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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.

ar
X

iv
:1

60
7.

06
13

4v
2 

 [h
ep

-e
x]

  2
6 

Ju
l 2

01
6

Patricia C. Magalhães
Complutense University of Madrid

CP violation in heavy hadrons decay

p.magallhaes@cern.ch

seminar at                      20/12/2022

mailto:patricia@if.usp.br


Patricia Magalhães CPV in heavy meson decays

2

IFAE Barcelona 20/12

Outline
 

CPV introduction/motivation

hadronic heavy meson decay and FSI

final remarks

FSI as source of CPV in B decays 

understanding CPV  in D decays 
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Many open questions in Particle physics
 

Matter anti-matter asymmetry
in the Universe

(need new CP violation source)

Standard Model for all its success can not explain everything  

 No Dark matter candidate

development of powerful tools 

LHC

theory and experiment

Quark mixing matrix
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CP asymmetry measurements
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Parity violation
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Unitary CKM matrix
Wolfenstein Parametrization 

10 

λ = sin θc 
A ~ 0.8 
ρ ~ 0.20  
η ~ 0.35 

4 parameters 

Power series of λ=sin(θcabibo)≈0.22 
At order  λ3: 

At order  λ5: 

VCKM =

0
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γ β

loads of CPV expected/found in B decays and not much in Kaon or D 

 test Standard model limits
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CPV in neutral particles 

GIM Mechanism
CP Asymmetries

Time Dependence
CP Phenomenology

Quantum Mechanics of Flavour Oscillations
Time-Dependent CP Asymmetries

Mixing: Flavour Oscillations

The Standard model allows for �F = 2 transitions:

A(�B = 2,�D = �2) carries the weak phase 2�
A(�B = 2,�S = �2) has only small weak phase ��

A(�S = 2,�D = �2) carries the weak phase 2�
�C = 2 is heavily GIM suppressed

Thomas Mannel, University of Siegen CP Violation in the Standard Model, Lecture 2

mixing

17

Como a violação de CP se manifesta

ou

2) Violação de CP indireta:

efeito muito pequeno!

)
very tiny effect 

28

which is independent of time. CP violation occurs (              ) only if             .ASL 6= 0 |p| 6= |q|
Recalling that

B1 = p|B0i+ q|B0i, B2 = p|B0i � q|B0i

with    and    being complex parameters, CP violation in mixing occurs whenp q
the mass eigenstates       and       are not CP eigenstates. In this case, the 
two mass eigenstates are not orthogonal

B1 B2

ASL

ASL(B
0) = (0.7± 2.7)⇥ 10�3 �! |p/q| = 0.9997± 0.0013,

ASL(B
0
s ) = (�17.1± 5.5)⇥ 10�3 �! |p/q| = 1.0086± 0.0028.

CP violation in              mixing is, therefore, a very small effect.

The current values of         are

B0�B
0

hB1|B2i = |p|2 � |q|2 6= 0 �! CP violation

28
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Af

Af
=

����
Af

Af

���� e
�i(��f+��f ).

The amplitudes        and       have, in general, different weak and strong 
phases:

Af Af

We can now re-write the parameter      as �f

�f =

����
q

p

����

����
Af

Af

���� e
�i(�M+��f+��f ),

showing that the three types of CP violation are present in      :�f

����
q

p

���� 6= 1CP violation in decay: CP violation in mixing:

arg �f 6= 0
CP violation in the interference between decays with and 
without mixing, occurring even if                   and|Af |= |Af |

����
Af

Af

���� 6= 1

|q|= |p| :

�F = 1

�F = 2

17

Como a violação de CP se manifesta

ou

2) Violação de CP indireta:
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)

-
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Neutral mesons have a third 
possibility: the interference 
between decays with and without 
mixing. This is restricted to final 
states that can be reached by 
meson and anti-meson, such as

KK, ⇡+⇡�,  K0
S , ...

All CP-violating observables can be expressed in terms of                       and 
       and          For final states f common to meson and anti-meson we define 

Af , Af , Af̄ ,

Af̄ , p/q.

�f ⌘ q

p

Af

Af
.

Mixing is a universal process, that is, the oscillation frequency does not 
depend on the final state. Recalling that p and q are complex, we write

q

p
=

����
q

p

���� e
�i�M .mixing:

3 possibilities of

interference between 
them

mixing + decay
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direct CP violation

  2 amplitudes: SAME final state,  strong (  ) and weak (  ) phases≠ δi ϕi

hf |T |Mi = A1 e
i(�1+�1) +A2 e

i(�2+�2)

hf̄ |T | M̄i = A1 e
i(�1��1) +A2 e

i(�2��2)

weak phase     CKM
strong phase QCD
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direct CP violation

  2 amplitudes: SAME final state,  strong (  ) and weak (  ) phases≠ δi ϕi

hf |T |Mi = A1 e
i(�1+�1) +A2 e

i(�2+�2)

hf̄ |T | M̄i = A1 e
i(�1��1) +A2 e

i(�2��2)

weak phase     CKM
strong phase QCD

ACP =
�(M ! f)� �(M̄ ! f̄)

�(M ! f) + �(M̄ ! f̄)

�(M ! f)� �(M̄ ! f̄) = |hf |T |Mi|2 � |hf̄ |T | M̄i|2 = �4A1A2 sin(�1 � �2) sin(�1 � �2)

12

CP violation in decay, which is 
how this process is known, is of 
the type of direct CP violation.

The first observations of  
CP violation in decay were  
on two-body decays:

B0
(s) ! K±⇡⌥

penguin 
diagram

The diagrams above provide 
the difference in strong and 
weak phases. The results are

ACP (B
0
s ! K�⇡+)=(27± 4)%

ACP (B
0 ! K�⇡+)=(8.0± 0.8)%

B0

B0
s B

0
s

B
0
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CP violation for charged B decays

➤ Two amplitudes with different weak (φ) and strong (δ) phases

6

q

A(B → f) = A1e
i(δ1+φ1) +A2e

i(δ2+φ2)

A(B̄ → f̄) = A1e
i(δ1−φ1) +A2e

i(δ2−φ2)

|AB→f |2 − |AB̄→f̄ |2 = −4A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

➤ CP violation: interfering amplitudes with different weak and strong phases

φ1
φ2

➤ Weak phases: CKM matrix elements 

➤ Strong phases: penguin diagrams and hadronic final state interactions such as 
ππ → KK rescattering 
Not well described in literature

B → ! ! !
 CPV at quark level: BSS model Bander Silverman & Soni PRL 43 (1979) 242
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not enough for CPV 

hadronic interactions are natural sources of strong phase!
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CPV on heavy meson decays
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Kππ

represented by a single exponential, and partially-reconstructed B ! J/ K⇤(892)±,0

decay, described by an ARGUS function. The B± ! J/ K± model is parameterised with
the same function used for the B±! h±h0+h0� channels. Systematic uncertainties of the
raw asymmetry are obtained by varying the signal fit model, leaving the background
asymmetry to vary in the fit, and looking at variations from di↵erent trigger samples
of the data. The total systematic uncertainty is taken as the sum in quadrature of the
individual uncertainties. The raw asymmetry of the control channel is measured to be
Araw(B± ! J/ K±) = �0.0118± 0.0008 +0.0007

�0.0008, where the first uncertainty is statistical
and the second systematic.

To obtain the B± production asymmetry, this raw asymmetry is corrected by its
e�ciency ratio, calculated using a sample of simulated events produced without any B±

production asymmetry, to obtain Acorr
raw as before, and the world average value of the

B± ! J/ K± CP asymmetry, 0.0018± 0.0030 [25], is subtracted

AP = Acorr
raw (B

± ! J/ K±)� ACP (B
± ! J/ K±). (5)

The measured B meson production asymmetry is AP = �0.0070± 0.0008 +0.0007
�0.0008 ± 0.0030,

where the last uncertainty is due to the CP asymmetry of B± ! J/ K± decays [25].
Finally, the CP asymmetries of the four B±! h±h0+h0� modes are measured to be

ACP (B
± ! K±⇡+⇡�) = +0.011± 0.002,

ACP (B
± ! K±K+K�) = �0.037± 0.002,

ACP (B
± ! ⇡±⇡+⇡�) = +0.080± 0.004,

ACP (B
± ! ⇡±K+K�) = �0.114± 0.007,

where the statistical uncertainties are obtained from propagation of Eq. 4, assuming no
correlation term.

6 Systematic uncertainties and results

Several sources of systematic uncertainties are considered and can be broadly divided
into three groups: potential mismodelling of the invariant mass distributions, phase-space
e�ciency corrections and knowledge of the B± production asymmetry. The systematic
uncertainties due to the mass fit models are quantified by taking the di↵erence in the
CP asymmetry resulting from variations of the model. The alternative fits have good
quality and describe the data accurately. To estimate the uncertainty due to the choice
of the signal mass function, the initial model is replaced by an alternative empirical
distribution [27].

The contribution associated with the peaking background fractions reflects the uncer-
tainties in the expected yields determined from simulation and it is evaluated by varying
the fractions within their statistical uncertainties. In addition, the systematic uncertainty
associated to the fact that the peaking background asymmetry is fixed to zero is estimated
by setting it to the value obtained in the previous analysis [6], within the corresponding
uncertainties. The uncertainty due to the choice of an exponential function to model the
combinatorial component is estimated by repeating the fit using a second order polynomial
function.
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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Introduction. It is vigorously pursued the search for
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critical experimental observations from the last years.
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them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].
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�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

CPV on heavy meson decays
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c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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= Acp(D0 → K+K−) − Acp(D0 → π+π−)
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+

u d

c
Vcd d

_

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+
V ⇤

us

u
s

c
s
_

Vcs

u
D0 ! ⇡+⇡�

D0

D0

_

D0 ! K+K�

D0 K+K�
⇡+⇡�

VcsV
⇤
us

VcdV
⇤
ud �⇡⇡!KK

FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.
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(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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2018 and the one taken between 2010 and 2012, corresponding to an integrated luminosity of
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, respectively.
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One of the three necessary conditions for baryon asymmetry in the Universe is the nonin-
variance of the fundamental interactions under the simultaneous transformation of the
charge conjugation (C) and parity (P ) operators, referred to as CP violation [1]. The
Cabibbo-Kobayashi-Maskawa (CKM) formalism describes CP violation in the Standard
Model (SM) of particle physics [2,3] through an irreducible phase in the quark-mixing ma-
trix. Over the past sixty years, CP violation has been observed in the K, D, and B-meson
systems by several experiments [4–13]. In the charm quark sector, the recent observation
of CP violation [13] stimulates a wide discussion to understand its nature. Further precise
measurements may resolve the intricate theoretical debate on whether the observed value
is consistent with the SM [14–29]. The discovery measurement of CP violation in neutral
charm meson decays used the di↵erence between two time-integrated CP -violating asym-
metries of Cabibbo-suppressed D0 decays, �ACP = ACP (K�K+)�ACP (⇡�⇡+), found to
be �ACP = (�15.4± 2.9)⇥ 10�4 [13]. The time-integrated CP asymmetry for f = K�K+

and f = ⇡�⇡+ corresponds to

ACP (f) ⌘

R
dt ✏(t)

⇥
�(D0

! f)(t)� �(D0
! f)(t)

⇤
R
dt ✏(t)

⇥
�(D0 ! f)(t) + �(D0 ! f)(t)

⇤ , (1)

where ✏(t) is the reconstruction e�ciency as a function of the D0 decay time and � denotes
the decay rate. This Letter presents measurements of the time-integrated CP asymmetries
in D0

! K�K+ decays. Combining the measurements of ACP (K�K+) and �ACP , it is
possible to quantify the amount of CP violation in the decay amplitude for D0

! K�K+

and D0
! ⇡�⇡+ decays and provide important insight in the breaking of U -spin symmetry.

The mixing in the neutral charm system implies that ACP (f) is the sum of a component
related to the CP violation in the decay amplitude, adf , and a component related to D0–D0

mixing and the interference between mixing and decay, �Yf . Up to first order in the D0

mixing parameters [30–37], the time-integrated CP asymmetry can be written as

ACP (f) ⇡ adf +
htif
⌧D

·�Yf , (2)

where htif is the mean decay time of the D0 mesons in the experimental data sample and
⌧D is the D0 lifetime [38,39].

The neutral charm mesons considered are produced in the strong-interaction decays
D⇤+

! D0⇡+ from D⇤+ mesons created in proton-proton (pp) interactions. The charge of
the accompanying “tagging” pion (⇡+

tag) is used to identify the flavor of the D0 meson at
production. Throughout this Letter, the inclusion of charge conjugation decay modes is
implied, except in the definition of the asymmetries, and D⇤+ and � indicate the D⇤(2010)+

and �(1020) mesons, respectively. The measured asymmetry, A(K�K+), is defined as

A(K�K+) ⌘
N (D⇤+

! D0⇡+)�N
�
D⇤�

! D0⇡��

N (D⇤+ ! D0⇡+) +N
�
D⇤� ! D0⇡�

� , (3)

where N denotes the observed signal yield in the data, and the D0 meson decays into
K�K+. This asymmetry can be approximated as

A(K�K+) ⇡ ACP (K
�K+) + AP(D

⇤+) + AD(⇡
+
tag), (4)

1

CPV on heavy meson decays
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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb
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This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:
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with the channel asymmetries defined as:
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D0 ! f
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� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address
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distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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Figure 2: Central values and two-dimensional confidence regions in the (adK�K+ , ad⇡�⇡+) plane

for the combinations of the LHCb results obtained with the dataset taken between 2010 and

2018 and the one taken between 2010 and 2012, corresponding to an integrated luminosity of

8.7 fb
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and 3.0 fb
�1

, respectively.
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One of the three necessary conditions for baryon asymmetry in the Universe is the nonin-
variance of the fundamental interactions under the simultaneous transformation of the
charge conjugation (C) and parity (P ) operators, referred to as CP violation [1]. The
Cabibbo-Kobayashi-Maskawa (CKM) formalism describes CP violation in the Standard
Model (SM) of particle physics [2,3] through an irreducible phase in the quark-mixing ma-
trix. Over the past sixty years, CP violation has been observed in the K, D, and B-meson
systems by several experiments [4–13]. In the charm quark sector, the recent observation
of CP violation [13] stimulates a wide discussion to understand its nature. Further precise
measurements may resolve the intricate theoretical debate on whether the observed value
is consistent with the SM [14–29]. The discovery measurement of CP violation in neutral
charm meson decays used the di↵erence between two time-integrated CP -violating asym-
metries of Cabibbo-suppressed D0 decays, �ACP = ACP (K�K+)�ACP (⇡�⇡+), found to
be �ACP = (�15.4± 2.9)⇥ 10�4 [13]. The time-integrated CP asymmetry for f = K�K+

and f = ⇡�⇡+ corresponds to

ACP (f) ⌘

R
dt ✏(t)

⇥
�(D0

! f)(t)� �(D0
! f)(t)

⇤
R
dt ✏(t)

⇥
�(D0 ! f)(t) + �(D0 ! f)(t)

⇤ , (1)

where ✏(t) is the reconstruction e�ciency as a function of the D0 decay time and � denotes
the decay rate. This Letter presents measurements of the time-integrated CP asymmetries
in D0

! K�K+ decays. Combining the measurements of ACP (K�K+) and �ACP , it is
possible to quantify the amount of CP violation in the decay amplitude for D0

! K�K+

and D0
! ⇡�⇡+ decays and provide important insight in the breaking of U -spin symmetry.

