

Data-Driven Characterization with Constrained Bottleneck Autoencoders

César JESÚS-VALLS cjesus@ifae.es

short paper review

Data-driven detector signal characterization with constrained bottleneck autoencoders

C.Jesús-Valls, a,1 T.Lux, a F.Sánchez b

E-mail: cesar.jesus@cern.ch

https://arxiv.org/pdf/2203.04604.pdf

- As mentioned in previous meetings recently a paper was posted on arXiv and sent to JINST.
- This presentation does a quick review of the paper.

^aInstitut de Física d'Altes Energies (IFAE) - The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra (Barcelona), Spain

^bUniversity of Geneva, Section de Physique, DPNC, 1205 Genève, Switzerland

• In HEP, often one can measure the response of a detector, but modeling it is difficult. E.g. the ToF detector we are preparing for the ND280 upgrade

• We can measure the typical signals for all distances. We can learn this relation directly from data?

The idea:

Methodology

• Create a function (toy model) to generate synthetic data:

• Add noise:

and train!

Results

Results

0.8

0.2

0.8

0.2

Results

Conclusions

- The algorithm shows very good performance.
- It can be used (potentially) for a very large number of problems.
- Got only minor comments from JINST, which I expect to address this week.