Pablo - DIPC
2023/06/14 - local vACA

https://github.com/pabloferm/Pynu

How, what and why?

The Origin was when trylng to Measuring Oscillations with A Million Atmospheric Neutrinos

make a combined analysis of all C. A. Argiielles @ 1% P, Ferndndez @ 231 I Martiez-Soler @ 1'% and M. Jin (§iZgfE) @ 1.8
H 1 H ! Department of Physics € Laboratory for Particle Physics and Cosmology,

atmospherlc neUtrIno experlments _ Harvard University, Cambridge, MA 02138, USA

N Flrst we Wanted to Comblne SK 2 University of Liverpool, Department of Physics, Liverpool, United Kingdom

3Donostia International Physics Center DIPC, San Sebastian/Donostia, E-20018, Spain

and lceCube

- Then, we thought why don’t we add ORCA and set our study to foresee the sensitvity by
20307

— But, why don’t you add HyperK too, referee said...

The solution was to make an analysis framework that allows any number of experiments of
any kind and takes into account and out-of-the-box all the correlations among common
systematics

—

How, what and why?

As this was done with 50% theoreticians, the parametrization of systematic errors was done
analytically and event-by-event

— This Is very time consuming

— The number of systematics is of O(10?)

— Which meant really long times for each point we wanted to probe

The solution was to analytically differentiate the function parametrizing the systematics and
compute the gradient of the log-likelihood (more latter).

This reduces the amount of time by several orders of magnitude (depends on the number of
systematics)

In addition, the code was modified so any of these functions (which basically re-weight the
simulation and called physics tunes from now on) can be not only systematics but
parameters to fit

—

Pull requests Issues Codespaces Marketplace Explore

& pabloferm / Pynu | Frivate

<» Code (O Issues 1 Pullrequests () Actions [Projects () Security 1 |~ Insights 8 Settings

2

PyNu Framework

The aim of this software is to perform neutrino analysis in the most general and fle)@@'
modules: 0((\
» PyNuFit: It is the core of the package handling simulations, data and F@.
ER CONSTRUCTION).

iled information of the analysis and

ay. There are three

» Plot: A plotting toolkit to extract all the information from the analysis (

» Report: Automated module for preparing a report containing the de
the results (UNDER CONSTRUCTION).

For a more complete documentation, please open the docs/pynu.html folder with your browser.

|Sear(h...

API Documentation

class PyNuFit

PyNUFit()

path

PhysicsTunes

ComputeBinnedObservation()
mputeBinnedExpectation()
ComputeBinnedDiffExpectation()
SetUpExperiments()
SetUpPhysicsTunes()
StartPhysics()
StartNuisance()
SetBinnedObservedEvents()
SetExpectedWeights()
SetBinnedExpectedEvents()
SetBinnedDiffExpectedEvents()
ApplyFixedWeights()
ApplyNominalWeights()
ApplyTrueWeights()
ApplyPhysicsWeights()
ApplyNuisanceWeights()
ApplyOscillations()
ApplyWeights()
GetDiffLogWeights()
set_likelihood()
FitModel()

pynu.PyNuFit

class PyNuFit:

Top class containing everything

PyNuFit(analysis_file, path=None, verbosity=False)

path

Set up basic analysis variables and structure to build full analysis

PhysicsTunes

Start the analysis

def ComputeBinnedObservation(self):

def ComputeBinnedExpectation(self, point, nuisance_vector=None, physics=False):

def ComputeBinnedDiffExpectation(self, nuisance_vector=None):

def SetUpExperiments(self):

» View Source
» View Source
» View Source
» View Source

» View Source

» View Source

Loop over experiments specified in analysis file and store each of them into a dictionary with keys

‘detector_source' (e.g. HyperK+Atmospheric)

def SetUpPhysicsTunes(self):

» View Source

Loop over physics tunes specified in analysis file and store each of them into a dictionary with

keys 'detector+source’ (e.g. HyperK+Atmospheric)

def StartPhysics(self):

def StartNuisance(self):

» View Source

» View Source

Introduction and main objectives

The project is becoming more robust and designed to accommodate all the features and
more of all the current existing fitters in HK

* Event-by-event oscillations or binned following Magnus expansion
* Markov Chain Monte Carlo fit or grid of points
* Pre-binned and pre-computed systematics or event-by-event

 All the fitters use binned log-likelihood method, pynu also allows to fit using unbinned
» Basics are in place — also discussing with Thorsten, Federico and

log-likelihood
Mathias for ML-based KDE, https://arxiv.org/abs/2002.09436

—

Introduction and main objectives

* Neutrino analysis software (in Python) for neutrino oscillations, flux and
cross-sections

* Focus on flexibility: easy to include any neutrino source, cross-section
model and detector
Same framework, different analyses and any combination of them.

* Made to accommodate any number of experiments accounting for their

correlations
Joint analyses can be performed out of the box or with very little modifications.

