Using UV-pass filters for bright Moon observations with MAGIC

Daniel Guberman

For the rest of the team: J. Cortina, R. García, A. Moralejo, J. Rico

IFAE Pizza Seminar, 29th April 2015

Moon Filters in MAGIC | Daniel Guberman

Pizza Seminar - 29th April 2015 | 1

Outline

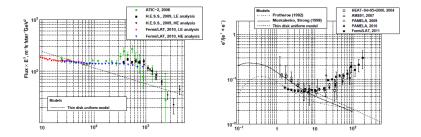
3 Highlights and future prospects

The MAGIC Telescopes

MAGIC: Major Atmospheric Gamma-ray Imaging Cherenkov At Roque de los Muchachos Observatory, La Palma $(28.8^{\circ}N, 17.9^{\circ}W, 2200 \text{ m a.s.l})$

Why filters?

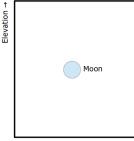
Extend the duty cycle


- MAGIC can work only up to a certain brightness
- Not operated on the 3-4 nights around Full Moon (FM period)
- Operation severely limited in the 2 nights before and after FM period

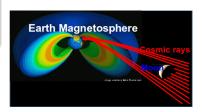
The Moon shadow project

The MAGIC Moon Shadow Project

GOAL: Observe the shadowing of CR e^- by the Moon

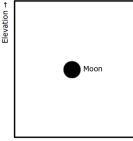


All-electron spectrum $(e^- + e^+)$ on the left and positron fraction $(e^+/(e^- + e^+))$ on the right. Data are from H.E.S.S., ATIC, PAMELA and Fermi-LAT (Figure from A. Panov, 2013).

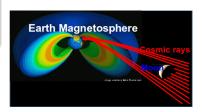

Challenge: Measure the electron spectrum at 0.3-1 TeV to help solving the anomaly

(日) (同) (三) (三)

- The Magnetosphere deviates charged particles
- The Moon blocks a fraction of the incoming CRs

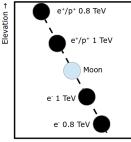

- Deviation depends on q, E
- There is a defect on the electron flux because of the Moon! (Moon Shadow)

GOAL

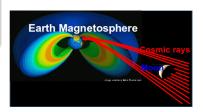

Detect the electron Moon Shadow

Moon Filters in MAGIC | Daniel Guberman

- The Magnetosphere deviates charged particles
- The Moon blocks a fraction of the incoming CRs

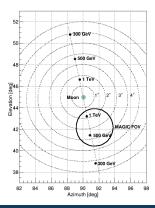

- Deviation depends on q, E
- There is a defect on the electron flux because of the Moon! (Moon Shadow)

GOAL


Detect the electron Moon Shadow

The Magnetosphere deviates charged particles

 The Moon blocks a fraction of the incoming CRs


Deviation depends on q, E


 There is a defect on the electron flux because of the Moon! (Moon Shadow)

GOAL

Detect the electron Moon Shadow

- The Magnetosphere deviates charged particles
- The Moon blocks a fraction of the incoming CRs

 There is a defect on the electron flux because of the Moon! (Moon Shadow)

GOAL

Detect the electron Moon Shadow

Moon Filters in MAGIC | Daniel Guberman

Pizza Seminar - 29th April 2015 6

A timing problem...

MAGIC not designed to work with high background light

- Moon phase should be <50%
- Moon $Zd < 50^{\circ}$
- Only ~ 15 hr available per year

And more than 200 hs might be needed to detect the e^- shadow...

DQ (P

Solution: Installing UV filters

- Inexpensive filter tiles of $20 \times 30 \text{ cm}^2$
- Outer AI ring, screwed to the camera
- Steel $6 \times 6 \text{ mm}^2$ section ribs between filter tiles
- Plastic pieces to fix filters to the ribs
- Space between filters and ribs sealed with silicon
- Fast and easy mounting in the cameras

Solution: Installing UV filters

- Since October we have UV filters in both telescopes
- Crab observations were taken to characterize the performance of the telescopes when the filters are set
- First Moon Shadow observations with filters were taken
- Special filters-adapted Monte Carlo simulations are being produced to analyse the data taken

Moon Filters in MAGIC | Daniel Guberman

General features

- Measured Cherenkov light transmission: ~ 45%
- \blacksquare Estimated Moonlight transmission: $\sim 20\%$
- We are able to point at 5° from the Moon during Full Moon.
- Even closer with lower Moon phases

 \Rightarrow Between 100 and 200 extra hours per year **could** be gained for the Moon Shadow project with the use of UV filters

< ∃ > < ∃ >

UV filters performance

But are all those hours really useful?

Energy threshold and sensitivity might strongly depend on background light intensity.

Reference: No moonlight, No filters, low Zenith

- Energy threshold : $\sim 70~{\rm GeV}$
- Sensitivity: $\sim 0.66\%$ C.U.

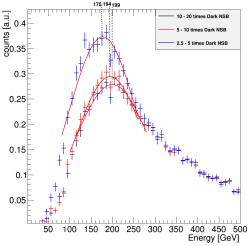
 \rightarrow During full Moon the sky can be 200 times brighter than this!