The mixing in the neutral charm system implies that ACP (f) is the sum of a component
related to the CP violation in the decay amplitude, adf , and a component related to D0–D0

mixing and the interference between mixing and decay, �Yf . Up to first order in the D0

mixing parameters [30–37], the time-integrated CP asymmetry can be written as

ACP (f) ⇡ adf +
htif
⌧D

·�Yf , (2)

where htif is the mean decay time of the D0 mesons in the experimental data sample and
⌧D is the D0 lifetime [38,39].

The neutral charm mesons considered are produced in the strong-interaction decays
D⇤+

! D0⇡+ from D⇤+ mesons created in proton-proton (pp) interactions. The charge of
the accompanying “tagging” pion (⇡+

tag) is used to identify the flavor of the D0 meson at
production. Throughout this Letter, the inclusion of charge conjugation decay modes is
implied, except in the definition of the asymmetries, and D⇤+ and � indicate the D⇤(2010)+

and �(1020) mesons, respectively. The measured asymmetry, A(K�K+), is defined as

A(K�K+) ⌘
N (D⇤+

! D0⇡+)�N
�
D⇤�

! D0⇡��

N (D⇤+ ! D0⇡+) +N
�
D⇤� ! D0⇡�

� , (3)

where N denotes the observed signal yield in the data, and the D0 meson decays into
K�K+. This asymmetry can be approximated as

A(K�K+) ⇡ ACP (K
�K+) + AP(D

⇤+) + AD(⇡
+
tag), (4)

1

CPV on heavy meson decays

Phys. Rev. Lett.122, 211803 (2019)
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QCD LCSR predictions    (1 order magnitude bellow)ACP ≈ 10−4
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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
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B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
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states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
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Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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One of the three necessary conditions for baryon asymmetry in the Universe is the nonin-
variance of the fundamental interactions under the simultaneous transformation of the
charge conjugation (C) and parity (P ) operators, referred to as CP violation [1]. The
Cabibbo-Kobayashi-Maskawa (CKM) formalism describes CP violation in the Standard
Model (SM) of particle physics [2,3] through an irreducible phase in the quark-mixing ma-
trix. Over the past sixty years, CP violation has been observed in the K, D, and B-meson
systems by several experiments [4–13]. In the charm quark sector, the recent observation
of CP violation [13] stimulates a wide discussion to understand its nature. Further precise
measurements may resolve the intricate theoretical debate on whether the observed value
is consistent with the SM [14–29]. The discovery measurement of CP violation in neutral
charm meson decays used the di↵erence between two time-integrated CP -violating asym-
metries of Cabibbo-suppressed D0 decays, �ACP = ACP (K�K+)�ACP (⇡�⇡+), found to
be �ACP = (�15.4± 2.9)⇥ 10�4 [13]. The time-integrated CP asymmetry for f = K�K+

and f = ⇡�⇡+ corresponds to

ACP (f) ⌘

R
dt ✏(t)

⇥
�(D0

! f)(t)� �(D0
! f)(t)

⇤
R
dt ✏(t)

⇥
�(D0 ! f)(t) + �(D0 ! f)(t)

⇤ , (1)

where ✏(t) is the reconstruction e�ciency as a function of the D0 decay time and � denotes
the decay rate. This Letter presents measurements of the time-integrated CP asymmetries
in D0

! K�K+ decays. Combining the measurements of ACP (K�K+) and �ACP , it is
possible to quantify the amount of CP violation in the decay amplitude for D0

! K�K+

and D0
! ⇡�⇡+ decays and provide important insight in the breaking of U -spin symmetry.

The mixing in the neutral charm system implies that ACP (f) is the sum of a component
related to the CP violation in the decay amplitude, adf , and a component related to D0–D0

mixing and the interference between mixing and decay, �Yf . Up to first order in the D0

mixing parameters [30–37], the time-integrated CP asymmetry can be written as

ACP (f) ⇡ adf +
htif
⌧D

·�Yf , (2)

where htif is the mean decay time of the D0 mesons in the experimental data sample and
⌧D is the D0 lifetime [38,39].

The neutral charm mesons considered are produced in the strong-interaction decays
D⇤+

! D0⇡+ from D⇤+ mesons created in proton-proton (pp) interactions. The charge of
the accompanying “tagging” pion (⇡+

tag) is used to identify the flavor of the D0 meson at
production. Throughout this Letter, the inclusion of charge conjugation decay modes is
implied, except in the definition of the asymmetries, and D⇤+ and � indicate the D⇤(2010)+

and �(1020) mesons, respectively. The measured asymmetry, A(K�K+), is defined as

A(K�K+) ⌘
N (D⇤+

! D0⇡+)�N
�
D⇤�

! D0⇡��

N (D⇤+ ! D0⇡+) +N
�
D⇤� ! D0⇡�

� , (3)

where N denotes the observed signal yield in the data, and the D0 meson decays into
K�K+. This asymmetry can be approximated as

A(K�K+) ⇡ ACP (K
�K+) + AP(D

⇤+) + AD(⇡
+
tag), (4)

1

CPV on heavy meson decays

Phys. Rev. Lett.122, 211803 (2019)

Khodjamirian, Petrov,          
Phys. Lett. B 774, 235 (2017)new physics? nonperturbative effects?!

QCD LCSR predictions    (1 order magnitude bellow)ACP ≈ 10−4

what about CPV on ?D → hhh
searches in many process at LHCb, BESIII, BeleII

is expected soon with LHCb run II
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context 
π 

B

π
π

Multi-body hadronic decays of B and D mesons

are sensitive to strong phases 

signature of resonances on data

 spectroscopy exotics, tetra-quarks, 
pentaquark,… 

 study CP violation

Dalitz plot
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➤ Dalitz plot:  
Technique to analyse three-body decays 

➤ 2 variables are enough to describe the 
phase-space 

➤ Axes are defined as: 

s12 = m2
12 = (p1 + p2)

2

s23 = m2
23 = (p2 + p3)

2

s31 = m2
31 = (p3 + p1)

2

➤ Event distribution is proportional to 
square of the decay amplitude

new high data sample from LHCb
more to come from LHCb, BelleII, BESIII

better models are needed (challenge) 
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exe
mp

lific
ado

na
fig.

1.5,
par

a al
gun

s ca
sos

de i
nter

esse
nes

te t
rab

alho
, em

que
as b

olha
s

ama
rela

e az
ul s

ão,
resp

ecti
vam

ente
, os

aco
plam

ento
s do

tipo
axia

l 〈K
π|A

µ |D〉 e v
etor

ial

〈K|V
µ |D〉. E

xist
em,

aind
a, m

uita
s ou

tras
pos

sibi
lida

des
, nã
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é o

sup
rim

ido
de c

or (
colo

r

sup
pres

sed)
, po

is u
ma

emi
ssão

inte
rna

do
W

gera
um

par
que

pre
cisa

com
bin

ar a
carg

a

de
cor

ade
qua

dam
ente

com
os q

uar
ks d

o mar
, pa

ra form
ar o

s há
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Já o

diag
ram

a d

é ch
ama

do d
e an

iqui
laçã
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To extract  information from data 
we need an amplitude MODEL

28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)dynamics
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standard experimental approach
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28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)

D0 ! Ks⇡
�⇡+

 (2+1) approximation ignore the interaction with 3rd particle (bachelor)

isobar model widely used by experimentalists: 

D
+
! W

+ which, subsequently gives rise to the processes shown in Fig. 3. The correspond-

ing amplitude is proportional to the product of matrix elements h(KKK)+|Aµ
|0ih0|Aµ|M

+
i,

where A
µ is the axial current. The Triple-M is composed by a non-resonant term and two

resonant contributions, associated with the � and the f0. The non-resonant amplitude is

a direct prediction from chiral symmetry and represented by a polynomial, with no free

parameters. It describes a proper three-body interaction, rather than the of 2+1 decom-

position (two-body subsystem+spectator). As this contribution involves no loops, it is real

for theoretical reasons and, therefore, adequate for fixing the overall phase of the Triple-M

amplitude.

The resonant contributions involve expressions which are very di↵erent from the Ak used

in the isobar model amplitude A =
P

ck Ak, but these expressions yield a similar line shape.

However, in the Triple-M, the free coe�cients ck are absent, because the intensity of each

resonance is predicted by the underlying dynamics. In particular, the � contribution is

completely fixed, for its intensity is related directly with the decay width into K̄K. The

case of the f0 is di↵erent, just because one does not have precise values for its mass and

couplings. Therefore, the three parameters in the amplitude, namely mf0 , cd, and cm, are

left to be determined by fits to data. In the K
�
K

+
K

+ final state one can access only the

tail of the f0, and therefore this channel may not be the best one for the determination

of these three parameters. The decay D
+
s ! ⇡

�
⇡
+
⇡
+, where the f0(980) is the dominant

component, would be the most adequate for this measurement. It is worth mentioning a

recent work [21] on this subject, where the f0(980) line shape is obtained in the context of

the Chiral Unitary theory, from a study of D+
s decays into ⇡

�
⇡
+
⇡
+ and K

�
K

+
K

+.

Our study also encompasses other dynamical e↵ects, representing corrections to the in-

termediate K̄K scattering amplitude, which were discussed in section IV and found to be

small. We have left them out of the Triple-M, for the time being, since the ability of the

leading contributions to reproduce data must be tested first. This kind of testing would

provide important indications about the importance of e↵ects which are not included in the

the present version of the Triple-M, such as isospin 1 resonances, as well as dynamical e↵ects

associated with processes other than the annihilation diagram.
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É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)

D0 ! Ks⇡
�⇡+

 (2+1) approximation ignore the interaction with 3rd particle (bachelor)

isobar model widely used by experimentalists: 

D
+
! W

+ which, subsequently gives rise to the processes shown in Fig. 3. The correspond-

ing amplitude is proportional to the product of matrix elements h(KKK)+|Aµ
|0ih0|Aµ|M

+
i,

where A
µ is the axial current. The Triple-M is composed by a non-resonant term and two

resonant contributions, associated with the � and the f0. The non-resonant amplitude is

a direct prediction from chiral symmetry and represented by a polynomial, with no free

parameters. It describes a proper three-body interaction, rather than the of 2+1 decom-

position (two-body subsystem+spectator). As this contribution involves no loops, it is real

for theoretical reasons and, therefore, adequate for fixing the overall phase of the Triple-M

amplitude.

The resonant contributions involve expressions which are very di↵erent from the Ak used

in the isobar model amplitude A =
P

ck Ak, but these expressions yield a similar line shape.

However, in the Triple-M, the free coe�cients ck are absent, because the intensity of each

resonance is predicted by the underlying dynamics. In particular, the � contribution is

completely fixed, for its intensity is related directly with the decay width into K̄K. The

case of the f0 is di↵erent, just because one does not have precise values for its mass and

couplings. Therefore, the three parameters in the amplitude, namely mf0 , cd, and cm, are

left to be determined by fits to data. In the K
�
K

+
K

+ final state one can access only the

tail of the f0, and therefore this channel may not be the best one for the determination

of these three parameters. The decay D
+
s ! ⇡

�
⇡
+
⇡
+, where the f0(980) is the dominant

component, would be the most adequate for this measurement. It is worth mentioning a

recent work [21] on this subject, where the f0(980) line shape is obtained in the context of

the Chiral Unitary theory, from a study of D+
s decays into ⇡

�
⇡
+
⇡
+ and K

�
K

+
K

+.

Our study also encompasses other dynamical e↵ects, representing corrections to the in-

termediate K̄K scattering amplitude, which were discussed in section IV and found to be

small. We have left them out of the Triple-M, for the time being, since the ability of the

leading contributions to reproduce data must be tested first. This kind of testing would

provide important indications about the importance of e↵ects which are not included in the

the present version of the Triple-M, such as isospin 1 resonances, as well as dynamical e↵ects

associated with processes other than the annihilation diagram.
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Lineshapes

In atomic physics, an unstable state appears as a resonance and near the resonance energy
the scattering amplitude is given by the non-relativistic Breit-Wigner formula, which was
created to describe resonant transitions in capture of slow neutrons. [33]:

f(E) /
1

E � Eo + i�/2
. (94)

This is an approximation valid for narrow and isolated resonances. The relativistic
formulation of the Breit-Wigner formula is written as

1

p2 � m2 + im�
. (95)

Since the Isobar model assumes that one particle is the spectator, the resonance occurs in
a given channel, e.g. s12, and the formula for the Isobar model is:

BW(s12) =
1

m2

R � s12 � imR�(s12)
, (96)

where mR is the mass of the resonances and �(s12) is the mass-dependent width:

�(s12) = �R

✓
q

q0

◆2L+1 mR
p
s12

✓
FL
R (z)

FL
R (z0)

◆2

, (97)

where �R is the resonance width.
Another lineshape commonly used for resonances that couple to di↵erent channels is

the Flatté [38]. This formulation will be used in this work to represent a resonance with
mass close to a threshold, such as an f0(980):

F(s12) =
1

m2

R � s12 � imR(⇢⇡⇡g2⇡ + ⇢KKg2K)
, (98)

where g⇡ and gK are dimensionless coupling constants to the KK̄ and ⇡⇡ channels,
respectively, and ⇢⇡⇡ and ⇢KK are the corresponding phase space factors,

⇢⇡⇡ =

r⇣s12
4

� m2
⇡

⌘
+

r⇣s12
4

� m2

⇡0

⌘
(99)

⇢KK =

r⇣s12
4

� m2

K

⌘
+

r⇣s12
4

� m2

K0

⌘
. (100)

4.3 Fitting procedure

The optimum values of the c0ks parameters are obtained using the Maximum Likelihood
Method, taking in account the e�ciency variation across the Dalitz plot and the background
distribution. The fit is performed in the Rio+ software.
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+ which, subsequently gives rise to the processes shown in Fig. 3. The correspond-

ing amplitude is proportional to the product of matrix elements h(KKK)+|Aµ
|0ih0|Aµ|M

+
i,

where A
µ is the axial current. The Triple-M is composed by a non-resonant term and two

resonant contributions, associated with the � and the f0. The non-resonant amplitude is

a direct prediction from chiral symmetry and represented by a polynomial, with no free

parameters. It describes a proper three-body interaction, rather than the of 2+1 decom-

position (two-body subsystem+spectator). As this contribution involves no loops, it is real

for theoretical reasons and, therefore, adequate for fixing the overall phase of the Triple-M

amplitude.

The resonant contributions involve expressions which are very di↵erent from the Ak used

in the isobar model amplitude A =
P

ck Ak, but these expressions yield a similar line shape.

However, in the Triple-M, the free coe�cients ck are absent, because the intensity of each

resonance is predicted by the underlying dynamics. In particular, the � contribution is

completely fixed, for its intensity is related directly with the decay width into K̄K. The

case of the f0 is di↵erent, just because one does not have precise values for its mass and

couplings. Therefore, the three parameters in the amplitude, namely mf0 , cd, and cm, are

left to be determined by fits to data. In the K
�
K

+
K

+ final state one can access only the

tail of the f0, and therefore this channel may not be the best one for the determination

of these three parameters. The decay D
+
s ! ⇡

�
⇡
+
⇡
+, where the f0(980) is the dominant

component, would be the most adequate for this measurement. It is worth mentioning a

recent work [21] on this subject, where the f0(980) line shape is obtained in the context of

the Chiral Unitary theory, from a study of D+
s decays into ⇡

�
⇡
+
⇡
+ and K

�
K

+
K

+.

