

Technical Capabilities: University of Barcelona

David Gascon on behalf of ICCUB

Universitat de Barcelona

Gamma-400 workshop – 29-30 June 2015 – Barcelona

Introduction

- ICCUB has been involved in several projects and scientific collaborations since its foundation:
 - High energy physics: LHCb, Babar, Hera-B
 - Astroparticles: Magic, CTA
 - Space misions: Gaia, Solar Orbiter, Euclid, Corot
 - Ground instrumentation: LSST, SDSS
- J. M. Paredes will provide the ICCUB scientific perspective about Gamma-400
- The ICCUB has a long record of instrumentation development, based on a strong collaboration with Electronic department & others:
 - For particle physics experiments (LHCb, Babar, HERA-B): Calorimetry, Tracking
 - For astroparticle experiments: Cherenkov Telescope Array
 - Basic detector R&D (Aida, ILC, etc)
 - Medical imaging
- Since 2013 a new service unit (SiUB) joins the experience of ICCUB engineers with other institutes and groups @ UB

Introduction

icc.ub.edu

tesign and test of ASICs, cards and PCBs and development of equipment PCBs **Control Systems, etc**

and other institutions and to enhance industry tecnology transfer.

Research

(µ)electronics design

Resources and experience on design. Options to transfer

- Physical simulations
- Microelectronics: ASIC and FPGA
- Cards and systems
- RF electronics: discrete and ASIC

Experience with many ADE design tools layout...

- IC design: Cadence Design FrameWork II
- Digital Design: Synopsys, Altera
- PCB design: Altium, PCAD, Mentor
- RF design: ADS
- Physical simulators: Ansys and ADS momentum
- Signal processing: Matlab, Octave

Access to many more tools via Europractice.

- www.europractice.stfc.ac.uk/software/software_packages. html
- Tools are for non-commercial use
 - However it is possible to negotiate use for technology transfer:

www.europractice.stfc.ac.uk/software/commercial_use.html

Options to transfer a design

- **1.** Europractice special agreement
- 2. Using commercial license
- 3. Direct transfer of the knowledge: schematics, RTL code, gds

cādence

	h	Ь	
~			7

SYNOPSYS[®]

ANSYS

Resources: several electronics labs and...

• Fully equipped electronics labs and ...

Anechoic chamber (30 Mhz to 18 GHz)

ASICs

LHCb SPD: amplification, shaping, and discrimination. AMS BICMOS 0.8 um, radiation tolerant

LHCb calo upgrade: analog signal processing. Radiation tolerant AMS SiGe BiCMOS 0.35 µm

ASICs for CTA:

← Low noise and high dynamic range preamplifier for photomultiplier tubes

AMS SiGe BiCMOS 0.35 µm

Signal conditioning and \rightarrow amplification

AMS CMOS 0.35 µm

FlexToT Readout circuit for SiPM arrays SiGe BiCMOS 0.35um

Key projects: LHCb-SPD

SPD is the front end of the calorimeter system and it is vital for the L0 trigger

•Design of the Front End electronics of the first detector of the calorimeters:

- 100 acquisition cards of 64 channels
- 800 ASICs (8 ch)
- Slow control system
- High speed links (2.5 GB/s)

http://lhcb-public.web.cern.ch/lhcb-public/

Installed and working

Key projects: LHCb-SPD

- Analog Processing + Digital Control
- Signal range: 1 pC (1) (1 MIP ~ 30-100 fC)
- Electronics resolution 2 fc
- Radiation tolerant design
 - Guard rings for SEL prevention
 - •Triple Voting Register (TVR) for SEU.

•Radiation qualification:

- Using a krypton beam we have qualified this ASIC
- TID: tested up to 20krad: OK
- After extrapolation to LHCb environment:
 - SEU rate is acceptable (3 SEU/year for 6Kch)
 - No SEL (<1 SEL/20 years)

1500 ASICs produced and tested

AMS BiCMOS 0.8µm - 8 dual channels – 30mm²

Key projects: LHCb upgrade-ICECAL

Key projects: LHCb upgrade: SciFi

Key projects: LHCb upgrade: SciFi

- Replace current silicon tracker by a scintillating fiber tracker
 - Fiber pitch: 250 um
 - More than 300K channels
- Development of a 128 ch chip
 - ICC-UB
 - LPC
 - IFIC
 - Heidelberg

- Current conveyor with very low impedance input (≈ 30Ω)
 - Adjustable gain / dynamic range
 - Input voltage adjustment
- Fast tunable shaper
 - Pole-zero cancellation to cancel slow SIPM time constant
 - A FWHM of 5 ns is achieved for single-cell signal
- Dual interleaved 25ns gated integrator
 - Almost no dead time
 - Average photo-statistical fluctuations
 - Maximize charge collection (25 ns integration)
- 2 bits 40MS/s flash non-linear ADC
- Power consumption < 8mW/channel @ 1.2 V

CMOS 130 nm

LHC

- How CTA aims to extend energy range and increase sensitivity?
 - Large array (>1 km²) of Cherenkov telescopes (50-100)
 - Different sizes: dish from 6 to 24 m
- Camera and electronics must be optimized in terms of
 - Performance
 - Cost and reliability: integration

http://www.cta-observatory.org

Under design

Artist view of CTA-North Kari Nilsson

Key projects: CTA

- Double transimpedance gain: 1.2kΩ (HG) and 80 Ω (LG)
- Dynamic range > 15 bits
- -3 dB bandwidth of 450 MHz
- Low input referred noise: 10 pA/√Hz
- Noise (ENC): 4700 electrons (at 10 ns of integration time)
- 2400 ASICs to be received and tested for first LST camera

For full observatory about₁₀₀ 100000 ASICs would be produced

SPE Test PMT 201871Carcassa 812v HV TI 10ns (PACTAv1.4 Rin 00hms I- Ln Off VoD HG + Lecroy @ TD871548

herenkov telescope array

PACTAv1.4 chip 2 mm² QFN32 package Back from foundry Oct.

Key projects: CTA

- Low Zin current mode circuit are well suited for SiPM readout
 - DC coupling without external components
- We just took an available MPPC (S10931-050P)
 - 1 V overvoltage
- Recovery time seems to be dominated by internal SiPM time constant

PACTA

Vb(†

SiPM

10 K < 100 nF :

Vop=Vb-HV

HG

LG

DC coupled

Possible to ctrl each

Key projects: CTA Trigger ASIC

- Three different simultaneous operation modes
 - Sum trigger
 - Majority trigger
 - Discriminator outputs
- Each subsystem of each channel can be set in "power down mode"
- High speed design (>500 MHz)
- Based on a combination of open and closed loop design
- Closed loop adder with 50 Ω line driver

- ASIC design: UB
- Specs and test: IFAE

- Austriamicrosystems BiCMOS SiGe 0.35 µm technology
 - Compatibility with other CTA-Spain chips [3], [4]
- About 12 mm²
- 7 Channels

- Majority & Sum trigger approach
- 7 LVDS digitized outputs
- □ SPI Slow Control Interface
 - 30 samples packaged

Key projects: medical imaging (PET)

Summary

- The ICCUB/SiUB has a solid expertise on:
 - ASIC design
 - Cards and system design (PCB, FPGA, etc)
 - High speed links
- Experience on electronics for:
 - Calorimeters
 - Trackers
 - Trigger system
 - Time of flight
- Experience on ASICs and COTs components qualification:
 - Test beam
 - Radiation tests: TID, SEEs, Neutron, etc
 - Burn-in
- Willing to contribute and colaborate where useful for the colaboration