\Rightarrow Filters performance must be characterized

- Crab observations with filters
- Monte Carlo simulations

A B > A B >

Preliminary performance

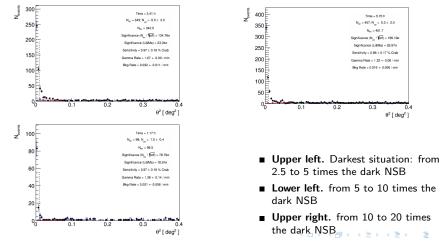

Moon Filters in MAGIC | Daniel Guberman

Pizza Seminar - 29th April 2015 | 12

JAC.

Energy threshold

Energy threshold inferred from MC simulations, for events that went through the image cleaning and for a source with and assumed spectral index of -2.6.


• Energy threshold from ~ 170 GeV to ~ 200 GeV in the three ranges obtained.

Still to be done for higher NSBs

Reference → Dark NSB: No filters, low Zenith, no moonlight. Energy threshold: ~ 70 GeV

Sensitivity (from Crab observations)

 θ^2 plots for Crab observations: Sensitivity $\sim 0.9\%$ C.U. Reference \rightarrow Dark NSB: No filters, low Zenith, no moonlight. Sensitivity: $\sim 0.66\%$ C.U.

Highlights

- Filters installed, tested and operational
- Observations with filters are feasible almost in any position of the sky, every night!

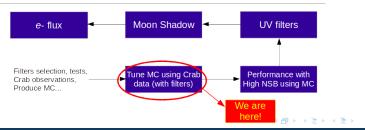
 \rightarrow Including pointing at 5° from the Moon during Full Moon

- With the filters we can observe sources in situations otherwise telescopes would not be operational
 - \rightarrow Energy threshold $\sim 170-200~{\rm GeV}$
 - \rightarrow Energy threshold $\sim 0.9\%$ C.U.
 - \rightarrow Duty cycle significantly boosted

 \Rightarrow Performance known for almost any 'non Moon Shadow' source!

New time slots available!

As the duty cycle of MAGIC increases thanks to the UV filters, a new window of opportunities arises for the observation of other sources


What about Moon Shadow?

During Full Moon and pointing at 5° from the Moon the NSB can be up to 10 times brighter than what has been analysed.

Next Steps:

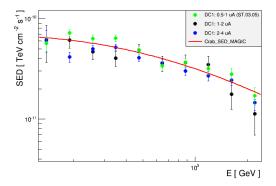
- Produce MC with higher NSBs to evaluate the performance in brighter conditions
- Evaluate when Moon Shadow observations are meaningful
- Re-evaluate the feasibility of this project

Roadmap

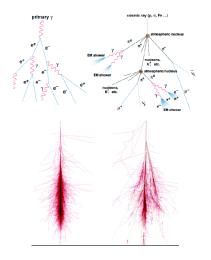
Pizzería 'El Cuartito', Buenos Aires.

Moon Filters in MAGIC | Daniel Guberman

Pizza Seminar - 29th April 2015| 17


Backup

Moon Filters in MAGIC | Daniel Guberman


Pizza Seminar - 29th April 2015 | 18

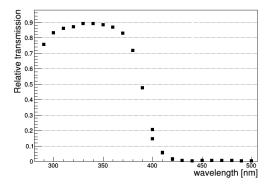
Flute output for three different NSB ranges:

- DC1: 0.5 1 µA (ST.03.05) ⇒ 2.5 5 times Dark NSB
- DC1: 1 2 μ A (ST.03.06) \Rightarrow 5 10 times Dark NSB
- DC1: 2 4 μ A (ST.03.06) \Rightarrow 10 20 times Dark NSB

Detecting CR e^-

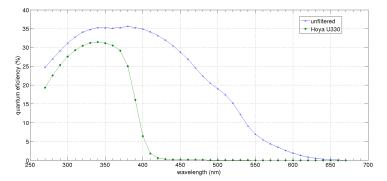
- CR interact with the atmosphere producing Extensive Atmospheric Showers (EAS). Height of first interaction ~ 30km
- Particles produced might emit Cherenkov light
- γ -ray and e^-/e^+ produce similar showers

Background discrimination


- Shower development is different (and so are the images recorded)
- Hadronness (h): A parameter calculated using a multivariate event classification algorithm (Random Forest)

< ロ > < 同 > < 三 > < 三 >

- $h \rightarrow 0 \quad \gamma/e^-$ like shower
- $h \rightarrow 1$ hadron like shower


Filter transmission

Filter transmission measured at IFAE

Filter transmission

Quantum efficiency of a pixel before and after applying a filter

Cherenkov light and NSB spectrum

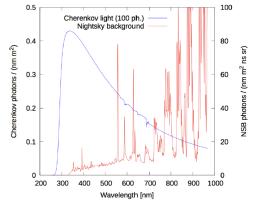


Figure 1: Cherenkov light spectrum is shown for 500 GeV γ-ray showers at 20° zenith angle and detected at 2000 m above sea level. The Cherenkov light is scaled to 100 photons/m2 in the wavelength range from 300-600 nm, a value typical for y-ray showers of about 500 GeV at small core distances.

Image: A image: A