## Development of Monolithic Pixel Detectors for ATLAS

### Raimon Casanova Mohr IFAE





## Silicon, a history of success











Moore's Law:"The number of transistors in a dense integrated circuit doubles every 18 months."



Bill Gates, 1981





### Si in HEP, a history of success too!









Silicon detectors allows:

- precise tracking and vertexing.
- high precision momentum measurement.
- detection of particles with very short lifetimes.
- Microelectronics:
  - large amount of data processing.
  - full custom electronics -> area and power reduction.
  - large scale -> lower cost.



### **Pixels for HEP detectors**



A b-event with the DELPHI vertex detector. a)track points of the three detector planes. b) event reconstruction. [from CERN]

- Silicon detectors critical to reconstruct the path of the outgoing particles
- Some particles are unstable and decay before arriving to the detector, but with very precise (pixel) detectors their presence can be inferred
- Silicon detectors played a crucial role in new discoveries (eg, top quark)
- Vertex detectors measure the direction of charged particle's track precisely enough to allow the location of particle's origin.

![](_page_3_Picture_7.jpeg)

## Si features for HEP

- Si offers precision, compactness, and speed.
- 3.6eV needed to generate a  $e^{-}/h^{+}$  pair. (15eV for argon).
- High ionization density: MIP creates 800.000 e<sup>-</sup>/h per cm in Si but only 100 e<sup>-</sup>/h per cm in a gas like argon.
- Number of free carriers (~10<sup>9</sup>) >> generated number of electrons by ionization (~2x10<sup>4</sup>) → the sensor needs to be depleted from free carriers → PN junction

![](_page_4_Figure_5.jpeg)

![](_page_4_Picture_6.jpeg)

## PN junction (diode)

![](_page_5_Figure_1.jpeg)

- At the interface of an n-type and p-type semiconductor there is a diffusion of surplus carries to the other material until thermal equilibrium is reached. The remaining ions create a space charge and an electric field stopping further diffusion.
- The stable space charge region is free of charge carries and is called the **depletion zone.**
- e<sup>-</sup>/h pairs created at the depleted regions are swept by the electric field.
- Charge mainly collected by drift and not diffusion.
- Depletion region depth:

$$d = \sqrt{2 \cdot \varepsilon \cdot \rho \cdot V_{FD}}$$

 Total amount of generated charge is proportional to the depletion region!

![](_page_5_Picture_9.jpeg)

### **Readout electronics**

![](_page_6_Figure_1.jpeg)

- Charge stored into the capacitor.
- Voltage is proportional to stored charge and hence to energy.
- To detect another hit the capacitor has to be reset. R introduces a discharging path.
- In some cases energy is not needed, only to if there has been a hit or not -> discriminator connected at the output of the charge sense amplifier.

![](_page_6_Picture_6.jpeg)

### **Pixel detectors**

![](_page_7_Picture_1.jpeg)

### Silicon detectors on ATLAS

- Straw tracker + Transition Radiation
- 4mm diameter straws with 35 µm anode wire
- Layers: 73 in Barrel (axial) 2x160 in Endcap (radial)
- 4(9) double layers in Barrel/Endcap
- 4088 modules, 6M chan., strips 80 μm
- Resolution 17 x 580 µm
- 3 layers in Barrel and Endcap
- Pixel size 50 x 400 µm
- Resolution 10 x110 µm
- · 80 M channels

![](_page_8_Figure_11.jpeg)

![](_page_8_Picture_12.jpeg)

![](_page_8_Figure_13.jpeg)

![](_page_8_Figure_14.jpeg)

![](_page_8_Picture_15.jpeg)

## **Pixels for HEP detectors**

### •Hybrid pixels:

- -fully depleted sensor
- -expensive high quality substrate
- -backside processing
- -high resistivity
- -thickness ~250µm
- -charge collection by drift
- •Optimum technologies for sensor and readout chips.
- •Assembly by bump bonding.
- •Expensive hibridization process.

pitch

![](_page_9_Figure_11.jpeg)

![](_page_9_Figure_12.jpeg)

## **Pixels for HEP detectors**

- **Depleted Monolithic Active Pixels (DMAPS)** based on standard CMOS technologies.
- Large scale and low cost.
- Pixels and readout electronics on the same chip (fully monolithic detector).
- Thinner detectors.

