STATUS AND PERSPECTIVES OF CONTINUOUS
GRAVITATIONAL-WAVE SEARCHES
WITH LIGO AND VIRGO
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GRAVITATIUNAL WAVE SUURCES
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WHAT IS A CONTINUOUS WAVE (CW)?

Credit: C. Reed,
Penn State/Mc
Gill University

Persistent signal (long-lived)
Produced by a nearly periodic mass quadrupole moment variation

Expected sources

Non-axisymmetric isolated neutron stars (NS)

NSs in binary systems (e.g. in accreting systems)

More objects: bosons clouds around spinning BH, newborn NSs

Expected strain

2
(re) (7o) (o) (55) <
d 100 Hz ) \ 106

[For a CW review: Lasky PASA 32, pp. 34 (2015); Riles Mod Phys Lett A 32, No. 39, 1730035 (2017); Piccinni, 2202.01088 (2022)]
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HUW THE SIGNAL LUUKS LIKE

A CW received at the detector is NOT exactly

monochromatic ; M
> SPIN-DOWN (or SPIN-UP) To Nes oo oy A
o0 = fy+y (1= 1) +2 TN
» DOPPLER I T R S T
f(t) 4 1 @ B Tk :g . \Tlme/da)/s/
- 271' dt 5 100.00 -
» SPIN WANDERING
» SIDEREAL VARIATION of the amplitude




e.g. known pulsars,
matched filter.

Targeted
searches

Narrow-band
searches

Unknown sources like SNRs or
interesting sky regions (galactic
{ | center).

Coherent or semi-coherent.

Directed
searches

In some cases, hierarchical
procedures are needed
(compromise between sensitivity
and computational cost)

Unknown sources, all-sky
surveys including DM.
Hierarchical semi-coherent.

]

Blind
Directed all-sky

for binary searches

Computational cost
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I;: moment of inertia

e: ellipticity
L =1
I

Observer

Tri-axial spinning neutron star

Credit: S. Mastrogiovanni

What is the actual value of €?

Ubreak

2
B
> crustal strain € ~ 10712 < e G> magnetic field

N. Andersson et al. 2011 9
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ESTIMATES ON THE ELLIPTICITY

Theoretical models « Glampedakis & L. Gualtieri [Astro. and Space Science Lib., vol 457. Springer, 2018]

> Solid strange stars: ¢ < 6 x 10~
» Hybrid and meson condensates stars: ¢ <3 — 9 x 107°
» Canonical magnetic deformations: e <2 — 7 x 10~/

> Buried magnetic field in MSPs: ¢, ~ 10~ and a buried magnetic
field of 10'! G. Woan+[ApJL 863:L40, 2018]

Above models more stringent than older results ohnson-
McDaniel+ [PRD 88, 044004 (2013)]

» normal NS matter: ¢ < 107
> hybrid stars: ¢ < 1073
> extreme quark stars: ¢ < 107!

A more exotic object could sustain bigger ellipticities?
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Directed search in O3a LIGO/Virgo

Three complementary pipelines
» Band-Sampled-Data directed
» Single harmonic Viterbi

» Dual harmonic Viterbi

15 targets investigates

Best result 7.7 X 107%° (G39.2-0.3)
for the BSD, similar for other
targets

12
1A% 5 5 5 10-2 Ikpc Ikyr L
0 d fage 1038 kg m?2

> 172

[.: full band X L: injections
H: full band X H: injections —
V: full band X V:injections

= age-based limit

200 400
f (Hz)

(c) G266.2-1.2/Vela Jr.
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|
- G189.1+43.0  -=- G266.2-1.2

1]
1077 -e- (Q65.7+1.2

0 200 400 600
f (Hz)

> Ellipticity € < 107° for most of the sources; less than theoretical limit for

normal neutron stars (Johnson-McDaniel & Owen 2013), 6 X 1078 for the
closest source Vela Jr
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OTHER CW SIGNALS

> Typical CW signals are emitted by isolated neutron stars, other:
» accreting binaries (spin-wandering)

» unstable newborn NS, strongly magnetized, it emits "long-
transients" CW signals (high spin-down rate)

> Other astrophysical scenarios where the emission is still expected to be
monochromatic and includes DM (Bertone+, 1907.10610):

» Boson clouds around spinning BHs
» Primordial BH coalescences (long-transients)
> "Dark photons" coupling with the detector

» Some of these searches are carried on in the BSD framework (Piccinni+
CQG, 36 015008 (2019)) and/or CW techniques can be easily applied
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https://arxiv.org/abs/1907.10610

Brito+, 1501.06570
Ultra-light bosonic particles like axions

can form clouds around spinning BH, due

to a superradiant instability process

Arvanitaki+, PRD 91, 084011 (2015)
§ o Brito+, CQG, 32, 134001 (2015) and PRD96, 064050 (2017)

