

Maria Zambrano grants to attract international talent

Maria Zambrano

CP violation in heavy hadrons decay

Patricia C. Magalhães

Complutense University of Madrid

p.magallhaes@cern.ch

CPV introduction/motivation

hadronic heavy meson decay and FSI

• FSI as source of CPV in B decays

• understanding CPV in D decays

• final remarks

Many open questions in Particle physics

Standard Model for all its success can not explain everything

- development of powerful tools
 - → theory and experiment

- No Dark matter candidate
- Matter anti-matter asymmetry in the Universe

(need new CP violation source)

Unitary CKM matrix

- \bullet loads of CPV expected found in B decays and not much in Kaon or D
- test Standard model limits

CPV in heavy meson decays

IFAE Barcelona 20/12

Patricia Magalhães

CPV in neutral particles

р⁶mixing $B_{1} = p|B^{0}\rangle + \frac{\overline{d}}{q}|\overline{B}\rangle, \quad B_{2} = p|B^{0}\rangle - \frac{\overline{d}}{q}|\overline{B}\rangle, \quad U, c, t$ $\Delta F = 2 p \qquad p \qquad A_{f} = p \qquad P \qquad A_{f} = p \qquad A_{f} =$ $\mathcal{A}_{\rm SL} \neq 0$ $B^0 \to f \nleftrightarrow \overline{B}^0$ $B^0 \not\rightarrow \bar{f} \leftarrow \overline{B}^0$ p $\mathcal{A}_{\rm SL}(B_s^0) = (-17.1 \pm 5.5) \langle \mathcal{B}_1 | \mathcal{B}_2^{-3} \rangle = |p|^2 - |q|^2 / \mathcal{A}_2 = 1.0086 p + 0.0086$ $\langle B_1 | B_2 \rangle = |p|^2 - |q|^2 \neq 0 \longrightarrow CP$ violation $B^0 - \overline{B}^0 = A_{CP}$ $\mathcal{A}_{\mathrm{SL}}$

$$\mathcal{A}_{\rm SL} \qquad \qquad \mathcal{A}_{\rm SL}(B^0) = (0.7 \pm 2.7) \times 10^{-3} \longrightarrow |p/q| = 0.9997 \pm 0.0013, \\ \mathcal{A}_{\rm SL}(B^0) = (-17.1 \pm 5.5) \times 10^{-3} \longrightarrow |p/q| = 0.9997 \pm 0.0013, \\ \mathcal{A}_{\rm SL}(B^0_s) = (-17.1 \pm 5.5) \times 10^{-3} \longrightarrow |p/q| = 1.0086 \pm 0.0028. \\ \mathcal{A}_{\rm SL}(B^0_s) = \overline{B}^0 - \overline{B}^0 \qquad \qquad B^0 - \overline{B}^0$$

CPV in neutral particles

$$|p^{\mathbf{6}} \neq$$

CPV in heavy meson decays

IFAE Barcelona 20/12

△*F* -Patricia Magalhães

• 2 amplitudes: SAME final state, \neq strong (δ_i) and weak (ϕ_i) phases

 $\langle f | T | M \rangle = A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)}$

 $\langle \bar{f} | T | \bar{M} \rangle = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$

- weak phase → CKM
- strong phase → QCD

direct CP violation

 $\langle f | T$

• 2 amplitudes: SAME final state, \neq strong (δ_i) and weak (ϕ_i) phases

$$|M\rangle = A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)}$$
 • weak phase \rightarrow CKM

•
$$\Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f | T | M \rangle|^2 - |\langle \bar{f} | T | \bar{M} \rangle|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

•
$$A_{CP} = \frac{\Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f})}{\Gamma(M \to f) + \Gamma(\bar{M} \to \bar{f})}$$

 $\langle \bar{f} | T | \bar{M} \rangle = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$

$$\left| \underbrace{P}_{f} \right|^{2} \neq \left| \underbrace{\overline{P}}_{f} \right|^{2}$$

$$B^0_{(s)} \to K^{\pm} \pi^{\mp}$$

$$A_{CP}(B_s^0 \to K^- \pi^+) = (27 \pm 4)\%$$

IFAE Barcelona 20/12

 $A_{CP}(B^0 \rightarrow K^- \pi^+) = \operatorname{Patricia}(Magalhães)$

direct CP violation

• 2 amplitudes: SAME final state, \neq strong (δ_i) and weak (ϕ_i) phases

$$\langle f \mid T \mid M \rangle = A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)} \qquad \bullet \text{ weak phase } \Rightarrow \mathsf{CKM}$$
$$\langle \bar{f} \mid T \mid \bar{M} \rangle = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \qquad \bullet \text{ strong phase } \Rightarrow \mathsf{OC}$$

•
$$\Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f | T | M \rangle|^2 - |\langle \bar{f} | T | \bar{M} \rangle|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

•
$$A_{CP} = \frac{\Gamma(M \to f) - \Gamma(\bar{M}_i \overrightarrow{\delta_1} - f)}{\Gamma(M \to f) + \Gamma(M \to f)} + A_2 e^{i(\delta_2 + \phi_2)}$$
$$A(\bar{B} \to \bar{f}) = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$$

$$\left| \underbrace{P}_{f} \right|^{2} \neq \left| \underbrace{\overline{P}_{f}}_{\overline{f}} \right|^{2}$$

$$A(B \to f) = A_1 e^{i(\delta_1 + \delta_1)}$$
$$A(\bar{B} \to \bar{f}) = A_1 e^{i(\delta_1 - \delta_1)}$$

• CPV a 'ark level: BSS model Bander Silverman & Soni PRL 43 (1979) 242

 $A_{B \to f}|^2 - |A_{\bar{B}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$