Monolithic solution

![](_page_10_Figure_6.jpeg)

Diode + Amp + Digital

![](_page_10_Figure_8.jpeg)

![](_page_10_Picture_9.jpeg)

## DMAPS

 $-d \propto \sqrt{\rho . V}$ 

- Charge collection by drift and fast (<10ns).
- Ideal Depleted MAPS (DMAPS):
  - High resistivity silicon substrate.
  - Biased at High Voltage.
  - PMOS and NMOS based circuits.
  - Backside contact.

#### High Voltage MAPS (HV-MAPS)

![](_page_11_Figure_8.jpeg)

**High Resistivity MAPS (HR-MAPS)** 

![](_page_11_Figure_10.jpeg)

![](_page_11_Picture_11.jpeg)

### R&D program

• Challenges for HL-LHC:

|            | Inner layers (<6cm)                                                 | Outer layers (>25cm)                                                 |  |  |
|------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| High rates | 10 MHz/mm <sup>2</sup>                                              | 1 MHz/mm <sup>2</sup>                                                |  |  |
| Radiation  | > 1 Grad TID<br>2x10 <sup>16</sup> n <sub>eq</sub> /cm <sup>2</sup> | > 50 Mrad TID<br>1x10 <sup>15</sup> n <sub>eq</sub> /cm <sup>2</sup> |  |  |

- Experimental results from various vendors show good radiation hardness efficiency, and substantial depletion depth.
- A lot of R&D is still pending to validate this technology for ATLAS inner tracker upgrade.:
  - Multi-project wafers chips submitted to many foundries to evaluate feasibility.
  - Irradiation campaigns to evaluate radiation hardness.
  - Lab and test beam characterization to evaluate detection efficiency and tracking properties.

![](_page_12_Picture_8.jpeg)

### R&D program

| KIT, IFAE, Liverpool, UCLA                                                                                                                                                                                                                                                                 | Bonn, KIT, SLAC                                                                                                                                                                                                                    | Bonn                                                                                                                                                                                                                                                                | Bonn, Prague                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMS                                                                                                                                                                                                                                                                                        | LFoundry                                                                                                                                                                                                                           | XFAB                                                                                                                                                                                                                                                                | ESPROS                                                                                                                                                                                                                                                                             |
| <ul> <li>High-Voltage<br/>process with<br/>module up to<br/>120V</li> <li>Possibility to use<br/>high-resistivity<br/>p-type wafers<br/>(experimental)</li> <li>CMOS 350nm<br/>and 180nm<br/>available</li> <li>No full CMOS<br/>insulation</li> <li>No backside<br/>processing</li> </ul> | <ul> <li>High-Voltage<br/>process</li> <li>High-resistivity<br/>p-type wafers<br/>part of standard<br/>process</li> <li>CMOS 150 nm<br/>available</li> <li>Full CMOS<br/>insulation</li> <li>No backside<br/>processing</li> </ul> | <ul> <li>SOI 150nm<br/>CMOS process</li> <li>1.8/5V modules</li> <li>100 Ohm*cm<br/>standard wafer<br/>material,<br/>possibility to go<br/>up to 1<br/>kOhm*cm</li> <li>No backside<br/>biasing</li> <li>Sensor and<br/>CMOS volumes<br/>decoupled (SOI)</li> </ul> | <ul> <li>150nm CMOS<br/>process with 14V<br/>module</li> <li>High-resistivity ,<br/>50um thin n-<br/>type wafers used<br/>a standard<br/>processing<br/>material</li> <li>Full CMOS<br/>isolation</li> <li>Backside<br/>processing part<br/>of the standard<br/>process</li> </ul> |
|                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                    |

- More advanced R&D program
- Mu3e experiment will include HV-MAPS.