Our study also encompasses other dynamical e↵ects, representing corrections to the in-

termediate K̄K scattering amplitude, which were discussed in section IV and found to be

small. We have left them out of the Triple-M, for the time being, since the ability of the

leading contributions to reproduce data must be tested first. This kind of testing would

provide important indications about the importance of e↵ects which are not included in the

the present version of the Triple-M, such as isospin 1 resonances, as well as dynamical e↵ects

associated with processes other than the annihilation diagram.
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 FSI is a key ingredient

D = 1− (loop×K) . (7)

As discussed in the sequence, 1/D is the post-QCD version of the BW line shape, eq.(2).

A very important feature of this result is that the amplitude A is unitary. This property

is quite general and derives from the structure of the denominator D, which is suitably

complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing

K−matrix → loop = 0 + iΩI . (8)

+=
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FIG. 5: (a) Decay amplitude in the 2 + 1 approximation; (b) form factor.

The amplitude A is a key element in the description of heavy-meson decays, for they

are present in the FSIs which supplement the weak process of fig.1. Strong interactions

involving three bodies can be very complicated. The simplest class of FSIs corresponds to

the (2 + 1) approximation, represented in fig.5, in which the first diagram in (a) represents

the non-resonant contribution and the other two include particle interactions with one of the

final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related

to the meson-meson scattering amplitude by

F = g [1 + (loop× A)] = g
1

D
, (9)
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complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing
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The amplitude A is a key element in the description of heavy-meson decays, for they

are present in the FSIs which supplement the weak process of fig.1. Strong interactions

involving three bodies can be very complicated. The simplest class of FSIs corresponds to

the (2 + 1) approximation, represented in fig.5, in which the first diagram in (a) represents

the non-resonant contribution and the other two include particle interactions with one of the

final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related

to the meson-meson scattering amplitude by

F = g [1 + (loop× A)] = g
1

D
, (9)

11

Form factor

(2+1) approach

in fig.4 (a), and it is a real function because, at this point we are still dealing with a bare

resonance, described by a pole at its mass. The tree amplitude is then given by A0 = K0.
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The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.
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The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.

Repeating this indefinitely and adding the results, we obtain a scattering amplitude of the

form

A = K ×
[
1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·

]
, (3)

loop = ΩR + iΩI , (4)

K = K0 +K1 +K2 + · · · . (5)

The geometric series in eq.(3) can be summed and one has
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D = 1− (loop×K) . (7)

As discussed in the sequence, 1/D is the post-QCD version of the BW line shape, eq.(2).

A very important feature of this result is that the amplitude A is unitary. This property

is quite general and derives from the structure of the denominator D, which is suitably

complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing

K−matrix → loop = 0 + iΩI . (8)
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The amplitude A is a key element in the description of heavy-meson decays, for they

are present in the FSIs which supplement the weak process of fig.1. Strong interactions

involving three bodies can be very complicated. The simplest class of FSIs corresponds to

the (2 + 1) approximation, represented in fig.5, in which the first diagram in (a) represents

the non-resonant contribution and the other two include particle interactions with one of the

final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related

to the meson-meson scattering amplitude by

F = g [1 + (loop× A)] = g
1

D
, (9)
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The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.

Repeating this indefinitely and adding the results, we obtain a scattering amplitude of the

form

A = K ×
[
1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·

]
, (3)

loop = ΩR + iΩI , (4)

K = K0 +K1 +K2 + · · · . (5)

The geometric series in eq.(3) can be summed and one has
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not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2
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The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.

Repeating this indefinitely and adding the results, we obtain a scattering amplitude of the

form

A = K ×
[
1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·

]
, (3)

loop = ΩR + iΩI , (4)

K = K0 +K1 +K2 + · · · . (5)

The geometric series in eq.(3) can be summed and one has

A =
K
D

, (6)
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-  sum of BW violates two-body unitarity  (close Rs in the same channel - scalars)
  

-  resonance's mass and width are processes dependent
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FSI as source of CP asymmetry in B decays
massive localized Acp

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2016-176
LHCb-PAPER-2016-022

July 20, 2016

Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡

+

The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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B± ! h±h�h+

suggest
 dynamic effect
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rescattering as a CPV mechanism

CPT must be preserved

CPV in one channel should be compensated by 
another,  same quantum #,  with opposite sign

X
��CP = 0

  

CPT Invariance
CPT invariance  ⇒ Same lifetime and same mass to particle and anti-particle. 
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implemented in LHCb 
amplitude analysis:
B± ! ⇡�⇡+⇡±
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(a) (b)

(c) (d)

Figure 6: Fit projections of each model (a) in the low mlow region and (b) in the full range
of mhigh, with the corresponding asymmetries shown beneath in (c) and (d). The normalised
residual or pull distribution, defined as the di↵erence between the bin value less the fit value
over the uncertainty on the number of events in that bin, is shown below each fit projection.

indeed this occurs in B+! ⇡+⇡+⇡� decays. The CP asymmetry integrated across the
Dalitz plot is consistent, in all three models, with the value previously determined through
model-independent analysis [12].

7.3 S-wave projections

The squared amplitude and phase motion of the S-wave models as a function of m(⇡+⇡�)
can be seen in Fig. 13(a) and (b) for the isobar approach, Fig. 13(c) and (d) for the
K-matrix approach and Fig. 13(e) and (f) for the QMI approach. A comparison of all
three models, for the CP -averaged S-wave projections, can be seen in Fig. 14. The QMI
S-wave is recorded in Table 18, while the statistical and systematic correlation matrices

28

Table 1: Results for CP -conserving fit fractions, quasi-two-body CP asymmetries, and phases
for each component relative to the ⇢(770)0–!(782) model, given for each S-wave approach. The
first uncertainty is statistical while the second is systematic.

Contribution Fit fraction (10�2) ACP (10�2) B+ phase (�) B� phase (�)

Isobar model

⇢(770)0 55.5 ± 0.6 ± 2.5 +0.7± 1.1± 1.6 — —

!(782) 0.50± 0.03± 0.05 �4.8± 6.5± 3.8 �19± 6± 1 +8± 6± 1

f2(1270) 9.0 ± 0.3 ± 1.5 +46.8± 6.1± 4.7 +5± 3± 12 +53± 2± 12

⇢(1450)0 5.2 ± 0.3 ± 1.9 �12.9± 3.3± 35.9 +127± 4± 21 +154± 4± 6

⇢3(1690)0 0.5 ± 0.1 ± 0.3 �80.1± 11.4± 25.3 �26± 7± 14 �47± 18± 25

S-wave 25.4 ± 0.5 ± 3.6 +14.4± 1.8± 2.1 — —

Rescattering 1.4 ± 0.1 ± 0.5 +44.7± 8.6± 17.3 �35± 6± 10 �4± 4± 25

� 25.2 ± 0.5 ± 5.0 +16.0± 1.7± 2.2 +115± 2± 14 +179± 1± 95

K-matrix

⇢(770)0 56.5 ± 0.7 ± 3.4 +4.2± 1.5± 6.4 — —

!(782) 0.47± 0.04± 0.03 �6.2± 8.4± 9.8 �15± 6± 4 +8± 7± 4

f2(1270) 9.3 ± 0.4 ± 2.5 +42.8± 4.1± 9.1 +19± 4± 18 +80± 3± 17

⇢(1450)0 10.5 ± 0.7 ± 4.6 +9.0± 6.0± 47.0 +155± 5± 29 �166± 4± 51

⇢3(1690)0 1.5 ± 0.1 ± 0.4 �35.7± 10.8± 36.9 +19± 8± 34 +5± 8± 46

S-wave 25.7 ± 0.6 ± 3.0 +15.8± 2.6± 7.2 — —

QMI

⇢(770)0 54.8 ± 1.0 ± 2.2 +4.4± 1.7± 2.8 — —

!(782) 0.57± 0.10± 0.17 �7.9± 16.5± 15.8 �25± 6± 27 �2± 7± 11

f2(1270) 9.6 ± 0.4 ± 4.0 +37.6± 4.4± 8.0 +13± 5± 21 +68± 3± 66

⇢(1450)0 7.4 ± 0.5 ± 4.0 �15.5± 7.3± 35.2 +147± 7± 152 �175± 5± 171

⇢3(1690)0 1.0 ± 0.1 ± 0.5 �93.2± 6.8± 38.9 +8± 10± 24 +36± 26± 46

S-wave 26.8 ± 0.7 ± 2.2 +15.0± 2.7± 8.1 — —

of the behaviour of the S-wave, given in Ref. [29], shows that this CP asymmetry remains
approximately constant up to the inelastic threshold 2mK , where it appears to change
sign; this is seen in all three approaches to the S-wave description. Estimates of the
significance of this CP -violation e↵ect, obtained from the change in negative log-likelihood
between the baseline fit for each S-wave approach and alternative fits where no such CP
violation is allowed, give values in excess of ten Gaussian standard deviations (�) in all
the S-wave models.

An additional source of CP violation, associated principally with the interference
between S- and P-waves, is clearly visible when inspecting the cos ✓hel distributions
separately in regions above and below the ⇢(770)0 peak (Fig. 3(a) and (b)). Here, ✓hel is
the angle, evaluated in the ⇡+⇡� rest frame, between the pion with opposite charge to
the B and the third pion from the B decay. These asymmetries are modelled well in all
three approaches to the S-wave description. Evaluation of the significance of CP violation
in the interference between S- and P-waves gives values in excess of 25� in all the S-wave
models.

At higher m(⇡+⇡�) values, the f2(1270) component is found to have a CP -averaged

4

CPV: amplitude analysis B± ! ⇡�⇡+⇡±
<latexit sha1_base64="/4i6/M8/7rC2AfozhVs2W7AmYcg=">AAACBHicdVDLSgMxFM3UV62vUZfdBIsgiMNMW2m7K3XjsoJ9QGdaMmmmDc08SDJCGbpw46+4caGIWz/CnX9jpi1FRQ/kcjjnXm7ucSNGhTTNTy2ztr6xuZXdzu3s7u0f6IdHbRHGHJMWDlnIuy4ShNGAtCSVjHQjTpDvMtJxJ1ep37kjXNAwuJXTiDg+GgXUoxhJJQ30fKNvRz60ZQjtiPYv0nKeFqUO9IJp1EoV0ypDyzDngKZRLdes6uVKKYAlmgP9wx6GOPZJIDFDQvQsM5JOgrikmJFZzo4FiRCeoBHpKRognwgnmR8xg6dKGUIv5OoFEs7V7xMJ8oWY+q7q9JEci99eKv7l9WLpVZ2EBlEsSYAXi7yYQXVymggcUk6wZFNFEOZU/RXiMeIIS5VbToWwuv1/0i4aVsko3pQL9cYyjizIgxNwBixQAXVwDZqgBTC4B4/gGbxoD9qT9qq9LVoz2nLmGPyA9v4F11GXmw==</latexit>
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Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡

+

The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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 3 different model:
𝜎 as BW (!) + rescattering;
P-vector K-Matrix;
binned freed lineshape (QMI);

PRD101 (2020) 012006; PRL 124 (2020) 031801

B± ! ⇡±K�K+
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Table 1: Results of the Dalitz plot fit, where the first uncertainty is statistical and the second
systematic. The fitted values of ci (c̄i) are expressed in terms of magnitudes |ci| (|c̄i|) and phases
arg(ci) (arg(c̄i)) for each B+ (B�) contribution. The top row corresponds to B+ and the bottom
to B� mesons.

Contribution Fit Fraction(%) ACP (%) Magnitude (B+/B�) Phase[o] (B+/B�)
K⇤(892)0 7.5± 0.6± 0.5 +12.3± 8.7± 4.5 0.94± 0.04± 0.02 0 (fixed)

1.06± 0.04± 0.02 0 (fixed)
K⇤

0(1430)
0 4.5± 0.7± 1.2 +10.4± 14.9± 8.8 0.74± 0.09± 0.09 �176± 10± 16

0.82± 0.09± 0.10 136± 11± 21
Single pole 32.3± 1.5± 4.1 �10.7± 5.3± 3.5 2.19± 0.13± 0.17 �138± 7± 5

1.97± 0.12± 0.20 166± 6± 5
⇢(1450)0 30.7± 1.2± 0.9 �10.9± 4.4± 2.4 2.14± 0.11± 0.07 �175± 10± 15

1.92± 0.10± 0.07 140± 13± 20
f2(1270) 7.5± 0.8± 0.7 +26.7± 10.2± 4.8 0.86± 0.09± 0.07 �106± 11± 10

1.13± 0.08± 0.05 �128± 11± 14
Rescattering 16.4± 0.8± 1.0 �66.4± 3.8± 1.9 1.91± 0.09± 0.06 �56± 12± 18

0.86± 0.07± 0.04 �81± 14± 15
�(1020) 0.3± 0.1± 0.1 +9.8± 43.6± 26.6 0.20± 0.07± 0.02 �52± 23± 32
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Figure 2: Distribution of m2
⇡±K⌥ . Data are represented by points for B+ and B� candidates

separately, with the result of the fit overlaid.
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(a) (b)

(c) (d)

Figure 6: Fit projections of each model (a) in the low mlow region and (b) in the full range
of mhigh, with the corresponding asymmetries shown beneath in (c) and (d). The normalised
residual or pull distribution, defined as the di↵erence between the bin value less the fit value
over the uncertainty on the number of events in that bin, is shown below each fit projection.

indeed this occurs in B+! ⇡+⇡+⇡� decays. The CP asymmetry integrated across the
Dalitz plot is consistent, in all three models, with the value previously determined through
model-independent analysis [12].

7.3 S-wave projections

The squared amplitude and phase motion of the S-wave models as a function of m(⇡+⇡�)
can be seen in Fig. 13(a) and (b) for the isobar approach, Fig. 13(c) and (d) for the
K-matrix approach and Fig. 13(e) and (f) for the QMI approach. A comparison of all
three models, for the CP -averaged S-wave projections, can be seen in Fig. 14. The QMI
S-wave is recorded in Table 18, while the statistical and systematic correlation matrices

28

Table 1: Results for CP -conserving fit fractions, quasi-two-body CP asymmetries, and phases
for each component relative to the ⇢(770)0–!(782) model, given for each S-wave approach. The
first uncertainty is statistical while the second is systematic.