CPV in heavy meson decays

IFAE Barcelona 20/12

 $A_{CP}(B_s^0 \to K^-\pi^+) = (27 \pm 4)\%$ $A_{CB}(B_f^0 \to K^-\pi^4)_{\overline{B}} = R_{atr} carMagalhães$

direct CP violation

• 2 amplitudes: SAME final state, \neq strong (δ_i) and weak (ϕ_i) phases

$$\langle f \mid T \mid M \rangle = A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)} \qquad \bullet \text{ weak phase } \Rightarrow \mathsf{CKM}$$
$$\langle \bar{f} \mid T \mid \bar{M} \rangle = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} \qquad \bullet \text{ strong phase } \Rightarrow \mathsf{OC}$$

•
$$\Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f | T | M \rangle|^2 - |\langle \bar{f} | T | \bar{M} \rangle|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

•
$$A_{CP} = \frac{\Gamma(M \to f) - \Gamma(\bar{M}_i \overrightarrow{\delta_1} + f)}{\Gamma(M \to f)} + A_2 e^{i(\delta_2 + \phi_2)}$$
$$A(\bar{B} \to \bar{f}) = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$$

$$\left| \underbrace{P}_{f} \right|^{2} \neq \left| \underbrace{\overline{P}}_{f} \right|^{2}$$

$$A(B \to f) = A_1 e^{i(\delta_1 + \delta_1)}$$
$$A(\bar{B} \to \bar{f}) = A_1 e^{i(\delta_1 - \delta_1)}$$

• CPV a `ark leve: BSS model Bander Silverman & Soni PRL 43 (1979) 242

not enough for CPV

• hadronic interactions are natural sources of strong phase $\pi^+_{R} = (27 \pm 4)\%$ $|A_B \rightarrow f|^2 - |A_{\bar{B}} \rightarrow \bar{f}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$ CPV in heavy meson decays IFAE Barcelona 20/12 $|A_{CB}(B^0_{+}| \rightarrow K^-|\pi^A) = Patricia Magalhães$

• CPV in $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$

Run II 5.9 fb⁻¹

arXiv:2206.07622 PRD 2022 XX

 $A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.011 \pm 0.002,$ $A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.037 \pm 0.002,$ $A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.080 \pm 0.004,$ $A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = -0.114 \pm 0.007,$

CPV in heavy meson decays

IFAE Barcelona 20/12

integrated

Patricia Magalhães

•
$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+K^-) - A_{cp}(D^0 \to \pi^+\pi^-) = -(1.54 \pm 0.29) \times 10^{-3}$$

Phys. Rev. Lett. 122, 211803 (2019)

direct CP asymmetry observation

• $A_{CP}^{LHCb}(KK) = (0.77 \pm 0.57) \times 10^{-3}$

→
$$A_{CP}^{LHCb}(\pi\pi) = (2.32 \pm 0.61) \times 10^{-10}$$

arXiv:2209.03179

 $V_{cd}V_{ud}^*$

•
$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+K^-) - A_{cp}(D^0 \to \pi^+\pi^-) = -(1.54 \pm 0.29) \times 10^{-3}$$

Phys. Rev. Lett. 122, 211803 (2019)

•
$$A_{CP}^{LHCb}(KK) = (0.77 \pm 0.57) \times 10^{-3}$$

$$A_{CP}^{LHCb}(\pi\pi) = (2.32 \pm 0.61) \times 10^{-2}$$

arXiv:2209.03179

 $V_{cd}V_{ud}^*$

• QCD \rightarrow LCSR predictions $A_{CP} \approx 10^{-4}$ (1 order magnitude bellow) Khodjamirian, Petrov, > new physics? nonperturbative effects?! Phys. Lett. B 774, 235 (2017)

•
$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+K^-) - A_{cp}(D^0 \to \pi^+\pi^-) = -(1.54 \pm 0.29) \times 10^{-3}$$

Phys. Rev. Lett. [22, 2] [803 (2019)]

•
$$A_{CP}^{LHCb}(KK) = (0.77 \pm 0.57) \times 10^{-3}$$

$$A_{CP}^{LHCb}(\pi\pi) = (2.32 \pm 0.61) \times 10^{-2}$$

arXiv:2209.03179

 $V_{cd}V_{ud}^*$

• QCD \rightarrow LCSR predictions $A_{CP} \approx 10^{-4}$ (1 order magnitude bellow) Khodjamirian, Petrov, Phys. Lett. B 774, 235 (2017)

> new physics? nonperturbative effects?!

 \rightarrow what about CPV on $D \rightarrow hhh?$ \rightarrow searches in many process at LHCb, BESIII, BeleII is expected soon with LHCb run II

CPV in heavy meson decays

IFAE Barcelona 20/12

heavy meson decays and FSI LHCD

context

new high data sample from LHCb

 $s_{23} = m_{23}^2 = (p_2 + p_3)^2$

 $s_{31} = m_{31}^2 = (p_3 + p_1)^2$

 \rightarrow more to come from LHCb, Bellell, BESIII \rightarrow_1 better=models are needed (challerege)³ $|^{\Lambda}$

heavy meson decay Dynamics

heavy meson decay Dynamics

heavy meson decay Dynamics

CPV in heavy meson decays

Patricia Magalhães

standard experimental approach

• ex $D^0 \to K_s \pi^- \pi^+$

 $= \sum A_k(s_{12}, s_{23})$

isobar model widely used by experimentalists:

- (2+1) approximation \rightarrow ignore the interaction with 3rd particle (bachelor)
- $A = \sum c_k A_k$, + NR coherent sum of amplitude's in different parcial waves

standard experimental approach

• ex $D^0 \to K_s \pi^- \pi^+$

 $= \sum A_k(s_{12}, s_{23})$

isobar model widely used by experimentalists:

- (2+1) approximation \rightarrow ignore the interaction with 3rd particle (bachelor)
- $A = \sum c_k A_k$, + NR coherent sum of amplitude's in different parcial waves

Warning: when
$$A_k$$
 are single resonances
 \Rightarrow defined as Breit-Wigner $BW(s_{12}) = \frac{1}{m_B^2 - s_{12} - im_B\Gamma(s_{12})}$,

• unitarize amplitude (ie by Bethe-Salpeter eq.) Oller and Oset PRD 60 (1999)

$$A = D + D_{-\bar{\Omega}} + D_{-\bar{\Omega}} + \dots$$

 \searrow should includes all channels with the same (J,I)

• unitarize amplitude (ie by Bethe-Salpeter eq.) Oller and Oset PRD 60 (1999)

$$A = \mathbf{D} + \mathbf{D}_{-\bar{\Omega}} \mathbf{D} + \mathbf{D}_{-\bar{\Omega}} \mathbf{D} + \mathbf{M}_{ab} = \frac{\mathcal{K}_{ab \to a}^{(JI)}}{1 + \bar{\Omega}_{ab} \mathcal{K}_{ab}^{(JI)}}$$

 \searrow should includes all channels with the same (J,I)

examples of different ππ S-wave amplitudes

unitary, analytic, coupled-channels...

