
Thoughts about Multi-Vertex
Finder Strategy

Thorsten Lux

Possible Problem: Light Travel Time

• Each PMT provides:
• Charge: q

• Hit time: t

• Position: x,y,z

• Without knowledge of vertex measured q and t might be misleading

• Problems:
• Photons from same vertex detected by different PMTs might have very

different hit times

• In the case of two vertices hit times order might be even opposite to vertex
times

• Minor issue: light might be absorbed/scattered on path

Example 1

PMT

• Single vertex
• 2 tracks
• 4 PMTs with

different hit times

Example 2

PMT

t_v2

t_v1

• 2 vertices
• t_v2 > t_v1
• 2 tracks
• Hit times measured

by PMTs might be
inverted giving the
impression that
t_v2=<t_v1

Physicist vs brute force ML

• Physicist:
• Sees 2 rings of different diameter
• Knows opening angle
• Concludes v2 is close to wall than v1

• Machine Learning:
• “Sees” list of q,t,x,y,z
• Does not know concept of ring
• Does not know opening angle is the same

for all rings
• Has to learn everything …
• Problem: huge number of possibilities even

with 2 vertices per event and 5 tracks per
vertex only

v2

v1

Inefficient?

Worse:
• A lot of training to classify “only” between

single vertex and multi vertex events
• Output should be a probability only in this case
• Vertices somehow are reconstructed in a

hidden way
• Vertex information (t_v, x_v, y_v, z_v) not

provided per event
• Next analysis step which needs the vertex

information will have to learn again

=> Looks horribly inefficient to me! (but I might
be wrong)

v2

v1

What we know?

Can we do better?
• Of course, still using ML …
• … but do not use ML to learn what we already

know
• We know:

• Photons move on a straight line
• Cherenkov light is emitted in a cone of 44

degrees opening
• Photons observed in two different PMTs

can only come from the same vertex if the
vertex lays on well defined distances from
both PMTs (but l1 not fixed)

q1, t1, x1,y1

q2, t2, x2,y2

vertex

l1

l2 = l1 + (t2-t1)*c_n

Option 1: Track Vertices known

• Divide the job in subtasks e.g.:
• Classify all hits in Cherenkov hits in real hits and noise hits

• Use real hits to find rings and separate them

• For each ring/track find a proto-vertex (x,y,z,t)

• Cluster proto-vertices and check if more than one vertex

• … continue with higher level steps

• ML could be used for all subtasks

• Could test cluster idea easily:
• Take MC true vertex position and time

• For each track smear the vertex position and time

• Then use ML to see if all come from same vertex

SK:
• Track resolution: e=34 cm, mu=25 cm
• Time resolution: 2 ns
IWCD:
• Expected around 10 cm

Option 2: Reconstruct Vertices using TOF

• Signals in 2 PMTs will give an allowed paraboloid of
intersection curves of two spheres

• Every additional PMT n+1 will add n paraboloids

• Zones in which many paraboloids intersect, a vertex should
be

• Using all PMTs might be too much …

• … and perhaps not needed

• All neighbour PMTs with similar hit time will give similar
paraboloids => might be enough to use PMTs with certain
spatial distance and/or hit time difference

r= l1, R=l2=l1+dt*cn=l1+dl

Possible vertex positions:

In function of l1
should describe a
paraboloid

In function of l1
should describe a
paraboloid

PMT2
PMT1

a

PMT1

PMT2

PMT3

PMT4

Vertex1

Vertex2

• Under assumption signals in 2 different PMTs come from
same vertex, vertex position has to lay on paraboloid
surface

• If more pairs of PMTs are used, vertex position limited to
intersections

• Using also vertex time, might significantly reduce the
possible vertex positions => less combinations needed

• PMTs with similar positions and hit times, will give similar
vertex positions => Chose two PMTs from two different
mPMTs and calculate the paraboloid surface, check how
many PMTs in same mPMT has similar hit times, add
weight to paraboloid => significant less combinations

• Could help to find low light rings? Take vertex position for
clear rings as in Option 1, remove corresponding PMT hits
from list, look for other PMT hits which could come from
this vertex …

Medical Imaging Similarities

• Compton Camera: Source position on cone

• Intersection of various cones give source position

• ML used after first step for image reconstruction

• Only 2D image on one position with planar detectors but …

• … 3D image by many merging many 2D images from different views

• Used in CT images

• HK: PMTs placed in 4pi around fiducial volume

• For Pre-vertex finder limited precision could be enough

FitQum: Vertex Finding in SK

• Idea came from TOF PET and Compton Camera

• Checked reconstruction in SK

• For vertex reco also TOF was used

• Likelihood defined depending on t and xyz

• Minimized to find vertex position

• Works well for single vertex events (standard in SK)

• Narrow residual time resolution with correct vertex
position reconstructed

• Time frames seem also to be used

• Can we define a variable and use ML to study with
ML if there is one or more vertices?

Conclusions

• My doubt is: Is brute force ML the right way?

• Possibly too much resources needed for two little info gain

• Better approach: Exploit what we know and use ML for what we do not know?

• Vertex information could be obtained with previous analysis steps

• First test could be simple by using smeared MC information

• One could reconstruct vertices positions with TOF

• Similarly done in SK

• Or let us think about variables we could define to use then ML to decide how
many vertices we have in one event!

• Worth to discuss with Ishitsuka-san?