Contribution Fit fraction (10�2) ACP (10�2) B+ phase (�) B� phase (�)

Isobar model

⇢(770)0 55.5 ± 0.6 ± 2.5 +0.7± 1.1± 1.6 — —

!(782) 0.50± 0.03± 0.05 �4.8± 6.5± 3.8 �19± 6± 1 +8± 6± 1

f2(1270) 9.0 ± 0.3 ± 1.5 +46.8± 6.1± 4.7 +5± 3± 12 +53± 2± 12

⇢(1450)0 5.2 ± 0.3 ± 1.9 �12.9± 3.3± 35.9 +127± 4± 21 +154± 4± 6

⇢3(1690)0 0.5 ± 0.1 ± 0.3 �80.1± 11.4± 25.3 �26± 7± 14 �47± 18± 25

S-wave 25.4 ± 0.5 ± 3.6 +14.4± 1.8± 2.1 — —

Rescattering 1.4 ± 0.1 ± 0.5 +44.7± 8.6± 17.3 �35± 6± 10 �4± 4± 25

� 25.2 ± 0.5 ± 5.0 +16.0± 1.7± 2.2 +115± 2± 14 +179± 1± 95

K-matrix

⇢(770)0 56.5 ± 0.7 ± 3.4 +4.2± 1.5± 6.4 — —

!(782) 0.47± 0.04± 0.03 �6.2± 8.4± 9.8 �15± 6± 4 +8± 7± 4

f2(1270) 9.3 ± 0.4 ± 2.5 +42.8± 4.1± 9.1 +19± 4± 18 +80± 3± 17

⇢(1450)0 10.5 ± 0.7 ± 4.6 +9.0± 6.0± 47.0 +155± 5± 29 �166± 4± 51

⇢3(1690)0 1.5 ± 0.1 ± 0.4 �35.7± 10.8± 36.9 +19± 8± 34 +5± 8± 46

S-wave 25.7 ± 0.6 ± 3.0 +15.8± 2.6± 7.2 — —

QMI

⇢(770)0 54.8 ± 1.0 ± 2.2 +4.4± 1.7± 2.8 — —

!(782) 0.57± 0.10± 0.17 �7.9± 16.5± 15.8 �25± 6± 27 �2± 7± 11

f2(1270) 9.6 ± 0.4 ± 4.0 +37.6± 4.4± 8.0 +13± 5± 21 +68± 3± 66

⇢(1450)0 7.4 ± 0.5 ± 4.0 �15.5± 7.3± 35.2 +147± 7± 152 �175± 5± 171

⇢3(1690)0 1.0 ± 0.1 ± 0.5 �93.2± 6.8± 38.9 +8± 10± 24 +36± 26± 46

S-wave 26.8 ± 0.7 ± 2.2 +15.0± 2.7± 8.1 — —

of the behaviour of the S-wave, given in Ref. [29], shows that this CP asymmetry remains
approximately constant up to the inelastic threshold 2mK , where it appears to change
sign; this is seen in all three approaches to the S-wave description. Estimates of the
significance of this CP -violation e↵ect, obtained from the change in negative log-likelihood
between the baseline fit for each S-wave approach and alternative fits where no such CP
violation is allowed, give values in excess of ten Gaussian standard deviations (�) in all
the S-wave models.

An additional source of CP violation, associated principally with the interference
between S- and P-waves, is clearly visible when inspecting the cos ✓hel distributions
separately in regions above and below the ⇢(770)0 peak (Fig. 3(a) and (b)). Here, ✓hel is
the angle, evaluated in the ⇡+⇡� rest frame, between the pion with opposite charge to
the B and the third pion from the B decay. These asymmetries are modelled well in all
three approaches to the S-wave description. Evaluation of the significance of CP violation
in the interference between S- and P-waves gives values in excess of 25� in all the S-wave
models.

At higher m(⇡+⇡�) values, the f2(1270) component is found to have a CP -averaged
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Table 1: Results of the Dalitz plot fit, where the first uncertainty is statistical and the second
systematic. The fitted values of ci (c̄i) are expressed in terms of magnitudes |ci| (|c̄i|) and phases
arg(ci) (arg(c̄i)) for each B+ (B�) contribution. The top row corresponds to B+ and the bottom
to B� mesons.

Contribution Fit Fraction(%) ACP (%) Magnitude (B+/B�) Phase[o] (B+/B�)
K⇤(892)0 7.5± 0.6± 0.5 +12.3± 8.7± 4.5 0.94± 0.04± 0.02 0 (fixed)

1.06± 0.04± 0.02 0 (fixed)
K⇤

0(1430)
0 4.5± 0.7± 1.2 +10.4± 14.9± 8.8 0.74± 0.09± 0.09 �176± 10± 16

0.82± 0.09± 0.10 136± 11± 21
Single pole 32.3± 1.5± 4.1 �10.7± 5.3± 3.5 2.19± 0.13± 0.17 �138± 7± 5

1.97± 0.12± 0.20 166± 6± 5
⇢(1450)0 30.7± 1.2± 0.9 �10.9± 4.4± 2.4 2.14± 0.11± 0.07 �175± 10± 15

1.92± 0.10± 0.07 140± 13± 20
f2(1270) 7.5± 0.8± 0.7 +26.7± 10.2± 4.8 0.86± 0.09± 0.07 �106± 11± 10

1.13± 0.08± 0.05 �128± 11± 14
Rescattering 16.4± 0.8± 1.0 �66.4± 3.8± 1.9 1.91± 0.09± 0.06 �56± 12± 18

0.86± 0.07± 0.04 �81± 14± 15
�(1020) 0.3± 0.1± 0.1 +9.8± 43.6± 26.6 0.20± 0.07± 0.02 �52± 23± 32

0.22± 0.06± 0.04 107± 33± 41
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Figure 2: Distribution of m2
⇡±K⌥ . Data are represented by points for B+ and B� candidates

separately, with the result of the fit overlaid.
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FSI as source of CP asymmetry in D decays

Enhanced charm CP asymmetries from final state interactions

I. Bediaga
Centro Brasileiro de Pesquisas F́ısicas, 22.290-180 Rio de Janeiro, RJ, Brazil

T. Frederico
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

= Acp(D0 → K+K−) − Acp(D0 → π+π−)

how to explain the CPV in charm?
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
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ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

weak phase in  is 20 times smallerKK Lenz , Wilkinson,  Annu. Rev. Nucl. Part. Sci. 71, 59 (2021) 
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

= Acp(D0 → K+K−) − Acp(D0 → π+π−)

how to explain the CPV in charm?
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
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troversy can not stand for charm meson decays with a
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S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:
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⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

weak phase in  is 20 times smallerKK Lenz , Wilkinson,  Annu. Rev. Nucl. Part. Sci. 71, 59 (2021) 
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

= Acp(D0 → K+K−) − Acp(D0 → π+π−)
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

known from 80’s 
experiment
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

known from 80’s 
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.
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pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

general S-matrix can mix many FSI states
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
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� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
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B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

assume only 2 couple-channels to FSI, ie the dominant ones ππ, KK̄

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·
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CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:
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⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

general S-matrix can mix many FSI states

two pions cannot go to three pions due to G-parity

ignore four pion coupling to the 2M channel based on 1/Nc counting

ignore  channel once their coupling to the  channel are suppressed 
with respect to  .

ηη ππ
KK̄

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@
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CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
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1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

assume only 2 couple-channels to FSI, ie the dominant ones ππ, KK̄

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =
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S4M,2M S4M,3M S4M,4M · · ·
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CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:
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ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
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and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
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us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
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For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =
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S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK
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, (6)
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:
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1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

general S-matrix can mix many FSI states

CPT constraint restricted to the two-channels:

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

two pions cannot go to three pions due to G-parity

ignore four pion coupling to the 2M channel based on 1/Nc counting

ignore  channel once their coupling to the  channel are suppressed 
with respect to  .

ηη ππ
KK̄

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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D0 ! K+K�

FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

assume only 2 couple-channels to FSI, ie the dominant ones ππ, KK̄

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =
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where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
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ud ⇡ �(1 � �4 ei�) and VcsV
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and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and
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SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
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cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
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n, labeled by (nM). In particular, considering the final
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discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
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0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:
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and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

dressing the weak tree topology with FSI
penguin are suppressed
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

dressing the weak tree topology with FSI

  D0 → KK

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 KK → KK +

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
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CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 ππ → KK⊗ ⊗

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

same with CKM cc.

penguin are suppressed
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

dressing the weak tree topology with FSI

  D0 → KK

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 KK → KK +

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
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(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.
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FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.
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FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 ππ → KK⊗ ⊗

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].
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which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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D0 → ππ

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 ππ → ππ +

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:
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⇤
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and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].
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⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.
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0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 KK → ππ⊗ ⊗
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Watson theorem

we can use CERN-Munich data from 80’s

 ,  and  are the same independent of the initial processδππ δKK δππ→KK
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FIG. 1. Comparison of solutions I, II and III (Tables I,
II, III) versus data. The gray, blue and green bands corre-
spond to the uncertainty of solutions I, II and III, respectively.
Above 1.4 GeV, solution I fits the data of [5, 64] (solid circles)
and [2, 3] (solid squares), solution II fits [4] (solid diamonds)
and solution III fits the updated (- + -) data from [58] (hol-
low diamonds). The data coming from [9] (empty squares)
and [65] (empty circles) for the phase shift and [66] (solid tri-
angle up), [67](solid triangle down), [6] (empty squares), [65]
(empty circles), [68] (empty triangle up) and [69] (empty tri-
angle down) for the elasticity are just shown for comparison.
The red-dashed vertical line separates the region where the
fits describe both data and dispersion relation results, from
the region above, where the parameterization is just fitted to
data. The blue-dotted vertical line stands at the energy of
the last data point of solutions II and III.

nance.

Concerning the compatibility with the dispersive re-
sults in [28], we show in Fig. 2 the comparison between
the CFD analysis of [28] and our solution I. Up to 1.4
GeV it is enough to refer to solution I as the global so-
lution, because it is the simplest and all them are al-
most indistinguishable below 1.4 GeV. The relevant ob-
servation from Fig. 2 is that the piecewise CFD and our
new parameterization look almost the same below the
KK̄ threshold and are also very similar and compatible
above it. The sharp structure in the region between the
two vertical lines in Fig. 2 is dominated by the f0(980)

TABLE I. Fit parameters of the global parameterization for
the S0-wave solution I. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 5.25±0.28 d0 -5.4±3.7
B1 -0.9±1.1 K1 -4.40±0.16 d1 ≡ 0
B2 15.9±2.7 K2 0.175±0.155 d2 ≡ 0
B3 -5.7±3.1 K3 -0.28±0.06 ε2 10.3±4.0
B4 -22.5±3.7 ε3 ≡ 0
B5 6.9±4.8 Re

√
sp 0.996±7 GeV ε4 ≡ 0

z0 0.137±0.028 GeV Im
√
sp -0.025±8 GeV

TABLE II. Fit parameters of the global parameterization for
the S0-wave solution II. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 4.97±0.08 d0 -16.5±6.2
B1 -1.2±0.8 K1 -4.72±0.08 d1 ≡ 0
B2 15.5±1.5 K2 -0.04±0.18 d2 ≡ 0
B3 -6.0±1.5 K3 -0.31±0.04 ε2 160.8±2.4
B4 -21.4±1.3 ε3 -715.5±8.5
B5 6.3±4.5 Re

√
sp 0.996±7 GeV ε4 -937.3±25.0

z0 0.135±0.031 GeV Im
√
sp -0.025±8 GeV

TABLE III. Fit parameters of the global parameterization
for the S0-wave solution III. sp is the f0(980) pole position
from the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.3±0.3 K0 5.26±0.08 d0 73.4±1.5
B1 -1.0±0.9 K1 -4.64±0.04 d1 27.3±0.4
B2 15.7±1.7 K2 0.10±0.07 d2 -0.3±0.2
B3 -6.0±1.6 K3 -0.29±0.04 ε2 171.6±2.0
B4 -22.1±1.2 ε3 -1038.8±8.3
B5 7.1±2.8 Re

√
sp 0.996±7 GeV ε4 1704.7±30.8

z0 0.136±0.035 GeV Im
√
sp -0.025±8 GeV

contribution that we have factored out explicitly in our
global parameterization.
All in all, this new parameterization is consistent with

the GKPY dispersive data analysis, its output in the
complex plane, as well as with the threshold parame-
ters, the Adler zero, the positions of both σ/f0(500) and
f0(980) poles, and the inelastic region up to 1.43 GeV,
which was consistent with Forward Dispersion Relations.
This consistency is illustrated in Table IV where we show
the χ2/d.o.f. ≡ χ̂2 of our fit with the new parameteriza-
tion in different regions: χ̂2

1 from ππ to KK̄ threshold,
χ̂2
2 from KK̄ threshold to 1.4 GeV, χ̂2

C
in the complex

plane within the applicability region, χ̂2
δ for the phase

above 1.4 GeV and χ̂2
η for the elasticity above 1.4 GeV.

All of them are smaller or equal to one for any of our
three solutions.
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and [65] (empty circles) for the phase shift and [66] (solid tri-
angle up), [67](solid triangle down), [6] (empty squares), [65]
(empty circles), [68] (empty triangle up) and [69] (empty tri-
angle down) for the elasticity are just shown for comparison.
The red-dashed vertical line separates the region where the
fits describe both data and dispersion relation results, from
the region above, where the parameterization is just fitted to
data. The blue-dotted vertical line stands at the energy of
the last data point of solutions II and III.

nance.

Concerning the compatibility with the dispersive re-
sults in [28], we show in Fig. 2 the comparison between
the CFD analysis of [28] and our solution I. Up to 1.4
GeV it is enough to refer to solution I as the global so-
lution, because it is the simplest and all them are al-
most indistinguishable below 1.4 GeV. The relevant ob-
servation from Fig. 2 is that the piecewise CFD and our
new parameterization look almost the same below the
KK̄ threshold and are also very similar and compatible
above it. The sharp structure in the region between the
two vertical lines in Fig. 2 is dominated by the f0(980)

TABLE I. Fit parameters of the global parameterization for
the S0-wave solution I. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 5.25±0.28 d0 -5.4±3.7
B1 -0.9±1.1 K1 -4.40±0.16 d1 ≡ 0
B2 15.9±2.7 K2 0.175±0.155 d2 ≡ 0
B3 -5.7±3.1 K3 -0.28±0.06 ε2 10.3±4.0
B4 -22.5±3.7 ε3 ≡ 0
B5 6.9±4.8 Re

√
sp 0.996±7 GeV ε4 ≡ 0

z0 0.137±0.028 GeV Im
√
sp -0.025±8 GeV

TABLE II. Fit parameters of the global parameterization for
the S0-wave solution II. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 4.97±0.08 d0 -16.5±6.2
B1 -1.2±0.8 K1 -4.72±0.08 d1 ≡ 0
B2 15.5±1.5 K2 -0.04±0.18 d2 ≡ 0
B3 -6.0±1.5 K3 -0.31±0.04 ε2 160.8±2.4
B4 -21.4±1.3 ε3 -715.5±8.5
B5 6.3±4.5 Re

√
sp 0.996±7 GeV ε4 -937.3±25.0

z0 0.135±0.031 GeV Im
√
sp -0.025±8 GeV

TABLE III. Fit parameters of the global parameterization
for the S0-wave solution III. sp is the f0(980) pole position
from the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.3±0.3 K0 5.26±0.08 d0 73.4±1.5
B1 -1.0±0.9 K1 -4.64±0.04 d1 27.3±0.4
B2 15.7±1.7 K2 0.10±0.07 d2 -0.3±0.2
B3 -6.0±1.6 K3 -0.29±0.04 ε2 171.6±2.0
B4 -22.1±1.2 ε3 -1038.8±8.3
B5 7.1±2.8 Re

√
sp 0.996±7 GeV ε4 1704.7±30.8

z0 0.136±0.035 GeV Im
√
sp -0.025±8 GeV

contribution that we have factored out explicitly in our
global parameterization.
All in all, this new parameterization is consistent with

the GKPY dispersive data analysis, its output in the
complex plane, as well as with the threshold parame-
ters, the Adler zero, the positions of both σ/f0(500) and
f0(980) poles, and the inelastic region up to 1.43 GeV,
which was consistent with Forward Dispersion Relations.
This consistency is illustrated in Table IV where we show
the χ2/d.o.f. ≡ χ̂2 of our fit with the new parameteriza-
tion in different regions: χ̂2

1 from ππ to KK̄ threshold,
χ̂2
2 from KK̄ threshold to 1.4 GeV, χ̂2

C
in the complex

plane within the applicability region, χ̂2
δ for the phase

above 1.4 GeV and χ̂2
η for the elasticity above 1.4 GeV.