• examples of different ππ S-wave amplitudes

- sum of BW violates two-body unitarity (close Rs in the same channel scalars)
- resonance's mass and width are processes dependent

CP violation and **FSI**

FSI as source of CP asymmetry in B decays

CPV in heavy meson decays

IFAE Barcelona 20/12

Patricia Magalhães

rescattering as a CPV mechanism

• CPT must be preserved

Lifetime
$$\tau = 1 / \Gamma_{total} = 1 / \overline{\Gamma}_{total}$$

 $\Gamma_{total} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$
 $\overline{\Gamma}_{total} = \overline{\Gamma}_1 + \overline{\Gamma}_2 + \overline{\Gamma}_3 + \overline{\Gamma}_4 + \overline{\Gamma}_5 + \overline{\Gamma}_6 + \dots$

$$\blacktriangleright \quad \sum \Delta \Gamma_{CP} = 0$$

CPV in one channel should be compensated by another, same quantum #, with opposite sign

LHCb run 1 projections

rescattering as a CPV mechanism

• CPT must be preserved

Lifetime
$$\tau = 1 / \Gamma_{total} = 1 / \overline{\Gamma}_{total}$$

 $\Gamma_{total} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$
 $\overline{\Gamma}_{total} = \overline{\Gamma}_1 + \overline{\Gamma}_2 + \overline{\Gamma}_3 + \overline{\Gamma}_4 + \overline{\Gamma}_5 + \overline{\Gamma}_6 + \dots$

$$\blacktriangleright \quad \sum \Delta \Gamma_{CP} = 0$$

CPV in one channel should be compensated by another, same quantum #, with opposite sign

LHCb run 1 projections

• rescattering $\pi\pi \to KK$

CPV at [1 -1.6] GeV Frederico, Bediaga, Lourenço PRD89(2014)094013

rescattering as a CPV mechanism

• CPT must be preserved

Lifetime
$$\tau = 1 / \Gamma_{total} = 1 / \overline{\Gamma}_{total}$$

 $\Gamma_{total} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$
 $\overline{\Gamma}_{total} = \overline{\Gamma}_1 + \overline{\Gamma}_2 + \overline{\Gamma}_3 + \overline{\Gamma}_4 + \overline{\Gamma}_5 + \overline{\Gamma}_6 + \dots$

$$\sum \Delta \Gamma_{CP} = 0$$

CPV in one channel should be compensated by another, same quantum #, with opposite sign

LHCb run 1 projections

CPV in heavy meson decays

CPV: amplitude analysis $B^{\pm} \rightarrow \pi^{-}\pi^{+}\pi^{\pm}$

$\frac{LHCP}{\GammaHCP}$ recent Amplitude analysis $B^{\pm} \to \pi^{-}\pi^{+}\pi^{\pm}$ prd101 (2020) 012006; prl 124 (2020) 031801

- $(\pi^-\pi^+)_{S-Wave}$ 3 different model:
 - $rightarrow \sigma$ as BW (!) + rescattering;
 - P-vector K-Matrix;
 - binned freed lineshape (QMI);

Contribution	Fit fraction (10^{-2})	$A_{CP} (10^{-2})$	B^+ phase (°)	B^- phase (°)
sobar model				
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$	_	_
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19\pm 6\pm 1$	$+8\pm 6\pm 1$
$f_2(1270)$	$9.0\ \pm 0.3\ \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5\pm$ $3\pm$ 12	$+53\pm2\pm12$
$ ho(1450)^{0}$	$5.2\ \pm 0.3\ \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127\pm~4\pm~21$	$+154 \pm 4 \pm 6$
$ ho_3(1690)^0$	$0.5\ \pm 0.1\ \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26\pm7\pm14$	$-47\pm18\pm~25$
S-wave	$25.4\ \pm 0.5\ \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$		
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35\pm~6\pm~10$	$-4\pm 4\pm 25$
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115\pm2\pm14$	$+179\pm1\pm95$
K-matrix				
$ ho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$		
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15\pm 6\pm 4$	$+8\pm 7\pm 4$
$f_2(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19\pm 4\pm 18$	$+80\pm 3\pm 17$
$ ho(1450)^{0}$	$10.5 \ \pm 0.7 \ \pm 4.6$	$+9.0\pm\ 6.0\pm47.0$	$+155\pm5\pm29$	$-166\pm 4\pm 51$
$\rho_3(1690)^0$	$1.5 \ \pm 0.1 \ \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19\pm8\pm34$	$+5\pm$ $8\pm$ 46
S-wave	$25.7\ \pm 0.6\ \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$		—
QMI				
$\rho(770)^0$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$		
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25\pm 6\pm 27$	$-2\pm7\pm11$
$f_2(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13\pm5\pm21$	$+68\pm 3\pm 66$
$\rho(1450)^0$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147\pm7\pm152$	$-175\pm5\pm171$
$\rho_3(1690)^0$	$1.0\ \pm 0.1\ \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8\pm10\pm24$	$+36\pm26\pm$ 46
S-wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$		