# We need: boson angular frequency < BH’s outer horizon angular frequency
# The instability stops at the saturation

# Then a (quasi)-monochromatic emission happens at a GW frequency given by

3 ~13
C 1 2 u~ 107" eV,M,, > 10 M, — 50Hz
Jow =—=H [1 — — (Myppt) ] o ©

G 3 i~ 10712 eV, My, < 70M,, — 500 Hz

D'Antonio+, PRD, 98, 103017 (2018)
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BOSON CLOUDS AROUND BH

t?
\

Small spin-up are expected in this case, 12 10
almost negligible or
8 |
2 i
om0 fow 100yr) (2x10%GeV\ Hz wm°
ow ™ 100 Hz ) \ gy F, s 5 : '
. . 0
In the search setup we need to consider this 2l
constraint (TCOh — 1/Af) f0 05 1 15 2 25 8 35 4 45 5

time [seconds] x10”

The GW strain depends on the initial cloud mass M, (Mbh, U, )()

w7 v\ 132 7\ -
5
ho() ~ 9x 10724 =2 oh < . — > ¥ < > |+ —
M, 40M, ) \'5x 10-13eV 10kpc Tow

D'Antonio+, PRD, 98, 103017 (2018)
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BOSON CLOUDS AROUND BH (03 - ALL SKY RESULTS)

P

First all-sky survey for boson clouds/black

holes systems
No CW signal found
Upper limits on the strain:

Astrophysical implications:

10724

h95%
ul

> exclusion region on the boson mass

particle can be derived

» Astrophysical reach of the search

10™%°

|

—— — -

" ; Py
Yt o 2P I
200 400 600
frequency [Hz]

R. Abbott et al. - arXiv:2111.15507
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BOSON CLOUDS AROUND BH (03 - ALL SKY RE

> Astrophysical implications: <107
o,
. . 2
» exclusion region on the boson mass :
particle can be derived S
2]
. . . . 8 43 BHspin=039
# assuming a given spin, distance and 107 et koo |
age 20 40 60 80 100
black hole mass [solar masses]
> Astrophysical reach of the search:
maximum distance at which a given 12l i
BH-boson cloud system, with a certain o =
age, is not emitting CWs, as a function " 0] o

of the boson mass

D

. . M 1 B !
# by simulating a BH population with bt

a given mass and spin distribution

[

= 10
=
=

tage>107 yrs

-1
10

Mass distribution (Kroupa): [5, 100] Mo

Spin distribution (uniform): [0.2, 0.9].

1o
boson mass [eV]

17



DARK MATTER CANDIDATES VECTUR BUSUNS "DARK PHUTUNS"

> Ultralight vector bosons directly interacting with the detector

» Massive vector field coupling with baryons/baryons minus leptons current
in the materials (fused silica) -> coherent oscillating field

> The time-dependent force acting on the test masses, produces a strain
oscillating at the same frequency and phase as the DM field

> A spatial gradient is present, different forces at each mirror location (ho)

> Additional effect due to the finite light travel time (hc)

2 v € 100 Hz
32 g _¢¢ fDM Y0 _ ~27 ( )
< D> CM 27102 €0 fO 6.28 x 10 (10’23) fO

\/<hT f\/<hT(2ﬂfoL> ~ 6.21 x 10_26(1(;23)

Averages over polarizations and propagations directions

» No detection — limits on coupling €

Total strain = sum of the two
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DARK MATTER CANDIDATES: VECTOR BOSONS "DARK PHOTONS

# Cross-correlation:

o Analyze detector data |
simultaneously, look for identical &
signals in both detectors.

modulus of the FFT (1VHz)

4 0.6 0.8 1. . v ¥ 740.435 740.440
time (days) frequency (Hz)

o Fix T, length to be 1800 s. . ®

mass (eV/c?)
10—12

10713 10-11

- Cross correlation

# Excess power (BSD): analyze each g

) -- BSD

o 1041 o EstAVash
detector’s data separately. £ 100]Y | " wcroscore

2 BSD limits +10

O 10 4

. +J 10—44

o Change T, as a function of the o
boson mass considered. S 10

S 107
o Look for strong, coincident 10 & —

1 f H
candidates. requency (Hz)

R. Abbott et al. - arXiv:2105.13085



CONCLUSION 1/2

» CW data analysis methods can be tuned to look for different
signals, including Dark matter CW emitters

» Algorithms developed for CW searches are getting interesting
role in the study of Dark matter candidates

» The BSD framework is a fundamental tool to enhance existing
methods and it has been widely used for new searches

» An increasing number of pipelines are using the BSD
framework to look for CW signals, especially DM ones
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» CW could be the next surprise in GW astronomy given the
enhanced sensitivity of the detectors, noise characterization is
fundamental

» Efforts ongoing to increase the sensitivity of the pipelines

» For the standard NS case scenario we are probing ellipticities very
close to the lowest estimates

» Exciting times especially if a joint CW and EM observation occurs
(constraints on NS interior), remarking the importance of MMA.

» Searches for CW's emitted by standard and unconventional
sources are almost completed for O3 data

> We expect (and hope) to find several surprises in O4
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