All of them are smaller or equal to one for any of our
three solutions.

Pelaez, Rodas, Elvira Eur.Phys.J.C 79 (2019) 12, 1008

sets of phase shifts for the S0 wave, leaving only a few
solutions which are consistent with dispersion relations
(and, as it turns out, very similar one to the other, as
discussed in Sec. IV).

When dealing with different data sets one has to weigh
not only the data on a single experiment but one has to take
into account the reliability of the experiments themselves.
So we have done for many waves, where some clearly
faulty experimental data have only been considered to
conservatively enlarge the uncertainties. Concerning the
most controversial S0 wave, we have used the very reliable
data coming from Kl4 and K ! !! decays; to this we add
the results from other experimental analyses of !! scat-
tering available in the literature, either separately or com-
bined in a global fit. We then use forward dispersion
relations to test consistency of the several sets of data.

The present study should therefore be considered, in
particular, as a guideline to the consistency (especially
with forward dispersion relations) of the various data sets.

Next, we use these dispersion relations to improve the
central values of the parameters of the fits given in Sec. II.
The result of such analysis (Sec. IV) is that one can get a
precise description for all waves, consistent with forward
dispersion relations up to s1=2 ! 0:95 GeV and a bit less so
( & 1:5" level) in the whole energy range, 2M! " s1=2 "
1:42 GeV, and even below threshold, down to s1=2 #
!!!

2
p
M!. The greater uncertainties affect the S0 wave for

s1=2 > 0:95 GeV, a not unexpected feature, and, to a lesser
extent, the P wave above 1:15 GeV.

In Sec. V we verify that the scattering amplitudes we
have obtained, which were shown to satisfy s$ u crossing
(by checking the dispersion relations), also verify s$ t
crossing, in that they satisfy two typical crossing sum rules.
In Sec. VI we use the scattering amplitudes we have
determined and the method of the Froissart-Gribov repre-
sentation to calculate a number of low energy parameters
for P, D and some higher waves which, in particular,
provides further consistency tests. We also evaluate, in
Sec. VII, the important quantities %a&0'0 $ a&2'0 (2 and
#&0'
0 &m2

K' $ #&2'
0 &m2

K' for which we find

%a&0'0 $ a&2'0 (2 # &0:077) 0:008'M$2
! ;

#&0'
0 &m2

K' $ #&2'0 &m2
K' # 52:9) 1:6o:

Also in Sec. VII we compare our results with those ob-
tained by other authors using Roy equations and ch.p.t.
However, in the present paper we will not address our-
selves to the question of the chiral perturbation theory
analysis of our !! amplitudes.

Our paper is finished in Sec. VIII with a brief summary,
as well as with a few appendixes. In Appendix A, we
collect the formulas obtained with our best fits. In
Appendix B we give a brief discussion of the Regge for-
mulas used; in particular, we present an improved evalu-
ation of the parameters for rho exchange. Appendix C is

devoted to a discussion of the shortcomings of experimen-
tal phase shift analyses above !1:4 GeV, which justifies
our preference for using Regge formulas in this energy
region.

We end this introduction with a few words on notation
and normalization conventions. We will here denote am-
plitudes with a fixed value of isospin, say I, in channel s,
simply byF&I', f&I'l ; we will specify the channel, F&Is', when
there is danger of confusion. For amplitudes with fixed
isospin in channel t, we write explicitly F&It'.

For scattering amplitudes with well-defined isospin in
channel s, Is, we write

F&Is'&s; t' # 2*
X

l#even

&2l+ 1'Pl&cos$'f&Is'l &s'; Is # even;

F&Is'&s; t' # 2*
X

l#odd

&2l+ 1'Pl&cos$'f&Is'l &s'; Is# odd;

f&I'l &s' # 2s1=2

!k
f̂&I'l ; f̂&I'l # sin#&I'l &s'ei#&I'l &s': (1.1a)

The last formula is only valid when only the elastic channel
is open. When inelastic channels open this equation is no
more valid, but one can still write

f̂ l&s' #
"
%le2i#l $ 1

2i

#

: (1.1b)

The factor 2 in the first formulas in (1.1a) is due to Bose
statistics. Because of this, even waves only exist with
isospin I # 0; 2 and odd waves must necessarily have
isospin I # 1. For this reason, we will often omit the
isospin index for odd waves, writing e.g. f1, f3 instead
of f&1'1 , f&1'3 . Another convenient simplification that we use
here is to denote the!! partial waves by S0, S2, P, D0, D2,
F, etc., in self-explanatory notation.

The quantity %l, called the inelasticity parameter for
wave l, is positive and smaller than or equal to unity. The
elastic and inelastic cross sections, for a given wave, are
given in terms of #l and %l by

"el
l # 1

2

$
1+ %2

l

2
$ % cos2#l

%

; "inel
l # 1$ %2

l

4
;

(1.2)

"el
l ;"

inel
l are defined so that, for collision of particles A, B

(assumed distinguishable),

"tot #
4!2

&1=2&s;mA;mB'
2s1=2

!k

X

l

&2l+ 1'%"el
l + "inel

l (:

(1.3)

When neglecting isospin violations (which we do
unless explicitly stated otherwise) we will take the con-
vention of approximating the pion mass by M! # m!) ’
139:57 MeV. We also define scattering lengths, a&I'l , and
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amplitude

ππ → ππ
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Watson theorem

  ππ → KK

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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D0 ! K+K�

FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

 Cohen et al., Phys. Rev. D 22, 2595 (1980) 
Etkin et al., Phys. Rev. D 25, 1786 (1982)
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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and with
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1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0
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= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:
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which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
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shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
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strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
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charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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 Partial decay widths 
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
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K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0
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D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0
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= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
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Eq. (8) and their charge conjugate ones. It is worth to
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shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0
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asymmetry in Eq. (12) the remaining unknown quan-
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phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.
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at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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channel model and the weak phase carried the products
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:
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0
(M2

D)| ⇡ 0.125 ± 0.025
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1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:
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(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
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real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
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From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
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ments that has been factor out and included in the for-
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the expressions in Eq. (8) are equivalent to the leading
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The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
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observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

the sign of  is determined by the CKM elements and the S-wave phase-shiftsΔΓf

3

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡ and
�KK the elastic phase-shifts, and 0  ⌘  1 the absorp-
tion parameter. To quantify ⌘, we used the parametriza-
tion of the o↵-diagonal S-matrix element from [36, 37]:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�

0
0(s) ⇥(s � 4m2

K
) , (6)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡
and qK =

1

2

p
s � 4m2

K
. From Fig. 3 one finds that, at the D0 mass

|g0

0
(M2

D
)| = 0.125 ± 0.025, which from [36, 37] givesp

1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0

0
(M2

D
) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
cs

Vus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cd

Vud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cd

Vud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cs

Vus aKK .

(7)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
us

V ⇤
cd

Vud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(9)

where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
channels.

In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (10)

If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:

ACP (f) ⇡ ±2
Im[VcsV ⇤

us
V ⇤

cd
Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|

⇥ ⌘�1
p

1 � ⌘2 cos �

"
Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,

(11)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]

Im[VcsV ⇤
us

V ⇤
cd

Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|
= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:
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The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
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determined by the CKM matrix elements and the elastic
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In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0
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phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
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the expressions in Eq. (8) are equivalent to the leading
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could write the analogous to Eq. (9) for other channels
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The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
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property of cancelling each other when summed with all
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In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
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1 � ⌘2 cos �
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

the sign of  is determined by the CKM elements and the S-wave phase-shiftsΔΓf
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S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡ and
�KK the elastic phase-shifts, and 0  ⌘  1 the absorp-
tion parameter. To quantify ⌘, we used the parametriza-
tion of the o↵-diagonal S-matrix element from [36, 37]:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
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0
(s)| ei�

0
0(s) ⇥(s � 4m2

K
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where �0

0
= �⇡⇡ + �KK , q⇡ = 1
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p
s � 4m2

⇡
and qK =
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2

p
s � 4m2

K
. From Fig. 3 one finds that, at the D0 mass

|g0

0
(M2

D
)| = 0.125 ± 0.025, which from [36, 37] givesp

1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0

0
(M2

D
) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
cs

Vus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cd

Vud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cd

Vud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cs

Vus aKK .

(7)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:
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Vud]

⇥ a⇡⇡ aKK ⌘
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1 � ⌘2 cos � ,
(9)

where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
channels.

In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:
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cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
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KK . (10)

If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:
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(11)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]

Im[VcsV ⇤
us

V ⇤
cd

Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|
= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,

need to quantify  and : aππ aKK
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
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0
(s)| ei�0
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K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
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Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:
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K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0
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and with
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1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:
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(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
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D0 ! f
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By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that
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1 � ⌘2 << 1 at the D0 mass, we have:
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio
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csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:
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and with
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1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0
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= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
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(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:
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⇥ a⇡⇡ aKK ⌘
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(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:
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cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:
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which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.
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and D̄0 is defined as ��f = �
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio
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obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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ments that has been factor out and included in the for-
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the expressions in Eq. (8) are equivalent to the leading
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and based on Refs. [5, 29].
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which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
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asymmetry in Eq. (12) the remaining unknown quan-
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phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

=    ΔΓf /2Γf

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

the sign of  is determined by the CKM elements and the S-wave phase-shiftsΔΓf

3

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡ and
�KK the elastic phase-shifts, and 0  ⌘  1 the absorp-
tion parameter. To quantify ⌘, we used the parametriza-
tion of the o↵-diagonal S-matrix element from [36, 37]:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�

0
0(s) ⇥(s � 4m2

K
) , (6)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡
and qK =

1

2

p
s � 4m2

K
. From Fig. 3 one finds that, at the D0 mass

|g0

0
(M2

D
)| = 0.125 ± 0.025, which from [36, 37] givesp

1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0

0
(M2

D
) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
cs

Vus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cd

Vud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cd

Vud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cs

Vus aKK .

(7)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
us

V ⇤
cd

Vud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(9)

where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
channels.

In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (10)

If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:

ACP (f) ⇡ ±2
Im[VcsV ⇤

us
V ⇤

cd
Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|

⇥ ⌘�1
p

1 � ⌘2 cos �

"
Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,

(11)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]

Im[VcsV ⇤
us

V ⇤
cd

Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|
= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,

need to quantify  and : aππ aKK

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0
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K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0
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D)| ⇡ 0.125 ± 0.025

and with
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1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
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where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that
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1 � ⌘2 << 1 at the D0 mass, we have:
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In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio
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= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
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The amplitudes aKK and a⇡⇡ do not carry any or
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process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
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Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
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The identity expressed by (9) illustrates how the so
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of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
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from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
cs

Vus aKK
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
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By considering the amplitudes in Eq. (7) and those for
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where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
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In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp
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If we used the branching fraction information Br(D0 !
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
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Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]
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Vud|
= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,
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1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡ and
�KK the elastic phase-shifts, and 0  ⌘  1 the absorp-
tion parameter. To quantify ⌘, we used the parametriza-
tion of the o↵-diagonal S-matrix element from [36, 37]:
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. From Fig. 3 one finds that, at the D0 mass
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)| = 0.125 ± 0.025, which from [36, 37] givesp

1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0

0
(M2

D
) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
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By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:
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In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:
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cdVud|2 a2
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If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]
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= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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S⇡⇡,KK = SKK,⇡⇡ = ı
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1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡ and
�KK the elastic phase-shifts, and 0  ⌘  1 the absorp-
tion parameter. To quantify ⌘, we used the parametriza-
tion of the o↵-diagonal S-matrix element from [36, 37]:

S⇡⇡,KK(s) = i 4
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= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡
and qK =
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K
. From Fig. 3 one finds that, at the D0 mass

|g0

0
(M2

D
)| = 0.125 ± 0.025, which from [36, 37] givesp

1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0

0
(M2

D
) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
cs

Vus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cd

Vud a⇡⇡ ,
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1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
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(7)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:
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where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
channels.

In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp
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If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:
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where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]
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Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
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from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,
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1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0
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Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:
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For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
us

V ⇤
cd

Vud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(9)

where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
channels.

In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (10)

If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:

ACP (f) ⇡ ±2
Im[VcsV ⇤

us
V ⇤

cd
Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|

⇥ ⌘�1
p

1 � ⌘2 cos �

"
Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,

(11)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]

Im[VcsV ⇤
us

V ⇤
cd

Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|
= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,

PDG

PDG

 :cos ϕ ϕ = δKK − δππ = (δKK + δππ) − 2δππ

from  and  data:ππ ππ → KK

4

which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡ and
�KK the elastic phase-shifts, and 0  ⌘  1 the absorp-
tion parameter. To quantify ⌘, we used the parametriza-
tion of the o↵-diagonal S-matrix element from [36, 37]:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�

0
0(s) ⇥(s � 4m2

K
) , (6)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡
and qK =

1

2

p
s � 4m2

K
. From Fig. 3 one finds that, at the D0 mass

|g0

0
(M2

D
)| = 0.125 ± 0.025, which from [36, 37] givesp

1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0

0
(M2

D
) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
cs

Vus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cd

Vud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cd

Vud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cs

Vus aKK .

(7)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
us

V ⇤
cd

Vud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(9)

where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
channels.

In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (10)

If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:

ACP (f) ⇡ ±2
Im[VcsV ⇤

us
V ⇤

cd
Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|

⇥ ⌘�1
p

1 � ⌘2 cos �

"
Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,

(11)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]

Im[VcsV ⇤
us

V ⇤
cd

Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|
= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,
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S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡ and
�KK the elastic phase-shifts, and 0  ⌘  1 the absorp-
tion parameter. To quantify ⌘, we used the parametriza-
tion of the o↵-diagonal S-matrix element from [36, 37]:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�

0
0(s) ⇥(s � 4m2

K
) , (6)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡
and qK =

1

2

p
s � 4m2

K
. From Fig. 3 one finds that, at the D0 mass

|g0

0
(M2

D
)| = 0.125 ± 0.025, which from [36, 37] givesp

1 � ⌘2 = 0.229 ± 0.046 and ⌘ = 0.973 ± 0.011. Also,
we have �0

0
(M2

D
) = 343o ± 8o.

Summarizing our assumptions up to this point, we: i)
ignored the sub-leading diagrams of the amplitude de-
cay; ii) considered the dominant FSI in ⇡⇡ to be the KK
channel; and iii) used a data driven approach to extract
both ⇡⇡ and ⇡⇡ ! KK magnitude and phases at the D0

mass energy. With these assumptions, the total D0 de-
cay amplitudes produced by the tree diagrams of Fig. 2
are dressed by the hadronic FSI and receive contribu-
tion from both diagonal and o↵-diagonal S-matrix ele-
ments from Eq. (5). The resulting amplitude is denoted
by AD0!f , with f labeling the 0+ final states restricted
to the f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
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Vus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cd

Vud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cd

Vud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cs

Vus aKK .

