

Inclusive electron+positron measurements

Pier Simone Marrocchesi

Univ. of Siena and INFN-Pisa

Propagation of cosmic-ray electrons in the Galaxy

- Energy losses:
 - Inverse Compton scattering with interstellar photons
 - Synchrotron radiation with interstellar magnetic field ($B^{6}\mu G$)
 - \Rightarrow dE/dt = -bE²

Propagation

High-energy cosmic-ray electrons observations

- TeV electrons from distant sources with R > ~ 1kpc or T > ~10⁵yr
 - Cannot reach the solar system
- TeV electrons from nearby sources with R < ~ 1kpc and T < ~10⁵yr
 - Identifiable structure(s) in the spectrum
 - Anisotropy of arrival direction of electrons
- Identification of specific cosmic-ray sources

Nearby SNRs

Acceleration of electrons

- Evidence of high-energy electrons in SNRs from X-ray observations
- Electron or hadron? from gamma-ray observations

2013: FERMI claims evidence for proton acceleration in SNRs

SCIENCE VOL 339 15 FEBRUARY 2013

We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope.

This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs."

p + p $\rightarrow \pi^0$ + other products, followed by $\pi_0 \rightarrow 2\gamma$, each having an energy of m_{$\pi 0$} /2 = 67.5 MeV

"The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering."

Energy spectra vs. diffusion coefficient

Energy spectra vs. diffusion coefficient

Cutoff in the energy spectrum of electrons at sources

	v _{rolloff}		$E_{\max}[(B/10\mu G)]^{1/2}$		
Object	(10 ¹⁶ Hz)	(keV)	(ergs)	(TeV)	
Kes 73 ^a	150	6	290	200	
Cas A	32	1	130	80	
Kepler	11	0.5	79	50	
Tycho	8.8	0.4	70	40	
G352.7-0.1	6.6	0.3	60	40	
SN 1006 ^b	6	0.2	57	40	
3C 397	3.4	0.1	43	30	
W49 B	2.4	0.1	36	20	
G349.7 + 0.2	1.8	0.07	31	20	
3C 396	1.6	0.07	30	20	
G346.6-0.2	1.5	0.06	29	20	
3C 391	1.4	0.06	28	20	
SN 386 ^a	1.2	0.05	26	20	
RCW 103 ^a	1.2	0.05	26	20	

ROLLOFF FREQUENCY AND MAXIMUM ELECTRON ENERGY UPPER LIMITS

(Reynolds et al. 1999)

Higher cut-off energies => Higher flux in TeV region

Electron spectra vs. cut-off energies

Gamma400 - Barcelona - 2015/6/30

P.S. Marrocchesi

Relevance of cosmic-ray electron observations for astrophysics

- E < 10GeV
 - Solar modulation
- E = 10GeV-100GeV
 - Propagation characteristics in the Galaxy
 - Information on sources
- E > 100GeV
 - Identification of cosmic-ray sources
 - Acceleration mechanisms
 - Dark matter search

High-energy electron observations

- Direct electron observations since 1960's
 - Daniel&Stephens 1965, Bleeker 1965,...
- As the energy increases:
 - Lower electron flux
 - Larger proton backgrounds
- Requirements for instruments
 - Large geometrical factor (S Ω)
 - Long exposures
 - High proton rejection power

Two kinds of instruments

Golden et al. published 1984

- Separation between e⁻ and e⁺
 - Magnetic spectrometers:

starting from B. Golden's 1976 flight mainly ballon experiments (e.g.: MASS, CAPRICE, HEAT) followed by space experiments e.g.:(AMS-01, PAMELA, AMS-02)

- No-separation between e⁻ and e⁺
- Calorimeters without magnets:
 - balloons (most recent ones include e.g.: BETS, ATIC)
 - space (e.g.: FERMI*, CALET, DAMPE...)
 - ground experiments (e.g.: HESS)

(*) Fermi analysis uses the Earth magnetic field to separate the two charges)

P.S. Marrocchesi

Compiled electron energy spectra (1984-2005) mostly balloon experiments

- Variation in the flux: factor 2~3
- Few observations above 100 GeV region

Gamma400 - Barcelona - 2015/6/30

P.S. Marrocchesi

ATIC balloon instrument

- Geometrical factor: 0.45 m² sr (calorimeter top) to 0.24 m² sr (calorimeter bottom)
- 3 successful Antarctic flights: 2000, 2002, 2007 (~57 days in total)

Si-Matrix: 4480 pixels (each 2 cm x 1.5 cm) to measure GCR charge in presence of backscattered shower particles.

Plastic scintillator hodoscope, embedded in Carbon target, provides event trigger, charge and particle tracking.