• ANA for $B^{\pm} \to \pi^{\pm} K^{-} K^{+}$ PRL 123 (2019) 231802

Contribution	Fit Fraction(%)	$A_{CP}(\%)$	Magnitude (B^+/B^-)	$Phase[^{o}] (B^{+}/B^{-})$
$K^{*}(892)^{0}$	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_0^*(1430)^0$	$4.5\pm0.7\pm1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176\pm10\pm16$
			$0.82 \pm 0.09 \pm 0.10$	$136\pm11\pm21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138 \pm 7 \pm 5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^0$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175\pm10\pm15$
			$1.92 \pm 0.10 \pm 0.07$	$140\pm13\pm20$
$f_2(1270)$	$7.5\pm0.8\pm0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106\pm11\pm10$
			$1.13 \pm 0.08 \pm 0.05$	$-128\pm11\pm14$
Rescattering	$16.4\pm0.8\pm1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56\pm12\pm18$
			$0.86 \pm 0.07 \pm 0.04$	$-81\pm14\pm15$
$\phi(1020)$	$0.3\pm0.1\pm0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52\pm23\pm32$
			$0.22 \pm 0.06 \pm 0.04$	$107 \pm 33 \pm 41$

Patricia Magalhães

IFAE Barcelona 20/12

CPV in heavy meson decays

CPV: amplitude analysis $B^{\pm} \rightarrow \pi^{-}\pi^{+}\pi^{\pm}$

$\frac{LHCP}{\GammaHCP}$ recent Amplitude analysis $B^{\pm} \to \pi^{-}\pi^{+}\pi^{\pm}$ prd101 (2020) 012006; prl 124 (2020) 031801

- $(\pi^{-}\pi^{+})_{S-Wave}$ 3 different model:
 - $rightarrow \sigma$ as BW (!) + rescattering;
 - P-vector K-Matrix;
 - binned freed lineshape (QMI);

CPV in heavy meson decays

 $m_{\rm low} \, [{
m GeV}/c^2]$

Contribution	Fit fraction (10^{-2})	$A_{CP} (10^{-2})$	B^+ phase (°)	B^- phase (°)
sobar model				
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$	_	
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19\pm 6\pm 1$	$+8\pm 6\pm 1$
$f_2(1270)$	$9.0\ \pm 0.3\ \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5\pm$ $3\pm$ 12	$+53\pm2\pm12$
$ ho(1450)^{0}$	$5.2\ \pm 0.3\ \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127\pm~4\pm~21$	$+154\pm 4\pm 6$
$ ho_3(1690)^0$	$0.5 \ \pm 0.1 \ \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26\pm7\pm14$	$-47\pm18\pm~25$
S-wave	$25.4\ \pm 0.5\ \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$		
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35\pm~6\pm~10$	$-4\pm 4\pm 25$
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115\pm2\pm14$	$+179\pm1\pm95$
K-matrix				
$ ho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$		
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15\pm 6\pm 4$	$+8\pm7\pm4$
$f_2(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19\pm$ $4\pm$ 18	$+80\pm 3\pm 17$
$ ho(1450)^{0}$	$10.5 \ \pm 0.7 \ \pm 4.6$	$+9.0\pm \ \ 6.0\pm47.0$	$+155\pm5\pm29$	$-166\pm~4\pm~51$
$\rho_3(1690)^0$	$1.5 \pm 0.1 \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19\pm$ $8\pm$ 34	$+5\pm$ $8\pm$ 46
S-wave	$25.7\ \pm 0.6\ \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$		
QMI				
$ ho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$		
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25\pm 6\pm 27$	$-2\pm7\pm11$
$f_2(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13\pm5\pm21$	$+68\pm3\pm66$
$\rho(1450)^0$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147\pm7\pm152$	$-175\pm5\pm171$
$\rho_3(1690)^0$	$1.0\ \pm 0.1\ \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8\pm10\pm~24$	$+36\pm26\pm$ 46
S-wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$		

• ANA for $B^{\pm} \to \pi^{\pm} K^{-} K^{+}$ PRL 123 (2019) 231802

Contribution	Fit Fraction(%)	$A_{CP}(\%)$	Magnitude (B^+/B^-)	Phase ^[o] (B^+/B^-)
$K^{*}(892)^{0}$	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_0^*(1430)^0$	$4.5\pm0.7\pm1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176\pm10\pm16$
			$0.82 \pm 0.09 \pm 0.10$	$136\pm11\pm21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138 \pm 7 \pm 5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^0$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175\pm10\pm15$
			$1.92 \pm 0.10 \pm 0.07$	$140\pm13\pm20$
$f_2(1270)$	$7.5\pm0.8\pm0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106\pm11\pm10$
			$1.13 \pm 0.08 \pm 0.05$	$-128\pm11\pm14$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56 \pm 12 \pm 18$
			$0.86 \pm 0.07 \pm 0.04$	$-81\pm14\pm15$
$\phi(1020)$	$0.3\pm0.1\pm0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52 \pm 23 \pm 32$
			$0.22 \pm 0.06 \pm 0.04$	$107 \pm 33 \pm 41$

Patricia Magalhães

IFAE Barcelona 20/12

19

F

elona 20/12

 V_{td}^*

b

Theoretical approaches to CPV on charm

QCD short-distance

QCDF → how to calculate penguin contributions? call BSM effects

Chala, Lenz, Rusov, Scholtz, JHEP 07, 161 (2019).