(7)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements are their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any strong
or weak phases, due to the tree level nature of the decay
process. All of the hadronic FSI comes from S-matrix
elements that has been factor out and included in the D0

and D̄0 decay amplitudes. Eq. (7) is equivalent to the
leading order amplitudes due to the strong interaction
derived in [24] and based on Refs. [5, 20].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (8)

which is fulfilled by the proposed decay amplitudes of
Eq. (7) and their charge conjugate ones. It is worth
noting that the essential ingredients to derive the re-
sult shown in (8) are the unitarity of the S-matrix of the
two-channel model and the weak phase assigned by the
products of the CKM matrix elements. One could write
the analogous of Eq. (8) including more strongly coupled
channels. However, as we argued before, we want to in-
vestigate the main mechanism and so we keep only the
dominant (⇡⇡, KK) channels.

The identity expressed by (8) illustrates how the so
called “compound” CP asymmetry [38, 39], including the

e↵ects of the weak and strong phases, has the important
property of the two terms cancelling one other, when
summed over all final states, in order to satisfy the CPT
condition.
CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.

The CPV di↵erence in the partial decay widths of D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes in Eq. (7) and those for
the charge conjugate state, we get the following:

��⇡⇡ = ���KK = 4 Im[VcsV
⇤
us

V ⇤
cd

Vud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(9)

where � = �KK � �⇡⇡, remembering that a⇡⇡ and aKK

are real and have the same sign. Note that the sign of
��f is determined by the elements of the CKM matrix
and the elastic S-wave phase-shifts in the two final state
channels.

In order to obtain the ACP ’s, one has to estimate a⇡⇡

and aKK , which can be done using the partial widths of
the decays D0 ! ⇡+⇡� and D0 ! K+K�, extracted
from the amplitudes given in Eq. (7). Assuming thatp

1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK . (10)

If we used the branching fraction information Br(D0 !
⇡⇡) and Br(D0 ! KK), we can determine a⇡⇡ and
aKK with Eq. (10). The CP asymmetries are then, from
Eqs. (9) and (3), given by:

ACP (f) ⇡ ±2
Im[VcsV ⇤

us
V ⇤

cd
Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|

⇥ ⌘�1
p

1 � ⌘2 cos �

"
Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,

(11)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively, and the CKM factors ratio reads [33]

Im[VcsV ⇤
us

V ⇤
cd

Vud]

|VcsV ⇤
us

V ⇤
cd

Vud|
= (6.02 ± 0.32) ⇥ 10�4 . (12)

Estimation of the CP asymmetries. Inspecting the CP
asymmetry in Eq. (11), the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could directly
inspect the phase data at this point. However, di↵er-
ently from ⇡⇡, there is no KK̄ scattering data from
meson-nucleon interactions. Without precise knowledge
of the KK̄ phase, we use �KK � �⇡⇡ = (�KK + �⇡⇡) �
2�⇡⇡ = �0

0
� 2�⇡⇡. From ⇡⇡ scattering data [35, 40]

and the ⇡⇡ ! KK phase, given in Fig. 3, we obtained
cos(�KK � �⇡⇡) . 1 in the high mass region. This can
be verified from 1.58 to 1.78 GeV, the upper limit of
the data [35]. The cos �’s extracted from the updated
CERN-Munich data for �⇡⇡ [40] and �0

0
= �KK + �⇡⇡

from [36] are very close to 1. At MD0 energy, �⇡⇡

comes from the extrapolation given in [37] (Solution II,

PDG

PDG
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:
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= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
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,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb
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(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
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⌘�2 � 1 ,
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and from that:
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As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

*

*  not valid1 − η2 ≈ 1
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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P. C. Magalhães⇤
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+

u d

c
Vcd d

_

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�

+
V ⇤

us

u
s

c
s
_

Vcs

u
D0 ! ⇡+⇡�

D0

D0

_

D0 ! K+K�

D0 K+K�
⇡+⇡�

VcsV
⇤
us

VcdV
⇤
ud �⇡⇡!KK

FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

4

which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
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⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
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the experimental branching ratios, our results (Eq. (19))
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The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first
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approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the
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which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.

Acknowledgments. We would like to thank J. R.
Pelaez for clarifying discussion and, along with A. Ro-
das, providing results from their parametrization. We
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systematic uncertainties are unknown in η error is underestimated
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Alternatively one can assume all inelasticity in  is due to KKππ → ππ
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ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.

Independently of the value for ⌘, we can make a pre-
diction for future experimental results of the ratio:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

In fact, relying only on the CPT constraint for two
channels, given by Eq. (8), one can easily obtain the CP
asymmetries as follows:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(18)

which are also valid for the ACP ’s from Eq. (11). Using
experimental inputs for �ACP and Br’s we predict the
values for the ACP ’s:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 .
(19)

Returning to Eq. (14), these imply ⌘ ⇡ 0.87, which is in
between the two quoted values for the inelasticity at the
MD0 energy.
Summary. We predict an enhancement of the ACP ’s

and �ACP for the SCS decays D0(D̄0) ! ⇡�⇡+ and
D0(D̄0) ! K�K+, relying solely on SM physics. The
enhancement is a consequence of ⇡+⇡� and K+K� cou-
pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
the magnitude of the o↵-diagonal S-matrix.

Very recently, during the revision process of this
work, the LHCb collaboration presented new results for
D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
firms our prediction that |ACP (⇡⇡)| > |ACP (KK)|:

ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,

(20)

with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.

Acknowledgments. We would like to thank J. R.
Pelaez for clarifying discussion and, along with A. Ro-
das, providing results from their parametrization. We
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with

4

which is consistent with the data [35] and [40]), result-
ing in cos � = 0.99 ± 0.18. Note that at this energy the
parametrization [37] has a large error bar.

Given the branching fraction values [33]:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(13)

all parameters for calculating the CP asymmetries, of
Eq. (11), are well defined, except for ⌘. So we factorize
its dependence as:

ACP (⇡⇡) = (1.99 ± 0.37) ⇥ 10�3
p

⌘�2 � 1 ,

ACP (KK) = �(0.71 ± 0.13) ⇥ 10�3
p

⌘�2 � 1 ,
(14)

and from that:

�Ath

CP
= �(2.70 ± 0.50) ⇥ 10�3

p
⌘�2 � 1 . (15)

As we pointed out earlier in Fig. 3, there is only one
datum for ⇡⇡ ! KK with center mass energy above
1.8 GeV, needed to reach the D0 mass. The solution
gives ⌘ ⇡ 0.973 ± 0.011 [36], which implies

�Ath

CP
= �(0.64 ± 0.18) ⇥ 10�3 . (16)

The result we found for �Ath

CP
clearly shows the relevant

enhancement of FSI for this quantity, arriving at the sign
and bulk value of the LHCb observation. This indeed
is the largest theoretical prediction within SM without
relying on fitting parameters [3].

Although the systematic uncertainties are absent in
|g0

0
| seen in Fig. 3, the experimental study used to ex-

tract these values at high energies [22], reported high
systematic uncertainties in their estimate of other exper-
imental parameters obtained in that analysis. Therefore
the quoted error in ⌘ in this case is underestimated, which
impacts the error in Eq. (16).

In order to explore other possible values of the inelas-
ticity, if instead of using the ⇡⇡ ! KK data, one uses
⇡⇡ ! ⇡⇡ from Grayer et al. [34], one finds ⌘ = 0.78±0.08.
In this case, we obtain

�Ath

CP
= �(2.17 ± 0.70) ⇥ 10�3 . (17)

This value is compatible with the LHCb experimental
results within 1�, and relies on our assumption that the
KK̄ channel saturates the inelasticity in ⇡⇡ scattering at
the D0 mass.
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ACP (D
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asymmetries as follows:
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�ACP Br(D0 ! ⇡+⇡�)
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,

(18)
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pling via the FSI, whose strong phase contribute to both
amplitudes with opposite sign, due to CPT invariance.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements. If our prediction for
the ACP ’s ratio is confirmed, the forthcoming data could
constrain the S-wave phase-shift di↵erence in the ⇡+⇡�

and K+K� elastic channels at the D0 mass, as well as
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D0(D̄0) ! ⇡�⇡+ and D0(D̄0) ! K�K+ [23] which con-
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ALHCb

CP
(⇡⇡) = (2.32 ± 0.61) ⇥ 10�3 ,

ALHCb

CP
(KK) = (0.77 ± 0.57) ⇥ 10�3 ,
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with the result for ⇡⇡ channel being the first evidence of
an individual charm decay asymmetry. Note that both
LHCb new ACP values are statistically compatible with
ours results. From Eq. (14), with ⌘ = 0.78 ± 0.08 [34] we
find ACP (⇡⇡) = (1.60±0.51)⇥10�3, which is within 1�;
and ACP (KK) = �(0.57 ± 0.18) ⇥ 10�3, within 2�. In
another approach, given by Eq. (18), using �ALHCb

CP
and

the experimental branching ratios, our results (Eq. (19))
are also consistent with the LHCb results within 2�.

The same rescattering mechanism can contribute to
CPV in three-body SCS D decays. In fact, one expects
that the CP asymmetry must be enhanced in the three-
body D+ ! ⇡+⇡�⇡+ and D+ ! K+K�⇡+ phase-space
distribution [41], where the ⇡+⇡� ! K+K� rescattering
is relevant in a large fraction of the phase space available
to K+K�, as seen in Fig. 3. This is left for future study.

Furthermore, as pointed out several times [1, 4], the
SM gives almost no contribution to CPV in double
Cabibbo suppressed (DCS) decays. If CPV is observed
in DCS modes, this will point to new physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.

Acknowledgments. We would like to thank J. R.
Pelaez for clarifying discussion and, along with A. Ro-
das, providing results from their parametrization. We

ACP(KK) = − (0.34 ± 0.15) × 10−3

ACP(ππ) = (0.97 ± 0.05) × 10−3
2σ



Patricia Magalhães CPV in heavy meson decays

31

IFAE Barcelona 20/12

Final remarks

coupling   in a CPT invariant 
framework

ππ ↔ KK̄

Enhanced charm CP asymmetries from final state interactions

I. Bediaga
Centro Brasileiro de Pesquisas F́ısicas, 22.290-180 Rio de Janeiro, RJ, Brazil

T. Frederico
Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, SP, Brazil.

P. C. Magalhães⇤
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We show that the final state interaction (FSI) within a CPT invariant framework are enough to
explain the observed charge-parity (CP) violation di↵erence between D0 ! ⇡�⇡+ and D0 ! K�K+

decays. We consider the dominant tree level diagram and the well known experimental ⇡⇡ ! KK
rescattering data to extract the FSI parameters. We naturally arrive to a value for �ACP very
close to the one observed recently by the LHCb collaboration. We found ACP (D

0 ! ⇡�⇡+) =
(1.90± 0.53)⇥ 10�3 and ACP (D

0 ! K�K+) = �(0.68± 0.19)⇥ 10�3.

Introduction. It is vigorously pursued the search for
physics beyond the standard model (BSM) to explain
critical experimental observations from the last years.
Charge-parity violation (CPV) in charm sector is one of
them. In general, new theories predict new sources of
CPV, with a clear signature and high sensitivity to be
experimentally observed (see [1–5] for update reviews).
This is why Bigi and Sanda called CPV in charm as “The
dark horse candidate” [5].

Recently the LHCb collaboration did a significant step
ahead in the understanding of CPV in charm, with the
observation of the di↵erence between the CP asymme-
tries of the singly Cabibbo-suppressed (SCS) D0 !
⇡+⇡� and D0 ! K+K� decays [6]:

�ALHCb

CP = ACP (D0 ! K�K+) � ACP (D0 ! ⇡�⇡+)

= �(1.54 ± 0.29) ⇥ 10�3 (1)

This result is dominated by the direct CP asymmetry,
with a negligible contribution from the D0 � D̄0 oscilla-
tion [7]. It is believed that, the observed value of �ACP

is at the borderline of the Standard Model and BSM in-
terpretations [3]. The world average is [8]:

�Aav

CP = �(1.61 ± 0.28) ⇥ 10�3 , (2)

with the channel asymmetries defined as:

ACP (f) =
�
�
D0 ! f

�
� �(D̄0 ! f)

� (D0 ! f) + �(D̄0 ! f)
, (3)

where f represents the final state.
There are two theoretical frameworks that address

CPV in charm. The first one is through QCD short-
distance approach [9, 10] whereas the other one consid-
ers contribution of long-distance e↵ects [11, 12]. The first

⇤ p.magalhaes@bristol.ac.uk

approach predicted �Acp one order of magnitude lower
than the experimental value. On the other hand, the
available long-distance approach try to explain the CPV
result in charm within the SM exploring model depen-
dent non-perturbative aspects of QCD.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 1. Illustration of the mechanism for direct CPV in D0

(and D̄0) decays driven by ⇡+⇡� ! K+K� rescattering.

In this work we go beyond previous analysis and show
that within a CPT conserving framework the contribu-
tion of the rescattering process ⇡+⇡� ! K+K�, based
on the values observed in the ’80s [13–15], is a source
of interference between D0 ! ⇡�⇡+ and D0 ! K�K+

amplitudes that magnifies the CPV in these channels,
explaining the bulk value and sign of �av

CP . Such mech-
anism is illustrated in Fig. 1.

The interfering mechanism between ⇡+⇡� and K+K�

states due to the strong final state interaction (FSI), was
also shown to explain the large amount of CPV observed
in some regions of the phase-space of charmless three-
body B decays [16–18], as reviewed in [2]. In D decays,
this idea is also present in Grossman and Schacht [12]
within the QCD topological approach.

Here we consider contributions only from tree level
diagrams to the D0 ! ⇡+⇡� and D0 ! K+K� de-
cays, as given in Fig. 2, and build the corresponding
decay amplitudes with well-grounded properties of the

new measurement for  from LHCb ACP(hh)
agrees with our predictions with 2  

 we still need more data to fully understood it

σ

hadronic FSI (and their strong phases) are crucial to explain CP 
violation in B and D decays

 we proposed a mechanism that can explain CPV in D

still room to add 2nd order effects

predicted  which is compatible with LHCb ΔACP
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In 3-body decays this effect will be bigger and phase-space distributed 

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.
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B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
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B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

  and  have exactly the same Weak vertex D+ → π+π−π+ D+ → π+K−K+
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expected CPV in run II analysis
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In 3-body decays this effect will be bigger and phase-space distributed 

2

SM: (i) the CPT invariance assumption relating decays
with the same quantum numbers; (ii) the Watson theo-
rem relating the strong phase from the rescattering pro-
cess ⇡+⇡� ! K+K� to the decay amplitudes; (iii) the
unitarity of the strong S-matrix.

1.4. Charmless Three-Body B± Decays 19

The main Feynman diagrams contributing to the decays studied in this thesis are
illustrated in Figures 1.7–1.10 .

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.7: B� ! ���+�� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.8: B� ! ��K+K� dominant Feynman diagrams.

