

Computational Capabilities at Wigner RCP R evopro: Potential Industrial Partner

ET Preparatory Phase WP8 – EIB June 13th, 2023, Barcelona

Balázs Kacskovics⁽¹⁾, <u>Dániel Barta⁽¹⁾</u>,

László Á. Gergely^(1,3), Mátyás Zs. Vasúth⁽¹⁾, Péter Ván^(1,2), Zsolt Szepessy^(2,4)

(1) Wigner Reseach Centre for Physics; (2) Budapest University of Technology and Economics; (3) University of Szeged; (4) Evopro Inovation Labs Ltd.

Wigner Datacenter (WDC)

- CERN Worldwide LHC Computing Grid (WLCG) Tier-0 site from 2013 to 2020
- Running CERN (ALICE / CMS) experimental computing resources
- CERN and WDC connected by three 100 Gbps dedicated optical links
- Available computing capacity, provided energy bills are covered
- WDC commits for: hardware and general maintenance; network diagnostics; expertise
- 4MW capacity, full UPS and diesel coverage for all IT load (incl. cooling)

Wigner Datacenter

Wigner Datacenter (WDC)

		ATACENTER MAI	NPAGE CERN@WIGNER	CLOUD PROJECTS	PUBLICATIONS
Year	Category		Title		Author(s)
2020	Talks	<u>Presented the APEX images produ</u> <u>the ALMA data</u>	ced using the Wigner cloud and compleme	nted my presentation with	APEX Science
	Telescope Proposals	<u>Three different proposals are being</u>	<u>prepared using data and images produced</u>	l using the Wigner cloud	LMA 2020
2019	Published papers	Publication of the data of L1551 IF	I <u>S 5</u>	(/	Cruz-Sáenz de Miera, F., Kóspál, Á., Ábrahám, P.
	Talks	Presented ALMA data and images	produced using the Wigner cloud	S	Seminar at Universidad Autónoma de Madrid
		Presented ALMA data and images	produced using the Wigner cloud	F	rom Stars to Planets 2
		Presented the re-calibration of ALM	<u>IA data and the higher quality images prod</u>	uced using the Wigner cloud E	nteraction of Stars with their Invironments
	Telescope Proposals	Three different proposals were sub	mitted using the results produced with the	Wigner cloud	LMA 2019
2018	Posters	The Circumbinary Spiral Arms of L	1551 IRS 5: A New Discovery with ALMA		AU General Assembly
		The Circumbinary Spiral Arms of L	1551 IRS 5: A New Discovery with ALMA		Fake a Closer Look

Wigner Scientific Computing Laboratory (WSCLab)

Composed of the following facilities:

- WLCG ALICE / CMS Tier-2 Site 4000 vCPU (shared between CMS (2/3) and ALICE (1/3)); 1.2 PB Storage HEPSPEC6 hours: 342 439 409 (2021 / 2022)
- WLCG ALICE Analysis Facility

Re-utilizing the Tier-0 @ Budapest hardwares 4096 vCPU + 8192 GB RAM Raw storage capacity: ~2.6 PB Usable storage capacity: ~1.3 PB

- WSG Virgo Tier-2 Site / EuPRAXIA Site Re-utilizing Wigner Cloud hardware 1600 (usable: 1500) VCPU + 5120 GB RAM CEPH FS storage capacity: 1 PB (raw) —> 0.5 PB (usable)
- GPU Laboratory (grant-based projects may app Established in 2010 by G. G. Barnaföldi & G. Debreczeni & P. Lévai Aim: GPU usage in HEP and Gravity + developing on new tech. GPU Performance: ~526 TFLOP of single-precision & ~91 TFLOP double
 - The machines of the GPU Lab are built to be a experimenting with GPU technologies and to t multiple cards.
 - There are configurations hosting NVIDIA cards with CUDA support and OpenCL capable devices (in the form of AMD GPUs and intel Xeon Phis).

d for est algorithms utilizing

VIRGO/LIGO & EUPRAXIA 0G network maste 10G Core 1 DC2 Compute Chassis 1 (4/4) DC2 Compute Chassis 2 (4/4) DC2 Compute Chassis 3 (4/4) DC2 Compute Chassis 4 (4/4) DC2 Compute Chassis 5 (4/4) DC2 Storage 1 DC2 Storage 2 DC2 Storage 3 DC2 Storage 4 WI14 WI15