 LCSR
 QCD, model independent but predictions are 1 order Khodjamirian, Petrov, Phys. Lett. B 774, 235 (2017)

long distance effect:

topological and group symmetry approach

- with SU(3) breaking through FSI (fit agrees)
- with resonances (fit agrees)
- FSI with CPT (prediction agrees)

H.-Y. Cheng and C.-W. Chiang, PRD 100, 093002 (2019).
F. Buccella, A. Paul and P. Santorelli, PRD 99, 113001 (2019)
Franco, Mishima, Silvestrini JHEP05, 140 (2012)

Schacht and A. Soni, Phys. Lett. B 825, 136855 (2022). Y. Grossman and S. Schacht, JHEP 07, 20 (2019)

bediaga, Frederico, PCM arxiv 2203.04056v2

FSI as the source of

• D and \overline{D} can decay to $\pi\pi$ and KK

 $\propto \lambda^4$

FIGURE 1.8: $B^- \rightarrow \pi^- K^+ K^-$ dominant FIGURE 1.8: $B^- \rightarrow \pi^- K^+ K^-$ dominant

 \overline{n}

FSI as the source of

 \overline{n}

 V_{us}^{λ}

In the second of the second

Bpens through the emission of the base of o

$$\rightarrow S_{2M,2M} = \begin{pmatrix} S_{\pi\pi,\pi\pi} & S_{\pi\pi,KK} \\ S_{KK,\pi\pi} & S_{KK,KK} \end{pmatrix}$$

pens through the emission of a $W^{\text{dense of the property of the environment of the pense of the environment of the en$

 $B \rightarrow K^{-} \pi^{+} \pi^{-}$ decays, respectively. In the tree tracting shows is specified in the specific specified of the speci

つつ

 assume only 2 couple-channels to FS Beens throagh the

$$\rightarrow S_{2M,2M} = \begin{pmatrix} S_{\pi\pi,\pi\pi} & S_{\pi\pi,KK} \\ S_{KK,\pi\pi} & S_{KK,KK} \end{pmatrix}$$

espectively. In the free diagram, the

- two pions cannot go to three pions due to G-parity
- ignore four pion coupling to the 2M channel based on 1/Nc counting
- ignore $\eta\eta$ channel once their coupling to the $\pi\pi$ channel are suppressed with respect to KK.

boson emission restating in KE land

 assume only 2 couple-channels to FSL. pens through the emission of a Wive business

$$\Rightarrow S_{2M,2M} = \begin{pmatrix} S_{\pi\pi,\pi\pi} & S_{\pi\pi,KK} \\ S_{KK,\pi\pi} & S_{KK,KK} \end{pmatrix}$$

the pense W=boson king in the pengui , respectively. In the free diagram, the b

two pions cannot go to three pions due to G-parity

- ignore four pion coupling to the 2M channel based on 1/Nc counting
- ignore $\eta\eta$ channel once their coupling to the $\pi\pi$ channel are suppressed with respect to KK.
- CPT constraint restricted to the two-channels: $\sum (|\mathcal{A}_{D^0 \to f}|^2 |\mathcal{A}_{\bar{D}^0 \to f}|^2) = 0$ $f = (\pi \pi, KK)$

Decay amplitudes

dressing the weak tree topology with FSI

→ penguin are suppressed

 \overline{u}

Decay amplitudes

 \overline{u}

Decay amplitudes

(a) Tree diagram

CPV in heavy meson decays

lona 20/12

Watson theorem $\propto \lambda^2$

•
$$\Delta\Gamma_f = \Gamma\left(D^0 \to f\right) - \Gamma(\bar{D}^0 \to f)$$

$$\mathcal{A}_{D^{0} \to \pi\pi} = \eta \,\mathrm{e}^{2i\delta_{\pi\pi}} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cs}^{*} V_{us} \, a_{KK}$$
$$\mathcal{A}_{D^{0} \to KK} = \eta \,\mathrm{e}^{2i\delta_{KK}} \, V_{cs}^{*} V_{us} \, a_{KK} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi}$$

•
$$\Delta \Gamma_f = \Gamma \left(D^0 \to f \right) - \Gamma (\bar{D}^0 \to f)$$

$$\mathcal{A}_{D^{0} \to \pi\pi} = \eta \,\mathrm{e}^{2i\delta_{\pi\pi}} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cs}^{*} V_{us} \, a_{KK}$$
$$\mathcal{A}_{D^{0} \to KK} = \eta \,\mathrm{e}^{2i\delta_{KK}} \, V_{cs}^{*} V_{us} \, a_{KK} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi}$$

$$\Rightarrow \Delta\Gamma_{\pi\pi} = -\Delta\Gamma_{KK} = 4 \operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}] a_{\pi\pi} a_{KK} \eta \sqrt{1-\eta^2} \cos\phi$$

•
$$\phi = \delta_{KK} - \delta_{\pi\pi}$$

• the sign of $\Delta\Gamma_f$ is determined by the CKM elements and the S-wave phase-shifts

•
$$\Delta \Gamma_f = \Gamma \left(D^0 \to f \right) - \Gamma (\bar{D}^0 \to f)$$

$$\mathcal{A}_{D^{0} \to \pi\pi} = \eta \,\mathrm{e}^{2i\delta_{\pi\pi}} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cs}^{*} V_{us} \, a_{KK}$$
$$\mathcal{A}_{D^{0} \to KK} = \eta \,\mathrm{e}^{2i\delta_{KK}} \, V_{cs}^{*} V_{us} \, a_{KK} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi}$$

$$\rightarrow \Delta\Gamma_{\pi\pi} = -\Delta\Gamma_{KK} = 4 \operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}] a_{\pi\pi} a_{KK} \eta \sqrt{1-\eta^2} \cos\phi$$

$$\bullet \phi = \delta_{KK} - \delta_{\pi\pi}$$

• the sign of $\Delta\Gamma_f$ is determined by the CKM elements and the S-wave phase-shifts

• need to quantify $a_{\pi\pi}$ and a_{KK} :

at
$$D^0$$
 mass $\sqrt{1-\eta^2} \ll 1$ \longrightarrow $\Gamma_{\pi\pi} \approx \eta^2 |V_{cd}^* V_{ud}|^2 a_{\pi\pi}^2$
 $\Gamma_{KK} \approx \eta^2 |V_{cs}^* V_{us}|^2 a_{KK}^2$

 $Br[D \rightarrow f] = \Gamma_f / \Gamma_{total}$ we can use experimental input

•
$$\Delta\Gamma_{f} = \Gamma\left(D^{0} \rightarrow f\right) - \Gamma(\bar{D}^{0} \rightarrow f)$$