(a) Tree diagram. (b) Penguin diagram.

FIGURE 1.9: B� ! K�K+K� dominant Feynman diagrams.

Figures 1.7 and 1.8 depict two Feynman diagrams for the B� ! ���+�� and
B� ! ��K+K� decays, respectively. In the tree diagram, the b-quark decay hap-
pens through the emission of a W� boson that results in a �� and a R0. For the
B� ! ���+�� (B� ! ��K+K�) decay, R0 represents any neutral resonance that
decays in �+�� (K+K�). In the penguin diagram, the b-quark decay is due to a
virtual W� boson emission and absorption along with a gluon emission.

Figures 1.9 and 1.10 show two Feynman diagrams for the B� ! K�K+K� and
B� ! K��+�� decays, respectively. In the tree diagram, the b-quark decay occurs
through a virtual W� boson emission resulting in K� and R0. For the B� ! K�K+K�
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FIG. 2. Quark tree diagrams for the D0 ! ⇡+⇡� and
D0 ! K+K� decays.

CPT implications for CPV. The CPT constraint has
been used in charmless B decays with exciting results on
experimental analysis [19, 20] and phenomenological in-
terpretations [16–18, 21]. The large phase-space available
in B decays allows, in principle, several possible rescatter-
ing contributions for each channel which makes the CPT
invariance constraint non-consensual. However, the con-
troversy can not stand for charm meson decays with a
small and well-explored phase space.

The final states of non-leptonic SCS D0 decays involves
only mesons, with dominance of pion and kaon (M) chan-
nels. In principle, the FSI could mix all these states,
through the general strong S-matrix, involving any num-
ber of mesons, allowed by the phase-space:

S =

0

B@

S2M,2M S2M,3M S2M,4M · · ·
S3M,2M S3M,3M S3M,4M · · ·
S4M,2M S4M,3M S4M,4M · · ·

· · · · · · · · · · · ·

1

CA , (4)

where each element is a matrix representing the strong
coupling between the channels with a number of mesons
n, labeled by (nM). In particular, considering the final
state interactions in D0 ! ⇡+⇡� and D0 ! K+K�

decays, we know that two pions cannot go to three pions
due to the G-parity. At this point we can ignore four pion
coupling to the 2M channel, namely S2M,4M ⇡ 0 and
S4M,2M ⇡ 0 (based on 1/Nc counting arguments [22, 23]),
and the coupling to ⌘⌘ channel [24] once their coupling to
the ⇡⇡ channel are suppressed with respect to KK̄ one.

Consequently, for CPV studies in D0 ! ⇡+⇡� and
D0 ! K+K� decays is a good approximation con-
sider only S2M,2M restricted to (⇡⇡, KK) channels. The
S2M,2M unitarity is a crucial element to validate the CPT
constraint to the D0 ! ⇡+⇡� and D0 ! K+K� decay
channels. This constraint has important consequences,
one of them is the relative sign between the ACP ’s in
these two decay channels.

FSI and CPT constraint. If we assume that the sin-
gle Cabibbo suppressed D0 ! ⇡�⇡+ and D0 ! K�K+

decays proceed via tree level amplitudes neglecting the

suppressed contribution from penguins (P/T ⇠ 0.1 [3]),
as depicted in Fig. 2, there is no possibility to gener-
ate CP violation other then coupling these two channels,
which has di↵erent weak phases, via the strong interac-
tion. This is fulfilled by the rescattering mechanism as
explicitly illustrated in Fig. 1.

The weak phase di↵erence comes with the products
of the CKM matrix elements in the tree amplitudes of
Fig. 2:

VcdV
⇤
ud ⇡ �(1 � �4 ei�) and VcsV

⇤
us ⇡ �(1 � �2) , (5)

and expressed in terms of the known parameters � and
� [25], with the last one being the CP violating phase.
Note that we neglected the weak phase in VcsV ⇤

us because
it is 20 times smaller than the other one [3].

The Watson theorem says that the strong phase
�⇡⇡!KK is the same independent of the initial process.
So we can use the parameters obtained in the ⇡⇡ elas-
tic regime observed in ⇡N ! ⇡⇡N and ⇡N ! KKN
reactions [13–15, 26]. These experiments observed two
important properties. The first one is in the S-wave
⇡+⇡� elastic scattering, where the inelasticity parame-
ter decreases drastically above 1 GeV by opening the KK
channel [26]. The second observation is the dominance of
the KK channel in the inelasticity of the ⇡+⇡� S-wave
scattering below 2 GeV, which also supports our previous
discussion. To be concrete, in Fig. 3 it is shown a collec-
tion of experimental results for the ⇡+⇡� ! K+K� scat-
tering amplitude in the scalar-isoscalar state. From this
figure, we can get the transition amplitude to compute
rescattering e↵ects in the D0 ! ⇡+⇡� and D0 ! K+K�

decays.

FIG. 3. Amplitude |g00 | (left panel) and phase �0
0 in degrees

(right panel) associated with S⇡⇡,KK given in Eq. (7). Ex-
perimental data from Argonne [13] (full circles), Brookhaven
I [14] (empty circles) and Brookhaven II [15] (empty boxes).

For our purpose, it is enough to know the S-matrix
in the S-wave state for the coupled-channels ⇡�⇡+ and
K�K+:

S2M,2M =

✓
S⇡⇡,⇡⇡ S⇡⇡,KK

SKK,⇡⇡ SKK,KK

◆
, (6)

where S⇡⇡,⇡⇡ = ⌘ e2i�⇡⇡ , SKK,KK = ⌘ e2i�KK and

S⇡⇡,KK = SKK,⇡⇡ = ı
p

1 � ⌘2 eı(�⇡⇡+�KK), with �⇡⇡

  and  have exactly the same Weak vertex D+ → π+π−π+ D+ → π+K−K+

Gracias!

#forabolsonaro

thank you!

Obrigada!

Banksy  
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bi-dimension phase-space information 
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O Dalitz plot

A conservação da energia e momento  
introduz quatro equações de vínculo

No referencial de repouso da partícula "mãe" (P=0), as três 
"filhas" formam um plano. Na ausência de spin, a orientação 

espacial desse plano é irrelevante:

9 components - 4 vínculos - 3 ângulos = 2 graus de liberdade

In three-body decay phase-space is NOT one-dimension! 

34
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Three-body kinematics : DALITZ plot

DALITZ PLOT : proposed by Richard Dalitz (1925-2006) in 1953

28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)
29

P ! abc

Mandelstam variables for 3-body

28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)

s12 + s13 + s12 = M2 +m2
1 +m2

2 +m2
3

dynamics
resonances 



Patricia Magalhães CPV in heavy meson decays

35

IFAE Barcelona 20/12

cosϕ

we don’t have data from KK scattering !

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
ceive contribution from both diagonal and o↵-diagonal
S-matrix elements from Eq. (6). The resulting ampli-
tude is denoted by AD0!f , with f labeling the 0+ final
states restricted to f ⌘ ⇡+⇡� and K+K� channels:

AD0!KK =⌘ e2i�KK V ⇤
csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
strong phases, due to the tree level nature of the decay
process, all the hadronic FSI comes from S-matrix ele-
ments that has been factor out and included in the for-
mulation of the D0 and D̄0 decay amplitudes. Note that
the expressions in Eq. (8) are equivalent to the leading
order amplitudes in the strong interaction derived in [16]
and based on Refs. [5, 29].

The CPT constraint restricted to the two-channels cor-
responds to:

X

f=(⇡⇡,KK)

(|AD0!f |2 � |AD̄0!f |2) = 0 , (9)

which is fulfilled by the proposed decay amplitudes of
Eq. (8) and their charge conjugate ones. It is worth to
observe that the essential ingredients to derive the result
shown in (9) are the unitarity of S-matrix of the two-
channel model and the weak phase carried the products
of the CKM matrix elements in Eq.(5). In principal one
could write the analogous to Eq. (9) for other channels
strongly coupled however, in our case, it simplifies as
the other channels, like ⌘⌘, 3⇡, 4⇡ decouple from the
(⇡⇡, KK) channels.

The identity expressed by (9) illustrates how the so
called “compound” CP asymmetry [30, 31], including the
e↵ects of the weak and strong phases, has the important
property of cancelling each other when summed with all
final states in order to satisfy the CPT condition.

CP asymmetries in D0 ! ⇡�⇡+ and D0 ! K�K+.
The CPV di↵erence in the partial decay widths of the D0

and D̄0 is defined as ��f = �
�
D0 ! f

�
� �(D̄0 ! f) .

By considering the amplitudes (8) and the ones for the
charge conjugate state, we get:

��⇡⇡ = ���KK = �4 Im[V ⇤
csVusVcdV

⇤
ud]

⇥ a⇡⇡ aKK ⌘
p

1 � ⌘2 cos � ,
(10)

where � = �KK � �⇡⇡, reminding that a⇡⇡ and aKK are
real and have the same sign. Therefore, the sign of ��f is
determined by the CKM matrix elements and the elastic
S-wave phase-shifts in the two final state channels.

In order to obtain the ACP ’s one has to estimate a⇡⇡

and aKK , which can be done from the partial widths of
the D0 ! ⇡+⇡� and D0 ! K+K� decays, extracted
from the amplitudes given in Eq. (8). By taking into
account that

p
1 � ⌘2 << 1 at the D0 mass, we have:

�⇡⇡ ⇡ ⌘2|V ⇤
cdVud|2 a2

⇡⇡ and �KK ⇡ ⌘2|V ⇤
csVus|2a2

KK .
(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK

using Eq. (11). The CP asymmetries are then obtained
from Eqs. (10) and (3) and given by:

ACP (f) ⇡ ± 2�4(sin �) ⌘�1
p

1 � ⌘2 cos �

⇥
"

Br(D0 ! K+K�)

Br(D0 ! ⇡+⇡�)

#± 1
2

,
(12)

where + and � stand for f = ⇡+⇡� and K+K�, respec-
tively. Furthermore, we have used the ratio

Im[V ⇤
csVusVcdV ⇤

ud]

|V ⇤
csVusVcdV ⇤

ud|
= ��4 sin � , (13)

obtained from Eq. (5) in order to derive the final expres-
sion for the CP asymmetry.
Estimation of the CP asymmetries. Inspecting the CP

asymmetry in Eq. (12) the remaining unknown quan-
tity is the di↵erence between the KK and ⇡⇡ S-wave
phase-shifts. Ideally, to quantify the contribution from
cos(�KK � �⇡⇡) at the MD energy, we could inspect di-
rectly the phase data at this point. However, di↵erently
from ⇡⇡, there is no KK̄ scattering data from meson-
nucleon interactions. From the dynamics of these spin
and isospin 0+ coupled-channels, we know they share the
same resonances, therefore, the phases are not expected
to be far distant near 2 GeV, which is already at the edge
of ⇡⇡ data. Without a precise knowledge of KK̄ phase,
we can use �KK ��⇡⇡ = �0

0
�2�⇡⇡ = (�KK +�⇡⇡)�2�⇡⇡.

From ⇡⇡ scattering data [26, 32] and the ⇡⇡ ! KK
phase, given in Fig. 3, we obtained cos(�KK � �⇡⇡) . 1
at the high mass region. This can be verified in Table I
in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

we can use  and  data:ππ KK → ππ

3

and �KK the elastic phase-shifts, and 0  ⌘  1 is
the absorption parameter. To quantify ⌘, we use the
data for the S-wave scattering ⇡+⇡� ! K+K� col-
lected in Refs. [27, 28], and represented in terms of the
parametrization of the o↵-diagonal S-matrix element:

S⇡⇡,KK(s) = i 4

r
q⇡qK

s
|g0

0
(s)| ei�0

0(s) ⇥(s � 4m2

K) , (7)

where �0

0
= �⇡⇡ + �KK , q⇡ = 1

2

p
s � 4m2

⇡ and qK =
1

2

p
s � 4m2

K . From Refs. [27, 28] and data shown in
Fig. 3 one gets at the D0 mass |g0

0
(M2

D)| ⇡ 0.125 ± 0.025

and with
p

1 � ⌘2 ⇡ 0.229 ± 0.046 giving ⌘ ⇡ 0.973 ±
0.003. Also, we have �0

0
= �⇡⇡ + �KK ⇡ 343o ± 8o.

The D0 decay amplitudes produced by the tree dia-
grams of Fig. 2 are dressed by the hadronic FSI and re-
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S-matrix elements from Eq. (6). The resulting ampli-
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csVus aKK

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
cdVud a⇡⇡ ,

AD0!⇡⇡ =⌘ e2i�⇡⇡ V ⇤
cdVud a⇡⇡

+ i
p

1 � ⌘2 ei(�⇡⇡+�KK) V ⇤
csVus aKK .

(8)

For the D̄0 ! f decay amplitude, AD̄0!f , the CKM
matrix elements assume their complex conjugates.

The amplitudes aKK and a⇡⇡ do not carry any or
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�
� �(D̄0 ! f) .
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⇥ a⇡⇡ aKK ⌘
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(10)
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(11)

In addition, the branching fractions, Br(D0 ! ⇡⇡) and
Br(D0 ! KK), can be used to determine a⇡⇡ and aKK
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in the energy range from 1.58 to 1.78 GeV, the upper
limit of data [26]. To obtain the value at the MD en-
ergy, we have used an analytical continuation of those

Pelaez parametrization

4

TABLE I. Values of cos� extracted from updated CERN-
Munich data for �⇡⇡ [32] and using � = �0

0 � 2�⇡⇡ with
�0
0 = �KK + �⇡⇡ from [27]. At

p
s = 1.846 GeV, �⇡⇡ comes

from the extrapolation given in [28] (Solution II, which is
consistent with the data [26] and [32]).

p
s [GeV] cos�

1.58 0.989 ± 0.149

1.62 0.994 ± 0.105

1.66 0.999 ± 0.040

1.70 0.987 ± 0.160

1.74 0.999 ± 0.048

1.78 0.999 ± 0.037

1.846 0.987 ± 0.175

data set as proposed in [28]. Note that at this energy the
parametrization have a large error bar.

The CP asymmetries are estimated from Eq. (12),
using the values from The Review of Particle Physics
(2021) [25] for the CKM parameters: � = 0.22650 ±
0.00048, � = 1.196+0.045

�0.043, and the branching fractions:

Br(D0 ! ⇡+⇡�) = (1.455 ± 0.024) ⇥ 10�3 ,

Br(D0 ! K+K�) = (4.08 ± 0.06) ⇥ 10�3 .
(14)

Furthermore, for the parameters of the o↵-diagonal ⇡⇡ !
KK S-matrix element at the D0 mass we used: ⌘ ⇡
0.973 [27], as argued before, which results in

ACP (⇡⇡) = (1.90 ± 0.53) ⇥ 10�3 ,

ACP (KK) = �(0.68 ± 0.19) ⇥ 10�3 .
(15)

With the above values we find the present theoretical
value for the di↵erence between the ACP ’s to be:

�Ath
CP = �(2.58 ± 0.72) ⇥ 10�3 . (16)

The agreement between our theoretical estimate (16),
the recent experimental value from the LHCb collabo-
ration (1) and the world average (2) leaves little room to
new physics contributions to �ACP in charm.

