$

- Control samples are selected to constrain the MC background components
- The control sample is selected to be representative of a specific background
- It is required to minimize the content of $CC1\pi^+$ in order to be considered a side-band sample independent of the signal sample

Measuring neutrino energy

Neutrino energy is reconstructed:

- using leptonic and hadronic kinematics,
- assuming stationary target (a nucleon)
- massless neutrino.

$$E_{\nu_{reco}} = \frac{m_p^2 - (m_p - E_{bind} - E_{\mu} - E_{\pi})^2 + |\vec{P}_{\mu} + \vec{P}_{\pi}|^2}{2\{m_p - E_{bind} - E_{\mu} - E_{\pi} + \hat{k}_{\nu}(\vec{P}_{\mu} + \vec{P}_{\pi})\}}$$

This introduce some biases:

- Due to initial state interactions (Fermi motion),
- The detector miss neutral particles,

Adler angles reconstruction

 $CC1\pi^+$ reconstructed events

Removing background (misreconstructed events)

using true $CC1\pi^+$ events reconstructed correctly

D. Vargas || Ph.D. defense || March 3rd, 2022

Flux model

The flux model is studied by comparisons to cross section and particle production data, and simulations of changing the characteristics of the beam and beamline.

Examples include:

- Proton--Carbon cross section
- Pion--Carbon cross section
- Horn current absolute value
- Horn alignment

Interaction model

- Based on a set of models for each neutrino interaction process, and includes nuclear effects.
- The fit includes a series of nuisance parameters which either change the underlying physics model parameters or act as a scaling on a given aspect of the interaction model.

Examples include:

• Pion prod/ abs, that will affect FSI

Index	Parameter Type		Prior	Error	
0	M_A^{QE}	Signal shape	1.21	0.3	
1	$2p2h \nu$ norm.	Signal normalization	1.0	1.0	
2	$2p2h \nu shape$	Signal shape	1.0	1.0	
3	M_A^{Res}	Background shape	0.95	0.15	
4	\hat{C}^5_A	Background shape	1.01	0.12	
5	$I_{1/2}$ Bkg Resonant	Background normalization	1.3	0.2	
6	DIS Multiple pion	Background shape	1.0	0.4	
7	CC-1 $\pi E_{\nu} < 2.5 \text{ GeV}$	Background normalization	1.0	0.5	
8	CC-1 $\pi E_{\nu} > 2.5 \text{ GeV}$	Background normalization	1.0	0.5	
9	CC DIS	Background normalization	1.0	0.5	
10	CC Multi- π	Background normalization	1.0	0.5	
11	CC Coherent on C	Background normalization	1.0	1.0	
12	NC Coherent	Background normalization	1.0	0.3	
13	NC Other	Background normalization	1.0	0.3	
14	$CC \nu_e$	Background normalization	1.0	0.03	
15	FSI Inelastic, LE	Background shape	1.0	0.41	
16	FSI π absorption	Background shape	1.1	0.41	
17	FSI Charge exchange, LE	Background shape	1.0	0.57	
18	FSI Inelastic, HE	Background shape	1.8	0.34	
19	FSI π production	Background shape	1.0	0.50	
20	FSI Charge exchange, HE	Background shape	1.8	0.28	

Detector model

- The detector model is studied through a series of control samples to evaluate the ND280 detector performance.
- The effects of the detector uncertainties are parameterized as a function of muon and pion kinematics and included in the fit.

Likelihood fit and unfolding (GENIE)

D. Vargas || Ph.D. defense || March 3rd, 2022

Quadruple differential cross section

<u>Template (truth)</u>								
Bin $\cos \theta_{\mu}$		Р	P _µ		$\cos \theta_{\pi^+}$		P_{π^+}	
0	-1.0	0.6	200	30000	-1.0	1.0	160	30000
1	0.6	0.8	200	400	-1.0	1.0	160	30000
2	0.6	0.8	400	30000	-1.0	1.0	160	30000
3	0.8	0.9	200	1000	-1.0	0.7	160	30000
4	0.8	0.9	200	1000	0.7	1.0	160	30000
5	0.8	0.9	1000	30000	-1.0	1.0	160	30000
6	0.9	1.0	200	1000	-1.0	1.0	160	300
7	0.9	1.0	200	1000	-1.0	1.0	300	30000
8	0.9	1.0	1000	2500	-1.0	0.7	160	30000
9	0.9	1.0	1000	2500	0.7	1.0	160	600
10	0.9	1.0	1000	2500	0.7	1.0	600	30000
11	0.9	1.0	2500	30000	-1.0	0.7	160	30000
12	0.9	1.0	2500	30000	0.7	1.0	160	30000

 $\chi^2 = (\vec{\sigma}_i^{fit} - \vec{\sigma}_i^{true}) V_{fit}^{-1} (\vec{\sigma}_i^{fit} - \vec{\sigma}_i^{true}),$

Double differential cross section (muon)

Note:

- NEUT MC (red line)
- GENIE MC (blue line)
- The last momentum bins extend all the way to 30 GeV.

Muon momentum (MeV/c)

Double differential cross section (positive pion)

Note:

- NEUT MC (red line)
- GENIE MC (blue line)
- The last momentum bins extend all the way to 30 GeV.