 $A_{D^{0} \rightarrow \pi\pi} = \eta e^{2i\delta_{\pi\pi}} V_{cd}^{*} V_{ud} a_{\pi\pi} + i\sqrt{1-\eta^{2}} e^{i(\delta_{\pi}} A_{D^{0} \rightarrow KK} = \eta e^{2i\delta_{KK}} V_{cs}^{*} V_{us} a_{KK} + i\sqrt{1-\eta^{2}} e^{i(\delta_{\pi\pi}+\delta_{KK})} O_{cd}^{*} V_{ud} a_{\pi\pi}^{*} \pi^{-} K^{+} K^{-}$
 $A_{D^{0} \rightarrow KK} = \eta e^{2i\delta_{KK}} V_{cs}^{*} V_{us} a_{KK} + i\sqrt{1-\eta^{2}} e^{i(\delta_{\pi\pi}+\delta_{KK})} O_{cd}^{*} V_{ud} a_{\pi\pi}^{*} \pi^{-} K^{+} K^{-}$
 $A_{\Gamma\pi\pi} = -\Delta\Gamma_{KK} = 4 \operatorname{Im}[V_{cs}V_{us}^{*}V_{cd}^{*}V_{ud}] a_{\pi\pi} a_{KK} \eta \sqrt{1} v_{cd} \eta_{ud}^{*} \cos \phi$
 $\phi = \delta_{KK} - \delta_{\pi\pi}$
 $\phi = \delta_{KK} - \delta_{\pi\pi}$
 $\phi = \delta_{KK} - \delta_{\pi\pi}$
 $he ed to quantify $a_{\pi\pi}$ and a_{KK} :
 $at D^{0} \operatorname{mass} \sqrt{1-\eta^{2}} << 1$
 $A_{CP}(f) = \frac{\Gamma\left(D^{0} \rightarrow f\right) - \Gamma\left(D^{0} \rightarrow f\right)}{\Gamma\left(D^{0} \rightarrow f\right)} = \Delta\Gamma_{f}/2\Gamma_{f}$
 $FIGURE 1.8: B^{-} \rightarrow FIGURE 1.8:$$

CPV in heavy meson decays

IFAE Barcelona 20/12

•
$$A_{CP}(f) \approx \pm 2 \frac{\operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} \eta^{-1} \sqrt{1-\eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+K^-)}{\operatorname{Br}(D^0 \to \pi^+\pi^-)}\right]^{\pm \frac{1}{2}}$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$
 PDG
 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\frac{\text{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} = (6.02 \pm 0.32) \times 10^{-4} \text{ PDG}$$

• cos
$$\phi$$
: $\phi = \delta_{KK} - \delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) - 2\delta_{\pi\pi}$

•
$$A_{CP}(f) \approx \pm 2 \frac{\operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} \eta^{-1} \sqrt{1-\eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+K^-)}{\operatorname{Br}(D^0 \to \pi^+\pi^-)}\right]^{\pm \frac{1}{2}}$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$
 PDG
 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\frac{\text{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} = (6.02 \pm 0.32) \times 10^{-4} \text{ PDG}$$

•
$$\cos \phi : \qquad \phi = \delta_{KK} - \delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) - 2\delta_{\pi\pi}$$

•
$$A_{CP}(f) \approx \pm 2 \frac{\operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} \eta^{-1} \sqrt{1-\eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+K^-)}{\operatorname{Br}(D^0 \to \pi^+\pi^-)}\right]^{\pm \frac{1}{2}}$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$
 PDG
 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\frac{\text{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} = (6.02 \pm 0.32) \times 10^{-4} \text{ PDG}$$

•
$$\phi_0^0$$

•
$$\cos\phi: \qquad \phi = \delta_{KK} - \delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) - 2\delta_{\pi\pi}$$

from $\pi\pi$ and $\pi\pi \rightarrow KK$ data: $\cos\phi = 0.99 \pm 0.18$.

•
$$A_{CP}(f) \approx \pm 2 \frac{\operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} \eta^{-1} \sqrt{1-\eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+K^-)}{\operatorname{Br}(D^0 \to \pi^+\pi^-)}\right]^{\pm \frac{1}{2}}$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$

 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\frac{\text{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} = (6.02 \pm 0.32) \times 10^{-4} \text{ PDG}$$

•
$$\phi_0^0$$

•
$$\cos\phi: \qquad \phi = \delta_{KK} - \delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) - 2\delta_{\pi\pi}$$

from $\pi\pi$ and $\pi\pi \rightarrow KK$ data: $\cos\phi = 0.99 \pm 0.18$.

•
$$A_{CP}(\pi\pi) = (1.99 \pm 0.37) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

 $A_{CP}(KK) = -(0.71 \pm 0.13) \times 10^{-3} \sqrt{\eta^{-2} - 1}$

as a function of inelasticity

CPV in heavy meson decays

IFAE Barcelona 20/12

28

•
$$\Delta A_{CP}^{th} = -(2.70 \pm 0.50) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

*

$$\sqrt[*]{\sqrt{1-\eta^2}} \approx 1$$
 not valid

Patricia Magalhães

$$\Delta A_{CP}^{\rm LHCb} = -(1.54 \pm 0.29) \times 10^{-3}$$

•
$$\Delta A_{CP}^{th} = -(2.70 \pm 0.50) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

*

$$\sqrt[*]{\sqrt{1-\eta^2}} \approx 1$$
 not valid

Patricia Magalhães

$$\Delta A_{CP}^{\rm LHCb} = -(1.54 \pm 0.29) \times 10^{-3}$$

•
$$\Delta A_{CP}^{th} = -(2.70 \pm 0.50) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

• from $\pi\pi \rightarrow KK$ data (only one set) $\rightarrow \eta \approx 0.973 \pm 0.011$

$$\Delta A_{CP}^{th} = -(0.64 \pm 0.18) \times 10^{-3} \qquad 3\sigma$$

→ largest theoretical prediction within SM without relying on fitting parameters → systematic uncertainties are unknown in η → error is underestimated