As a matter of fact, relying only on the CPT constraint
restricted to two channels and given in Eq. (9), one can
easily obtain the CP asymmetries as:

ACP (⇡⇡) = � �ACP Br(D0 ! K+K�)
Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)

,

ACP (KK) =
�ACP Br(D0 ! ⇡+⇡�)

Br(D0 ! K+K�) + Br(D0 ! ⇡+⇡�)
,

(17)

which is also valid for the ACP ’s from Eq. (12). There-
fore, using only experimental inputs for �ACP and Br’s
we can access the ACP ’s for the individual channels:

ACP (⇡⇡) = (1.135 ± 0.021) ⇥ 10�3 ,

ACP (KK) = �(0.405 ± 0.077) ⇥ 10�3 ,
(18)

which is within the interval of our theory based re-
sults (15). These values are compatible with other recent
calculations [33, 34] based on di↵erent methods.
Summary. We predict the ACP ’s for the D0 ! ⇡�⇡+

and D̄0 ! K�K+, resulting in a �ACP compatible with
the recently observed LHCb value [6], relying absolutely
in SM physics and at this level no BSM e↵ects should
be called to explain the experimental result. The key in-
gredient to produce the CP violation is the coupling be-
tween the ⇡+⇡� and K+K� channels as the source of the
strong phase introduced in a CPT invariant framework.
Our approach takes into account the final state interac-
tion in accordance with the Watson theorem, besides the
standard CKM matrix elements for these decays.

It is expected that ACP (D0 ! ⇡�⇡+) and ACP (D0 !
K�K+) will be soon measured by the LHCb collabora-
tion, which will put a straight constraint to the validity
of the CPT condition for only these two channels:

ACP (D
0 ! ⇡�⇡+)

ACP (D0 ! K�K+)
= �Br(D0 ! K�K+)

Br(D0 ! ⇡�⇡+)
= �2.8± 0.06 .

On the other side, if our predictions are verified, the
forthcoming data could constrain the phase-shift di↵er-
ence in the elastic ⇡+⇡� and K+K� channels at the D0

mass.
Furthermore, the same rescattering mechanism can

contribute to CPV in three-body SCS D decays. In
fact, one expect that the CP asymmetry must be en-
hanced looking to the three-body D+ ! ⇡+⇡�⇡+ and
D+ ! K+K�⇡+ phase-space distribution [35], where
the ⇡+⇡� ! K+K� rescattering is relevant in a large
amount of the phase space available to K+K�, as seen
in Fig. 3. This is left for a future study.

In conclusion, we found that there is no much room to
observe BSM physics in the singly Cabibbo suppressed
channels D0 ! ⇡�⇡+ and D0 ! K�K+. However, as it
was pointed out several times [1, 4], the SM gives almost
no contribution to CPV in double Cabibbo suppressed
(DCS) decays. If CPV is observed in DCS modes this
will establish the intervention of New Physics. Following
the present approach, the best channels to observe CPV
in DCS, are the D+ ! K+⇡�⇡+ and D+ ! K+K�K+,
which also has the rescattering ⇡�⇡+ ! K�K+ as a
mechanism to enhance the observable CP violation.
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Any 3-body decay amplitude

D = 1− (loop×K) . (7)

As discussed in the sequence, 1/D is the post-QCD version of the BW line shape, eq.(2).

A very important feature of this result is that the amplitude A is unitary. This property

is quite general and derives from the structure of the denominator D, which is suitably

complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing

K−matrix → loop = 0 + iΩI . (8)
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FIG. 5: (a) Decay amplitude in the 2 + 1 approximation; (b) form factor.

The amplitude A is a key element in the description of heavy-meson decays, for they

are present in the FSIs which supplement the weak process of fig.1. Strong interactions

involving three bodies can be very complicated. The simplest class of FSIs corresponds to

the (2 + 1) approximation, represented in fig.5, in which the first diagram in (a) represents

the non-resonant contribution and the other two include particle interactions with one of the

final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related

to the meson-meson scattering amplitude by

F = g [1 + (loop× A)] = g
1

D
, (9)
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Form factor

(2+1) approach

in fig.4 (a), and it is a real function because, at this point we are still dealing with a bare

resonance, described by a pole at its mass. The tree amplitude is then given by A0 = K0.

=

= + +

uts

(c)

(b)

(a)

+=

+

...+

= +

(d)

=

+

+=

+

+

K KK

K

K

K

K

K KK

A

A

K

A K K K

K

K K K

K

KA KK KK

0

0

1

0

2 2 0

1

0

0

0

1

0

0

0

0

0

0

0

0

1

FIG. 4: Scattering amplitudes T and kernels K: (a) tree level; (b) first perturbative correction; (c)

second perturbative correction; (d) full amplitude.

The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.

Repeating this indefinitely and adding the results, we obtain a scattering amplitude of the

form

A = K ×
[
1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·

]
, (3)

loop = ΩR + iΩI , (4)

K = K0 +K1 +K2 + · · · . (5)

The geometric series in eq.(3) can be summed and one has

A =
K
D

, (6)

10

where D is the denominator given in (7). The imaginary part of D gives rise to a finite

width to the resonance.

In order to go beyond the (2 + 1) approximation, one would need to tackle a rather

complicated three-body problem, which involves both multiple scattering series and proper

three-body interactions, as indicated in Fig.6. It is worth stressing that these FSIs are not a

matter of choice, since they are compulsory contributions to the problem. Part of this sector

can be tackled by means of Fadeev techniques[8] or Khuri-Treiman formalism [10, 34] but

this kind of effort is still incipient to describe the full dynamics of heavy mesons nonleptonic

decays.
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FIG. 6: Decay amplitude: 2 + 1 approximation, supplemented by three-body interactions.

In summary, the decay of a heavy meson into three light mesons involves two distinct

sectors, a weak primary vertex and a structure of final state strong interactions. Although

the former is not simple, the latter may be expected to be much more complicated and

progress in the area depends on the definition of a hierarchy among strong problems. The

simplest subset of problems is provided by the (2 + 1) approximation, which depends on

meson-meson scattering amplitudes and even these two-body interaction are not sufficiently

well known for systems involving pions, kaons and etas, within the phase space provided by

D and B decays.

III. SCATTERING AMPLITUDES

In this work we present a practical model for the inclusion of any number of resonances

in phenomenological meson-meson scattering amplitudes, so that they can be used as trial

functions in more complicated reactions, such as heavy -mesons or τ decays. Instead of
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A.two-bodyunitarizationandresonancelineshapes

Inthedescriptionofthetwo-bodysubsystem,weconsiderjustS-andP-waves,corre-

spondingto(J=1,0,I=1,0)spin-isospinchannels.Theassociatedresonancesare⇢(770),

�(1020),a0(980),andtwoSU(3)scalar-isoscalarstates,S1andSo,correspondingtoasin-

gletandtoamemberofanoctet,respectively.Thephysicalf0(980),togetherwithahigher

massf0state,wouldbelinearcombinationsofS1andSo.Dependingonthechannel,the

intermediatetwo-mesonpropagatorsmayinvolve⇡⇡,KK,⌘⌘,and⇡⌘intermediatestates,

sothereisalargenumberofcoupledchannelstobeconsidered.
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toaLOcontactterm.(b)Structureoftheunitarizedscatteringamplitude.
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The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.

Repeating this indefinitely and adding the results, we obtain a scattering amplitude of the

form

A = K ×
[
1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·

]
, (3)

loop = ΩR + iΩI , (4)

K = K0 +K1 +K2 + · · · . (5)

The geometric series in eq.(3) can be summed and one has

A =
K
D

, (6)

10

Unitarized amplitude should includes all channels with the same (J,I)

K11 K12 K12 K12 K22 K22 + …+ +
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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All other resonance terms in the kernels contain bare poles. However, the evaluation of
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meson-meson interactions at low E

 solid theory to describe MM interactions at low energy == ChPT

NLO:  include resonances as a field
 Ecker, Gasser, Pich and De Rafael

[Nucl. Phys. B321(1989)]  

21 CAPÍTULO 2. AMPLITUDE DE ESPALHAMENTO Kπ

acoplam aos pseudoescalares, no contexto de SU(3). A vantagem desta abordagem, em

comparação com cálculos de O(q4) em ChPT[58], é que ela permite estender o alcance da

teoria a energias mais altas.

O termo da lagrangiana[22] que descreve a interação entre ressonâncias escalares e

mésons pseudoescalares é dado por:

L(2)
S =

2 c̃d
F 2

R0 ∂µφi ∂
µφi −

4 c̃m
F 2

B R0 (σ0 δij + σ8 d8ij) φi φj (2.5)

+
2 cd√
2F 2

dijk Rk ∂µφi ∂
µφi −

4Bcm√
2F 2

[

σ0 dijk + σ8

(

2

3
δik δj8 + di8s djsk

)]

φi φjRk ;

em que c̃d, c̃m e cd, cm são as constantes de acoplamento estre os mésons pseudoescalares e

as ressonâncias escalares R0, singleto, e Rk, membro do octeto, que precisam ser fixadas.

Essa lagrangiana também foi usada para o sistemaKπ na referência [14], na qual os valores

para cd e cm foram estimados, impondo a saturação das constantes de baixa energia pelas

ressonâncias. Os autores obtiveram os valores:

|cd| = 30± 10MeV ; |cm| = 43± 14MeV ; (2.6)

muito próximos dos obtidos em [22], |cd| = 32 MeV e |cm| = 42 MeV, extráıdos do

decaimento a0 → η π. Os valores de c̃d e c̃m foram definidos, como em [22], impondo o

v́ınculo dado pelo limite de grande Nc: |c̃d| = |cd|/
√
3 e |c̃m| = |cm|/

√
3.

A lagrangiana da interação de ressonâncias vetoriais e mésons pesudoescalares,

também proposta em [22], é dada por:

L(2)
V =

iGV√
2
〈Vµνu

µuν〉 ; (2.7)

〈Vµνu
µuν〉 =

1

F 2
V µν
a ∂µφi ∂νφj (ifaij + daij); (2.8)

em que V µν
a é um elemento do octeto vetorial. No caso das ressonâncias com estranheza,

a = 6, 7, temos:

〈Vµνu
µuν〉 =

√
2

F 2

[(

∂µπ
− ∂νK

+ −
1√
2
∂µπ

0 ∂νK
0

)

K̄∗µν

+

(

∂µK
− ∂νπ

+ −
1√
2
∂µK̄

0 ∂νπ
0

)

K∗µν
]

+ ... (2.9)

sendo GV uma constante de acoplamento universal que, no limite de grande Nc, pode ser

aproximada para GV = fπ/
√
2 = 65.3 MeV[66]. Nesse trabalho usamos GV = fKπ/

√
2 =
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L(2)
V =

iGV√
2
〈Vµνu

µuν〉 ; (2.7)

〈Vµνu
µuν〉 =

1

F 2
V µν
a ∂µφi ∂νφj (ifaij + daij); (2.8)

em que V µν
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L(2)
V =

iGV√
2
〈Vµνu

µuν〉 ; (2.7)

〈Vµνu
µuν〉 =

1

F 2
V µν
a ∂µφi ∂νφj (ifaij + daij); (2.8)

em que V µν
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LO:

2.1. AMPLITUDE EM ÁRVORE 20

Termo de contado

O termo de contato é descrito pela lagrangiana efetiva quiral proposta por Gasser e

Leutwyler [21]:

L(2)
M = 3F 2B σ0

+
1

2
∂µφi ∂

µφi −B (σ0 δij + σ8 d8ij) φi φj

−
1

6F 2
fijs fkls φi ∂µφj φk ∂

µφl +
B

24F 2

[

σ0

(

4

3
δij δkl+2 dijs dkls

)

+ σ8

(

4

3
δij dkl8+

4

3
dij8 δkl+2 dijm dkln d8mn

)]

φi φj φk φl , (2.2)

em que F é a constante de decaimento dos mésons no vácuo, φi são os bósons de

Goldstone de SU(3) e dijk e fijs são, respectivamente, as constantes de estrutura simétrica

e antissimétrica de SU(3). Todas as relações e estruturas que envolvem o grupo de

Lie SU(3) estão detalhadas no apêndice B.1. A primeira linha dessa lagrangiana está

associada à quebra espontânea de simetria quiral e é o termo responsável por conferir

massas aos pseudoescalares; a segunda corresponde à propagação livre e, as demais, a

auto interações, responsáveis pelo termo de contato Kπ → Kπ.

A amplitude de contato derivada da lagrangiana 2.2 é:

iTC = i 2 [Aabcd (u− t)−Aacbd (s− u)− Aadbc (s− t)]

+i 8 [Babcd +Bacbd +Badbc] ;

Aijkl = −
1

6F 2
fijs fkls , (2.3)

Bijkl =
B

24F 2

[

σ0

(

4

3
δij δkl + 2 dijs dkls

)

+ σ8

(

4

3
δij dkl8 +

4

3
dij8 δkl + 2 dijm dkln d8mn

)]

. (2.4)

Ressonâncias

As contribuições dos diagramas S e V , na fig.2.1, são dadas por trocas de ressonâncias

escalares ou vetoriais nos canais s, t e u. Todas as interações relevantes podem ser descritas

pela lagrangiana proposta em [22], na qual as ressonâncias também são campos que se
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em que F é a constante de decaimento dos mésons no vácuo, φi são os bósons de
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Lie SU(3) estão detalhadas no apêndice B.1. A primeira linha dessa lagrangiana está
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iTC = i 2 [Aabcd (u− t)−Aacbd (s− u)− Aadbc (s− t)]

+i 8 [Babcd +Bacbd +Badbc] ;

Aijkl = −
1

6F 2
fijs fkls , (2.3)

Bijkl =
B

24F 2

[

σ0

(

4

3
δij δkl + 2 dijs dkls

)

+ σ8

(

4

3
δij dkl8 +

4

3
dij8 δkl + 2 dijm dkln d8mn

)]

. (2.4)

Ressonâncias

As contribuições dos diagramas S e V , na fig.2.1, são dadas por trocas de ressonâncias

escalares ou vetoriais nos canais s, t e u. Todas as interações relevantes podem ser descritas

pela lagrangiana proposta em [22], na qual as ressonâncias também são campos que se

 Gasser & Leutwyler 
[Nucl. Phys. B250(1985)]  

scalars

vectors

3

1

2

1

2

3

1

2

33

2

11

2

3

3 3

2

1

2

1

3

1

2

+

(4A)

+

(3B)

+

(4B)(3A)

+

(2A) (2B)

+

K

K

K

+

+

−

3

2

1

K

K

K

+

+

−

3

2

1

b

a

+

= +

(1B)(1A)

+

Figure 5: Dynamical structure of triangle vertices in Fig.4; the wavy line is the W+, dashed lines

are mesons, continuous lines are resonances and the full red blob represent meson-meson scattering

amplitudes, described in Fig.6; all diagrams within square brackets should be symmetrized, by

making 2 $ 3.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ⇢(770),

�(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ⇡⇡, KK, ⌘⌘, and ⇡⌘ intermediate states,

so there is a large number of coupled channels to be considered.

= + + + ...

= +(a)

(b)

Figure 6: (a) Tree-level two-body interaction kernel K(J,I)
ab!cd - a NLO s-channel resonance, added

to a LO contact term. (b) Structure of the unitarized scattering amplitude.

11

because we want to extend this to high E the parameters change meaning and 
can be free to fit!