Calorimeter: 10 layers BGO crystals, 40 per layer. Total depth 22 X_0 , 1.14 λ . Measure the electromagnetic core of the nuclear shower.

All three ATIC flights are consistent

ATIC - atmospheric Gamma-rays: Test of the electron selection method

PAMELA: positron fraction

2008: Excess in positron is confirmed and extended to higher energies

Fermi LAT: e^++e^- spectrum

PAMELA and FERMI electrons (2011/2012)

Ackermann et al., Phys. Rev. Lett. 108, 011103 (2012)

The inclusive electron (+ positron) spectrum in 2011

- Cannot be reproduced with a single power-law injection spectrum
- ATIC reported an excess of CR electrons at energies between 300-800 GeV
- ATIC spectral feature not confirmed by Pamela and Fermi

- nearby sources of energetic electrons (SNR, pulsar, micro-quasar)?
- annihilation of dark matter particles ?
- perhaps needs a second component with hard spectrum (positrons?)

2013: AMS-02 confirms Pamela findings + extension to 350 GeV

2015: AMS-02 extension to ~ 400 GeV

Positron Fraction from AMS

2015: AMS-02 individual electron and positron spectra

2015: AMS-02 Possible interpretation with a source term

The spectral index of the diffuse term has to become energy dependent:

$$\Phi_{e^{-}}(E) = \frac{E^{2}}{\hat{E}^{2}} \left[C_{e^{-}} \hat{E}^{\gamma_{e^{-}}(\hat{E})} + C_{s} \hat{E}^{\gamma_{s}} \exp(-\hat{E} / E_{s}) \right]$$

The source term parameters are constrained from the positron flux fit.

The Electron Flux

has no sharp structures and is dominated by the diffuse term.

> is consistent with a charge symmetric source term.

2015: AMS02 inclusive electron+positron

Results: the flux after AMS

The electron spectrum above 1 TeV

 \circ HESS electron (ground) measurements: 340 GeV \rightarrow 5 TeV

- Evidence of a cutoff in the spectrum with index: 3.9 ± 0.1(stat) ± 0.3(syst.)
- No contradiction to ATIC data due to HESS energy scale uncertainty of 15%
- unable to confirm ATIC bump

Large systematic uncertainties from ground experiments !

Launch scheduled in August 2015 !!!

Gamma400 - Barcelona - 2015/6/30

P.S. Marrocchesi

Overview of CALET INSTRUMENT

	CHD (Charge Detector)	IMC (Imaging Calorimeter)	TASC (Total Absorption Calorimeter)
Function	Charge Measurement (Z=1-40)	Arrival Direction, Particle ID	Energy Measurement, Particle ID
Sensor (+ Absorber)	Plastic Scintillator : 2 layers Unit Size: 32mm x 10mm x 450mm	SciFi : 16 layers Unit size: 1mm ² x 448 mm Total thickness of Tungsten: 3 X ₀	PWO log: 12 layers Unit size: 19mm x 20mm x 326mm Total Thickness of PWO: 27 X ₀
Readout	PMT+CSA	64 -anode PMT+ ASIC	APD/PD+CSA PMT+CSA (for Trigger)

Gamma400 - Barcelona - 2015/6/30

CALET Main Target: Identification of Electron Sources

Some nearby sources, e.g. Vela SNR, might have unique signatures in the electron energy spectrum in the TeV region (Kobayashi et al. ApJ 2004)

CALET: dark matter search with electrons

Simulated e^++e^- spectrum for 2yr from Kaluza-Klein dark matter annihilations with m = 620GeV and BF=40.

Simulated e⁺+e⁻ spectrum for 2yr from decaying dark matter for a decay channel of D.M.-> I⁺I⁻v with: M = 2.5TeV τ = 2.1x10²⁶ s

How about inclusive electron detection with Gamma-400?

Proton rejection factor with Calocube

- Proton contamination:
 0.5% at 1 TeV
 2% at 4 TeV
- Rejection power = $\varepsilon_{el} / \varepsilon_p \sim 2.10^5$ (using <u>calorimeter information only</u>)

- Geometrical cuts for shower containment
- Cuts based on longitudinal and lateral development

Preliminary study:

- 155.000 protons @ 1 TeV: only 1 survives
- The corresponding electron efficiency is 37% almost constant with energy above 500 GeV
- Energy dependence of selection efficiency

e⁺, e⁻ from Dark Matter annihilation

- Distinctive structures in the spectrum from D.M. annihilation
- Dark matter search from e⁻,e⁺ observations

P. Marrocchesi -Gamma400 - 2013/5/3

Residual Proton Background

- Proton differential spectrum as: E^{-2.70}
- Electron broken power law: E^{-3.9} as measured by HESS above 1 TeV