*

$$\sqrt[*]{\sqrt{1-\eta^2}} \approx 1$$
 not valid

$$\Delta A_{CP}^{\rm LHCb} = -(1.54 \pm 0.29) \times 10^{-3}$$

•
$$\Delta A_{CP}^{th} = -(2.70 \pm 0.50) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

• from $\pi\pi \rightarrow KK$ data (only one set) $\rightarrow \eta \approx 0.973 \pm 0.011$

$$\Delta A_{CP}^{th} = -(0.64 \pm 0.18) \times 10^{-3} \qquad 3\sigma$$

→ largest theoretical prediction within SM without relying on fitting parameters → systematic uncertainties are unknown in η → error is underestimated

- Alternatively one can assume all inelasticity in $\pi\pi \to \pi\pi$ is due to KK
- \rightarrow more precise data (Grayer) \rightarrow $\eta = 0.78 \pm 0.08$ *

$$\Delta A_{CP}^{th} = -(1.31 \pm 0.20) \times 10^{-3} \quad \mathbf{1}\sigma$$

CPV in heavy meson decays

 $-\eta^2 pprox 1$ not valid

Predictions for $A_{CP}(hh)$

Predictions for $A_{CP}(hh)$

$$A_{CP}(KK) = -(0.34 \pm 0.15) \times 10^{-3}$$
$$A_{CP}(\pi\pi) = (0.97 \pm 0.05) \times 10^{-3}$$

CPV in heavy meson decays

 2σ

IFAE Barcelona 20/12

(b) Penguin diagram. K+KWhatisdinext?

 $\propto \lambda^2 \ \propto \lambda^2$ this effect will be bigger and phase-space distributed K^{-} V_{tb} T^{π^+} and $D^+ \rightarrow \pi^+ K^- K^+$ have exactly the same Weak vertex π' B^{-} R^0 400 expected CPV in run II analysis Φ_0^0 l g₀⁰l 300 K^+K^- don K⁺K[−] dor Feynman 50 million events... 0.6 r ₂₀₀ Ŋ aythdala ່ 100 ເ 0.2 2 t 1.2 1.2 1.4 1.6 1.8 2 1.4 \sqrt{s} [GeV] $ram_{the b}$ -guark decay occurs ms_{tor} the $B \xrightarrow{\rightarrow} K \xrightarrow{K} \xrightarrow{K} \xrightarrow{K} \xrightarrow{h} and$ √s [GeV] The in K^- and R^0 . For the $B^- \xrightarrow{} K^- K^+ K^$ ongrespilting in K^- and R^0 . For the $B^- \to K^- K^+ K^-$

(b) Penguin diagram. (c) Penguin diagram. (c) Penguin diagram. (c) Penguin diagram.

 K^{-}

 B^{-}

 ${\propto \lambda^2 \over \propto \lambda^2}$

this effect will be bigger and phase-space distributed

 $\pi^{\mathbb{R}^0}$ π^+ and $D^+ \to \pi^+ K^- K^+$ have exactly the same Weak vertex

- Φ_0^0 l g₀⁰l 300 K^+K^- don K⁺K[−] dor Feynman r ₂₀₀ ₩av+Indata 100 1.2 1.2 1.8 1.4 1.6 \sqrt{s} [GeV] $\frac{\sqrt{s}}{ms}$ [GeV] $\frac{\sqrt{s}}{m$ √s [GeV] is in R^- and R^0 . For the $B^- \rightarrow K^- K^+ K^-$ ree diagram, the *b*-quark decay occurs ongresspilting in K^- and R^0 . For the $B^- \to K^- K^+ K^-$
- expected CPV in run II analysis

50 million events...

thank you! Gracias! Obrigada! #forabolsonaro

IFAE Barcelona 20/12

Patricia Magalhães

Backup slides

33

Three-body kinematics : DALITZ plot

- In three-body decay phase-space is NOT one-dimension!
 bi-dimension phase-space information
 - DALITZ PLOT : proposed by Richard Dalitz (1925-2006) in 9953

 p_1, m_1

 p_{2}, m_{2}

 p_{3}, m_{3}

- we don't have data from KK scattering !
 - we can use $\pi\pi$ and $KK \to \pi\pi$ data: $\delta_{KK} \delta_{\pi\pi} = \phi_0^0 2\delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) 2\delta_{\pi\pi}$

• CERN-Munich data (revised Ochs)

	$\sqrt{s} [\text{GeV}]$	$\cos\phi$	$\rightarrow \cos(\delta_{KK} - \delta_{\pi\pi}) \lesssim 1$
	1.58	0.989 ± 0.149	
	1.62	0.994 ± 0.105	
	1.66	0.999 ± 0.040	
	1.70	0.987 ± 0.160	
	1.74	0.999 ± 0.048	
	1.78	0.999 ± 0.037	
$m_D^2 \rightarrow$	1.846	0.987 ± 0.175	Pelaez parametrization

Full story in 3-body decay

• Any 3-body decay amplitude

CPV in heavy meson decays

=

IFAE Barcelona 20/12

+

*K*₁₂

╋

unitarized amplitude $P^a P^b \rightarrow P^c P^d$

• unitarize amplitude by Bethe-Salpeter eq. [Oller and Oset PRD 60 (1999)]

$$\{I_{ab}; I_{ab}^{\mu\nu}\} = \int \frac{d^4\ell}{(2\pi)^4} \frac{\{1; \ell^{\mu} \ell^{\nu}\}}{D_a D_b} \qquad \Longrightarrow D_a = (\ell + p/2)^2 - M_a^2 \qquad D_b = (\ell - p/2)^2 - M_b^2$$