¢,

R

### H35 demonstrator

![](_page_14_Picture_1.jpeg)

## H35 demonstrator

### Floorplan

|                                          | — 19 mm —                                                       | <b>`</b>                                                                                                                            |  |  |
|------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Standalone pixels<br>Flavour 4           |                                                                 |                                                                                                                                     |  |  |
| At<br>Flavour 1                          | nalog pixe                                                      | <b>IS</b><br>Flavour 3                                                                                                              |  |  |
| Al                                       |                                                                 | IS<br>Flavour 3                                                                                                                     |  |  |
| Standalone pixels<br>Flavour 5 Flavour 6 |                                                                 |                                                                                                                                     |  |  |
| Test structures                          |                                                                 |                                                                                                                                     |  |  |
|                                          | Star<br>Al<br>Flavour 1<br>Al<br>Flavour 1<br>Star<br>Flavour 5 | Standalone pi<br>Flavour 4  Analog pixe Flavour 1  Flavour 2  Analog pixe Flavour 2  Flavour 1  Flavour 2  Flavour 5  Test structur |  |  |

### Main features:

- AMS 0.35  $\mu m$  HV CMOS technology.
- submission through an engineering run.
- different substrate resistivity: 20Ω·cm, 200 Ω·cm, 1000 Ω·cm.
- analog pixels with FEI4 coupling for readout.
- digital pixels with standalone digital readout.
- test structures (diodes and extra pixels).
- pixel size: 250  $\mu$ m x 50  $\mu$ m.

#### From E. Vilella

## Standalone pixels

#### Concept: Every pixel has its own readout cell, placed on the chip periphery

![](_page_16_Figure_2.jpeg)

- Pixels read at 40MHz, one at a time.
- •Read time of a 60 column row: 1.5µs.

### Standalone pixels layout

![](_page_17_Figure_1.jpeg)

Pizza Seminar, Wednesday 17 June 2015

R

### Standalone pixels layout

# **Readout columns Pixels** SPHERINGSPHE a the contraction of the second

FRE

## Conclusions

- Hybrid pixel detectors have proved very successful but they are expensive. Sensor and readout electronics on separated devices ->optimum technologies are used.
- DMAPS, cheaper solution due to the use of standard CMOS technologies and the possibility of integrating the sensors and the readout electronics on the same chip.
- Exciting moment: a lot of R&D being carried out. Several institutes working on DMAPS.
- HL-LHC:
  - outer layers, may fit but still a lot of R&D to be done!
  - inner layers, probably not.
- DMAPS collaboration with KIT, University of Liverpool and University of Geneva:
  - A first prototype will be submitted in July and a second prototype will be submitted by then of the year.
  - Development of the DAQ.
- HVMAPS not only for ATLAS, other potential applications.

![](_page_19_Picture_11.jpeg)

### Thank you for your attention!

![](_page_20_Picture_1.jpeg)

### Mu3e experiment

- Search for decay  $\mu^+$  -> e<sup>+</sup> e<sup>-</sup> e<sup>+</sup> with a BR sensitivity < 10<sup>-16</sup> (4 orders of magnitude better than previous searches).
- Several background sources, the most important is the decay:

$$\mu^+ \to e^+ e^- e^+ \overline{\nu}_{\mu} \nu_e$$

which is indistinguishable from signal except for the missing momentum carried away by the neutrinos. It can only by suppressed via a very precise momentum measurement :

-Low Coulomb scattering -> very thin sensors

![](_page_21_Picture_6.jpeg)

### HV-MAPS

- HVCMOS detectors are depleted active segmented detectors implemented in a CMOS process.
- The electronics is placed inside the n-well sensor electrode.
- High voltage is used to deplete a part of the substrate.
- The main charge collection mechanism is drift of the charge signal from the depleted region.
- HVCMOS can be implemented in standard CMOS technologies
- These technologies have substrate resistances of 10 to 20 Ωcm.
- The HVCMOS structure can be improved by taking a substrate of higher resistance (for instance 100 1000 Ωcm) instead of the standard one. (Non-standard CMOS process).

![](_page_22_Figure_8.jpeg)

![](_page_22_Figure_9.jpeg)

I. Peric et al. NIM A582 (2007) 876-885 NIM A731 (2013) 131-136

![](_page_22_Picture_11.jpeg)