

Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA)

Universidad de Oviedo

Design of Geomagnetic field compensation system for Hyper Kamiokande

Local Workshop on HyperK physics

June 2023

1. Problem Statement

Efficiency of Hyper-Kamiokande photomultipliers (PMTs) decreases by magnetic fields perpendicular to their axis.
$>100 \mathrm{mG}$ in the perpendicular direction to the PMTs \rightarrow Efficiency loss of 1\%

Problem: geomagnetic field on the location of Hyper-Kamiokande has a value of:

$\left(B_{x}, B_{y}, B_{z}\right)=(0,303,-366) m G$

Goals: designing a compensation system of coils for the inner detector so that perpendicular magnetic field to the PMTs is lower than 100 mG for, at least, 99% of them. Average value of remanent perpendicular magnetic field is expected to be lower than 50 mG .
2. Reference system for PMTs and coils

Calculation of magnetic field created by two types of coils (circular and rectangular) Earth's Magnetic field: $B_{y}=303 m G ; B_{z}=-366 m G$

Calculation of $\Delta \mathrm{B}_{\text {perp }}(\mathrm{mG})$

To compensate the geomagnetic field a coil-based system is designed. Coils are located at the inner surface of the tank

Circular coils centered in Z-axis compensate Bz component

Rectangular coils centered in Y -axis compensate By component

33 rectangular coils centered on Y axis separated $2 \mathrm{~m}\left(\mathrm{I}_{\mathrm{V}}=62.50 \mathrm{~A}\right)$
37 circular coils centered on Z axis separated $2 \mathrm{~m}\left(I_{H}=75.87 \mathrm{~A}\right)$

Average remanent perpendicular magnetic field: 68.06 mG
2295 PMT on top above 100 mG (35.3\%)
1097 PMTs on walls above 100 mG (4.06\%)

2555 PMTs on bottom above 100 mG (39.3\%)

5947 PMTs above 100 mG in the whole ID

14.93\%

4. Genetic algorithm

To reduce the number of PMTs affected, we will be using a genetic algorithm, which can converge to one or more possible optimal configurations.

Genetic algorithm: programming technique used for the optimization of non-linear multivariate problems.
$>$ Drawback: major computational cost and execution time. One run can take a few days for this specific simulation

Fitting function: our previous programm. It calculates the number of PMTs below 100 mG , the number we want to maximize

Genes: parameters to optimize. Intensity of current, number of coils, radius of coils...

Chromosome: set of all genes

5. Improved configuration

Circular horizontal coils ($\mathrm{I}_{\mathrm{H}}=75.87 \mathrm{~A}$):
At $\mathrm{z}=+36.5 \mathrm{~m}$,
$\mathrm{n}=2$ loops, one with $\mathrm{R}_{1}=20 \mathrm{~m}$ and one with $\mathrm{R}_{2}=27 \mathrm{~m}$
$\mathrm{n}=6$ loops with $\mathrm{R}=34 \mathrm{~m}$

At $z=-35.5 \mathrm{~m}$,

$\mathrm{n}=3$ loops with $\mathrm{R}_{1}=27 \mathrm{~m}$
$\mathrm{n}=2$ loops with $\mathrm{R}_{2}=20 \mathrm{~m}$
$\mathrm{n}=3$ loops with $\mathrm{R}=34 \mathrm{~m}$
Coils at $\mathrm{z}=34.5 \mathrm{~m}$ and $\mathrm{z}=32.5 \mathrm{~m}$ are removed

$$
\begin{aligned}
& \text { At } \mathrm{z}=29.5 \mathrm{~m}, \mathrm{R}=34 \mathrm{~m} \text { and } \mathrm{I}_{\mathrm{H}}=70 \mathrm{~A} \\
& \text { At } \mathrm{z}=-31.5 \mathrm{~m}, \mathrm{R}=34 \mathrm{~m} \text { and } \mathrm{I}_{\mathrm{H}}=65 \mathrm{~A}
\end{aligned}
$$

The rest of coils are separated $2 m$

Saving of 257.61 m of wire with this configuration and intensity of current is reduced for two coils. In contrast, intensity of current is highly increased for the two vertical coils of the extremes.

Rectangular vertical coils ($\mathrm{I}_{\mathrm{v}}=62,5 \mathrm{~A}$):
From $y=-32 m$ to $y=+32 m$, separated $2 m$
Coil at $y=-32, I_{V}=100 \mathrm{~A}$
Coil at $\mathrm{y}=32, \mathrm{I}_{\mathrm{V}}=93.75 \mathrm{~A}$
Height $\mathrm{H}=72 \mathrm{~m}$

Circular horizontal coils

Rectangular vertical coils

Average remanent perpendicular magnetic field: 54.45 mG

0 PMT on top above 100 mG (0\%)
1205 PMTs on walls above 100 mG (4.46\%)
26 PMTs on bottom above 100 mG (0.40\%)

1231 PMTs above 100 mG in the whole ID
3.08\%
6. Elliptical coils

Basic configuration:
3.08 \%
z

Elliptical coils at the bases
0.96 \%

$$
\mathrm{I}_{\text {coil }} \approx 70 \mathrm{~A}
$$

Media $B_{\text {perp }}=61.35 \mathrm{mG}$

Top: 6 PMT
\} Bottom: 1 PMT Walls: 378 PMT

Media top $=54.23 \mathrm{mG}$
Media bottom $=62.72 \mathrm{mG}$
Media walls $=62.74 \mathrm{mG}$

$$
\begin{aligned}
& \text { Total wire length } \\
& =18628.65 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{I}_{\text {coil }} \approx 35 \mathrm{~A}
$$

Media $B_{\text {perp }}=42.50 \mathrm{mG}$
163 PMTs with excess $\rightarrow 0.41 \%$

Total wire length
$=37486 \mathrm{~m}$
X Too much wire needed

1 m circular coils - 2 m rectangular coils

$$
\text { Media } B_{\text {perp }}=53.43 \mathrm{mG}
$$

Total wire length
$=26000 \mathrm{~m}$
$\mathrm{I}_{\text {coil }} \approx 35 \mathrm{~A}$ circular-62 A rectangular

2 m between coils
1 m between coils

- 0.96% PMTs with excess
- Media $=61.35 \mathrm{mG}$
- Intensity of current $\approx 70 \mathrm{~A}$
- Amount of wire $=18.63 \mathrm{~km}$
- 0.41% PMTs with excess
- Media $=42.50 \mathrm{mG}$
- Intensity of current $\approx 35 \mathrm{~A}$
- Amount of wire $=37.48 \mathrm{~km}$

1 m circular coils -2 m rectangular coils

- 0.98% PMTs with excess
- Media $=53.43 \mathrm{mG}$
- Intensity of current $\approx 35 \mathrm{~A}$ circular -62 A rectangular
- Amount of wire $=26 \mathrm{~km}$

Loss of eficiency

Distance between coils: $\mathbf{1 m}$

Distance between coils: 2m

Distance between coils : $\mathbf{2 m}+$ elliptical coils

of DE Loss
$0.47 \%+/-0.74 \%$
$0.37 \%+/-0.74 \%$
$0.57 \%+/-0.71 \%$
$0.35 \%+/-0.66 \%$
$0.42 \%+/-0.73 \%$
Asymmetry by mean
Top-Bottom 0.03\%
Up-Down
0.10%

1m circular $+\mathbf{2 m}$ rectangular coils

\rightarrow Less variation and tail

Distance to walls

Z

Super-Kamiokande

Hyper-Kamiokande

Thank you for your attention