$$\begin{split} \bar{\Omega}_{ab}^{S} &= -\frac{i}{8\pi} \frac{Q_{ab}}{\sqrt{s}} \,\theta(s - (M_a + M_b)^2) \\ \bar{\Omega}_{aa}^{P} &= -\frac{i}{6\pi} \frac{Q_{aa}^3}{\sqrt{s}} \,\theta(s - 4 \, M_a^2) \\ Q_{ab} &= \frac{1}{2} \sqrt{s - 2 \left(M_a^2 + M_b^2\right) + (M_a^2 - M_b^2)^2/s} \end{split}$$

unitarized amplitude $P^a P^b \rightarrow P^c P^d$

• unitarize amplitude by Bethe-Salpeter eq. [Oller and Oset PRD 60 (1999)]

kernel $\mathcal{K}_{ab \to cd}^{(J,I)}$ = + •

resonance (NLO) + contact (LO)

$$\{I_{ab}; I_{ab}^{\mu\nu}\} = \int \frac{d^4\ell}{(2\pi)^4} \frac{\{1; \ell^{\mu} \ell^{\nu}\}}{D_a D_b} \qquad \Longrightarrow D_a = (\ell + p/2)^2 - M_a^2 \qquad D_b = (\ell - p/2)^2 - M_b^2$$

$$\begin{split} \bar{\Omega}_{ab}^{S} &= -\frac{i}{8\pi} \frac{Q_{ab}}{\sqrt{s}} \,\theta(s - (M_a + M_b)^2) \\ \bar{\Omega}_{aa}^{P} &= -\frac{i}{6\pi} \frac{Q_{aa}^3}{\sqrt{s}} \,\theta(s - 4 \, M_a^2) \\ Q_{ab} &= \frac{1}{2} \sqrt{s - 2 \left(M_a^2 + M_b^2\right) + (M_a^2 - M_b^2)^2/s} \end{split}$$
unitarized amplitude $P^a P^b \rightarrow P^c P^d$

• unitarize amplitude by Bethe-Salpeter eq. [Oller and Oset PRD 60 (1999)]

kernel
$$\mathcal{K}_{ab \rightarrow cd}^{(J,I)}$$
 = +

b
$$I_{ab};$$

$$\{I_{ab}; I_{ab}^{\mu\nu}\} = \int \frac{d^4\ell}{(2\pi)^4} \frac{\{1; \ell^{\mu} \ell^{\nu}\}}{D_a D_b} \qquad \Longrightarrow \\ D_a = (\ell + p/2)^2 - M_a^2 \qquad D_b = (\ell - p/2)^2 - M_b^2$$

$$\begin{split} \bar{\Omega}_{ab}^{S} &= -\frac{i}{8\pi} \frac{Q_{ab}}{\sqrt{s}} \,\theta(s - (M_a + M_b)^2) \\ \bar{\Omega}_{aa}^{P} &= -\frac{i}{6\pi} \frac{Q_{aa}^3}{\sqrt{s}} \,\theta(s - 4 \,M_a^2) \\ Q_{ab} &= \frac{1}{2} \sqrt{s - 2 \left(M_a^2 + M_b^2\right) + (M_a^2 - M_b^2)^2/s} \end{split}$$

• free parameters

• masses: $m_{
ho} \,,\, m_{a_0} \,,\, m_{s0} \,,\, m_{s1}$ SU(3) singlet and octet

 \rightarrow physical f_0 states are linear combination of m_{s0} , m_{s1}

$$g_{
ho} \,,\, g_{\phi} \quad c_d \,,\, c_m \,,\, ilde{c_d} \,,\, ilde{c_m}$$

vector

scalar

37

meson-meson interactions at low E

solid theory to describe MM interactions at low energy == ChPT

Gasser & Leutwyler [Nucl. Phys. B250(1985)]

 $\mathcal{L}_M^{(2)}$

$$= - \frac{1}{6F^2} f_{ijs} f_{kls} \phi_i \partial_\mu \phi_j \phi_k \partial^\mu \phi_l + \frac{B}{24F^2} \left[\sigma_0 \left(\frac{4}{3} \delta_{ij} \delta_{kl} + 2 d_{ijs} d_{kls} \right) + \sigma_8 \left(\frac{4}{3} \delta_{ij} d_{kl8} + \frac{4}{3} d_{ij8} \delta_{kl} + 2 d_{ijm} d_{kln} d_{8mn} \right) \right] \phi_i \phi_j \phi_k \phi_l$$

NLO: include resonances as a field ______

Ecker, Gasser, Pich and De Rafael [Nucl. Phys. B321(1989)]

scalars

$$\mathcal{L}_{S}^{(2)} = \frac{2\ddot{c}_{d}}{F^{2}}R_{0}\partial_{\mu}\phi_{i}\partial^{\mu}\phi_{i} - \frac{4\ddot{c}_{m}}{F^{2}}BR_{0}(\sigma_{0}\delta_{ij} + \sigma_{8}d_{8ij})\phi_{i}\phi_{j}$$

$$+ \frac{2c_{d}}{\sqrt{2}F^{2}}d_{ijk}R_{k}\partial_{\mu}\phi_{i}\partial^{\mu}\phi_{i} - \frac{4Bc_{m}}{\sqrt{2}F^{2}}\left[\sigma_{0}d_{ijk} + \sigma_{8}\left(\frac{2}{3}\delta_{ik}\delta_{j8} + d_{i8s}d_{jsk}\right)\right]\phi_{i}\phi_{j}R_{k}$$

$$\mathcal{V}_{V}^{(2)} = \frac{iG_{V}}{\sqrt{2}}\langle V_{\mu\nu}u^{\mu}u^{\nu}\rangle$$

$$\langle V_{\mu\nu}u^{\mu}u^{\nu}\rangle = \frac{1}{F^{2}}V_{a}^{\mu\nu}\partial_{\mu}\phi_{i}\partial_{\nu}\phi_{j}(if_{aij} + d_{aij})$$

because we want to extend this to high E the parameters change meaning and can be free to fit!

CPV in heavy meson decays

IFAE Barcelona 20/12

Patricia Magalhães