Overview of the ATLAS Forward Physics project From the 3D pixel tracker perspective

Ivan Lopez

IFAE Pizza Seminar May 6th, 2015

1

ATLAS Forward Physics (AFP)

- Physics:
 - Look for processes with protons in the final state leaves intact the interaction point
 - \rightarrow Diffractive physics, eg.:
 - Double pomeron exchange: Pomeron structure
 - Double photon exchange: use LHC as a "photon collider"
 - Identify forward protons!

ATLAS Forward Physics (AFP)

- Detector:
 - Tracker + fast Time of Flight (ToF) detector

OCHOA

 \rightarrow ~210 m from the ATLAS interaction point and 2-3 mm from the proton beam

1 AFP station (2 per arm)

Silicon Tracker

Roman pot

The Silicon Tracker

- Goal:
 - Measure position of scattered protons
 - \rightarrow Measurement of proton's relative energy loss
- Requirements:
 - Have a good position resolution $O(10 \ \mu m)$
 - $\rightarrow\,$ good energy loss resolution
 - Non-uniform beam profile
 - \rightarrow non-unif. radiation damage (fluence)
 - Have small dead area at the edges
 - $\rightarrow\,$ we want the active area as close as possible to the beam

The Silicon Tracker

- Radiation hardness •
 - → Silicon detectors: widely used in radiation hard environments
- Good position resolution ٠
 - → Highly segmented/Pixelated detectors
- Sensor technology ٠
 - Planar: electrodes on sensor surface
 - 3D: column-like electrodes
 - \rightarrow Distance between electrodes decoupled from sensor thickness
 - \rightarrow Lower voltages, shorter charge drift distances
- IFAE has a large experience with 3D sensors: ٠
 - ATLAS Insertable B-Layer (IBL) built with 3D sensors from IFAE-CNM

hard

Experience in Insertable B-Layer (IBL)

3D sensors in ATLAS IBL

- 3D silicon sensors
 - CNM (Barcelona) and FBK (Trento)
- Planar silicon sensors

3D needs less voltage to get the same efficiency \rightarrow Radiation hard

EXCELENCIA SEVERO OCHOA

May 6th, 2015

IBL is 25% 3D and 75% planar

Use 3D also in AFP...

AFP prototypes

- FE-I4 3D pixel devices:
 - From ATLAS IBL design and front-end (FE-I4)
 - Two similar designs with different edge termination:
 - CNM: with 3D guard-ring
 - FBK: without 3D guard-ring
 - ~1.5 mm inactive edge on AFP-relevant side (opposite to wirebonds)
 - $\rightarrow\,$ Slim-edge down to ~100-200 μm from the last pixel row
- Requirements:

May 6th, 2015

- Have a good position resolution
- Cope with non-unif. radiation damage
- Have small dead area at the edges
- Qualify modules with high energy particles: Testbeams
 - Measure efficiencies and resolutions

FXCELENCIA

SEVERC Ochoa

Testbeam campaings

- Hit efficiencies are studied in testbeams:
 - Particle's path reconstructed with high resolution telescope
 - Interpolated to the device under test (DUT) position

- Using the reconstructed tracks \rightarrow also resolutions
- Testbeam facilities:

May 6th, 2015

EXCELENCIA SEVERO OCHOA

Slim edges

- Small inactive area:
 - Good efficiency after cutting (OK)

3D pixel

sensors

Scattered

protons

Si Tracker

Proton beam

Efficiency after non-uniform ^{3D pixel} irradiation

Non-uniform irradiation campaigns

OCHOA

[[]_____15

- Irradiated sensors in non-uniform fluence up to fluences expected in the high-luminosity scenario
 - \rightarrow CERN-PS and Karlsruhe: ~2.6–4 x10¹⁵ n_{er}/cm²
- Hit efficiency target irrad area within ~1-3 % of non-irrad part

Scattered

protons

Si Tracker

Proto beam

Position resolution

OCHOA

- Position resolution of a single plane: \sim 72 x 13 μ m
 - Improvable by the use of more sofisticated cluster centre finding algorithms
- The resolution of a 4-plane tracker will improve over the single plane resolution

Summary (I)

May 6th, 2015 EXCELENCIA SEVERO OCHOA

The Time of Flight detector

Goal

- Measure time of flight of scattered protons
 - \rightarrow Identify primary vertex of diffractive interaction (reduce pile-up)
- Requirements
 - Good time resolution ~10 ps → ~2 mm (for low-luminosity, ~30 ps)
- Quartz-bars

May 6th, 2015

- Cherenkov light is produced inside bars and guided to photomultiplier plate
- ToF also underwent its own qualification for AFP

- Tracker & ToF never tested with common readout
 - \rightarrow Integration testbeam

OCHOA

53 000m

The AFP integration testbeam

Goal:

(IFAE)

May 6th, 2015

- Take nice pictures
- Run together tracker and ToF detector with a common DAO
- CERN SPS testbeam Nov. 2014

EXCELENCIA **SEVERO OCHOA**

"We don't need it to work, we just need nice pictures" - Anonymous, about the integration testbeam

AFP Station Prototype for the testbeam

The AFP integration testbeam: Results

• We took nice pictures

* Only half of the people

Pictures from Ladislav Chytka

The AFP integration testbeam: Results

Run together tracker and ToF detector

- Correlation between tracking and timing information

Tracking-Timing correlation y

→ Tracking-timing integration works!
→ Main testbeam aim fulfilled!

The AFP integration testbeam: Results

- Run together tracker and ToF detector
 - Measured hit efficiency, crosstalk and noise of ToF with tracker information
 - Measured time resolution of ToF in the prototype set-up $\rightarrow \delta t = 35 \pm 6 \text{ ps}$

• IFAE is will assemble the AFP tracker module

• IFAE is will assemble the AFP tracker module

• IFAE is will assemble the AFP tracker module

EXCELENCIA SEVERO OCHOA

May 6th, 2015

• IFAE is will assemble the AFP tracker module

EXCELENCIA SEVERO OCHOA

Summary (II)

- AFP is a new detector at ~210 m from the ATLAS IP that will enable diffractive measurements
- 3D pixel modules have been successfully qualified for AFP
 - Technical Review approval
- Successfull integration testbeam campaign at CERN SPS on November 2014
 - AFP approved by ATLAS for low luminosity runs
- IFAE played a key role in both milestones and will produce the tracker modules