VIRGO/LIGO & EUPRAXIA 1

WI14

	VIRGO/LIGO & EUPRAXIA 2
7	WI15-WI01 patch panel
6	
5	Network management admin
4	10G Core 2
3	
2	network-management-3 (IPMI)
1	network-management-4 (MGMT)
8	DC2 Compute Chassis 6 (4/4)
7	
6	
5	DC2 Compute Chassis 7 (4/4)
4	
3	DC2 Compute Chassis 8 (4/4)
2	
1	
0	DC2 Compute Chassis 9 (4/4)
1	
5	
6	DC2 Compute Chassis 10 (4/4)
5	
4	
3	
2	
1	
0	
9	DC2 Storage 5
8	
5	
4	
3	DC2 Storage 6
2	
1	
9	DC2 Storage 7
8	DOL Otorage /
7	
6	
5	
÷	DC2 Storage 8

VIRGO/LIGO & EUPRAXIA 2

WI15

Wigner Scientific Computing Laboratory (WSCLab)

	Room2					
VF	WG	WH	WI	WJ	WK	WL
	Door 0 0 4 9 4 4 4 4 4 4 4 4 4 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 9 1 J 0	0 0 0 0			0 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5

VIRGO TIER-2/ EUPRAXIA

Wigner RCP, WDC, and WSCLab

Competecies

 Cloud computation and services National Cloud: **3000+ CPU** core **+ GPU** clusters Virgo Tier-2: 1600 VCPU, 1/2 PB storage

- 22 years of experience with CERN infrastructures and softwares
- CERN ALICE / CMS Tier-2 Cluster (since 2003) — TOP3 Tier-2 site for many years
- Network, Server, Cloud monitoring expertise (Sensu)
- High-performance computing:
 - ► GPU
 - FPGA (Quantum Simulators)

Mission

- Knowledge center
- Parallel computing workshops & events:
 - ★ GPU Day
 - ★ Lectures on Modern Scientific Programming
 - ★ HEPTECH
 - ★ AIME

★ ICT

- AI / Machine Learning Research & Development
- Quantum Communication & Computation

Potential Industrial Partner for ET

Company detailes (www.eilabs.com)

- Engineering service firm based in Hungary (Budapest, Debrecen)
- employs 50 engineers (electrical engineers and technical IT specialists)

Competencies:

- Precision measurement technology
- Signal processing
- Analog and digital circuit design
- Embedded real-time software development
- Embedded security solutions
- Distributed software development
- Industrial software development
- Software development in cloud environment

Business areas:

- Industrial software development
- Railway diagnostics
- Large-scale physics instrumentation & control

Membership:

- The European Rail Supply Industry Association - UNIFE
- European Institute of Innovation & Technology - EIT Digital
- High Performance, Edge And Cloud computing - HiPEAC

Certifications:

ISO 9001, ISO 14001

Contact

Zsolt Szepessy, PhD Managing director

<u>zsolt.szepessy@eilabs.com</u>

HU, 1221 Budapest, Hauszmann u. 2

Scientific and Innovative Portfolio

Contributing to Big Physics Infrastructure

SCK CEN MINERVA 2021 – 2026 MCS control system development for LRI of SCK CEN Software development, firmware development, EPICS middleware development

ESS 2017 – 2026

Instrumentation and control development for ESS Software development, PLC and FPGA based control design

MVM PAKS nuclear plant 2017 – 2020 Universal Test System development for the reactor protection system Software development, system analysis

Mirrotron 2DDAQ 2018 – 2022

Development of 300 channel signal acquisition system for SANS detector FPGA board, firmware and processing software development

European Research project participant

• REPARA	FP7	609666	2016
 ARROWHEAD 	FP7	332987	2017
REPHRASE	H2020	644235	2018
 PRODUCTIVE 4.0 	H2020	737459	2020
• ARROWHEAD TOOLS	H2020	826452	2022
• IN2ZONE	H2020	101014571	2023

Summary

Two potential interesting partners for ET ♦ Wigner Datacenter + evopro Innovation Labs Ltd.

Thank you for your attention!