The plan for is to include as many experiments and features as possible as the
project develops (already atmospherics for HK, all SK phases for official MCs, and

DeepCore, IC, ORCA — next step accelerators) E

Introduction and main objectives

* Systematics, physics parameters are treated in the same way and generally
called Physics Tunes
These are functions for each parameter of the flux, cross section, detector or
oscillations
Each of them can be treated as systematics (nuisance), physics or fixed in an analysis

* Includes analytic calculations to improve fit convergence

These analyses usually require high CPU resources due to large simulation

data-sets and large quantity of systematics.

To overcome this, the code computes analytically (when possible) the gradient of the
log-likelihood over the systematics space

—

Definitions

* Experiment: detector + source

* Analysis is made of:

Detectors — including simulations and data
Neutrino sources

Cross-sections

Oscillations

* Types of parameters:

* Fixed: does not change in the analysis but
allows to reweight the simulations to test
different models

* Nuisance: systematic paramters

* Physics: free parameters to be fitted with
the provided data or simulation

—

The definition

Everything is specified in a single
input xml file

<Analysis>

<!--Anything common to a given neutrino source-->

<l-- Atn

ic neutrinos
<NeutrinoSource name="Atmospheric"=
<status> 1 </status=
<physics name='normalization_ belowlGeV'>
</physics=
<nuisance name='nunubar_ratio'>
</nuisance>
<nuisance name='flavor_ratio'>
</nuisance>
<nuisance name='tilt'>
</nuisance>
</NeutrinoSource>

<!--Anything cor

n to a given detec

<!-- Water-Cherenkov

<NeutrinoTarget name="Water">
<status> 1 </status>
<physics name='XSecNuTau'=>
</physics=
<nuisance_name='DIS'>
</nuisance>
<nuisance name='CCQE'=>
</nuisance>
<fixed name='NCHad'>
</fixed=>

</NeutrinoTarget

==3

Kamiokande -->

<!-- Hyp
<NeutrinoExperiment name="HyperK"=

=status> 1 </status=

<target name="Water"> </target>

<source name='Atmospheric'=>
<status> 1 </status=>
<MCFiles name='/home/pablofer/HyperK/HKOsc/SK/allSK4 mc.root.hdf5'=>
</MCFiles>
<exposure> 10 </exposure=

<MCexposure> 500 </MCexposure= < s is total ex of all MC files-->
=<DataFiles name='...'>
</DataFiles>

</source=

</NeutrinoExperiment=

<1--Anything

<1-- Ple

<NeutrinoOscillations name="3-0sc">
<status> 1 </status>
<flavors> 3 </flavors>
<fixed name='Sin2Thetal2'=

=/fixed=

<fixed name='Sin2Thetal3'>
</fixed>

<physics name='Sin2Theta23'=>
=</physics>

<fixed name='Dm221'>
=/fixed=

<physics name='dCP'=>
</physics>

<physics name='Dm231'=>
=/physics>

| <physics name='Ordering'=

=/physics>
</NeutrinoOscillations>

=</Analysis=>

Overview

xml analysis file
contains all the relevant
information entering the v
analysis, i.e. experiments, ///
source, nuisance, models -

xml reader
sets all the analysis items

—

Overview

xml analysis file Physics Tunes
contains all the relevant P , > functions to compute weights for each item
information entering the v specified in the analysis
analysis, i.e. experiments, //// - flux, detector, cross-section, oscillations
source, nuisance, models - - fixed, nuisance, physics
= It also contains the analytic derivative of
s (most of) these functions
xml reader
sets all the analysis items

—

Overview

xml analysis file Physics Tunes
contains all the relevant P , functions to compute weights for each item
information entering the v specified in the analysis
analysis, i.g. experiments, //// - fl_ux, dete_ctor, cross-s_ection, oscillations
source, nuisance, models P - Computes observed - fixed, nuisance, physics o
_— — and expected events It also contains the analytic derivative of
A and the gradient of (most of) these functions
xml reader the latter
sets all the analysis items

—

Overview

xml analysis file Physics Tunes
contains all the relevant > P > functions to compute weights for each item
information entering the v specified in the analysis
analysis, i.e. experiments, = / - flux, detector, cross-section, oscillations
ource, uisance, modes |~ |Computesobserved | - Raq TRANCH PV cerivative of
- and expected events
N - and thg gradient o (most of) these functions

xml reader the latter
sets all the analysis items

Fitter

currently binned x2 assuming Poisson
statistics

uses the derivatives of PT to compute
- the gradient of x2

- intial guesses of the nuisance which
minimize the x2

—

Overview

xml analysis file
contains all the relevant
information entering the
analysis, i.e. experiments,
source, nuisance, models

xml reader
sets all the analysis items

Computes ob
and expected events
and the gradient o
the latter

Write output

Physics Tunes
functions to compute weights for each item
specified in the analysis
- flux, detector, cross-section, oscillations
- fixed, nuisance, physics
It also contains the analytic derivative of
(most of) these functions

Fitter

currently binned x2 assuming Poisson
statistics

uses the derivatives of PT to compute
- the gradient of x2

- intial guesses of the nuisance which
minimize the x2

—

An example to guide the explanation
HK atmospheric neutrinos using official SK-1V MC

From the previous xml analysis file

Physics
Block Name Truth No. points
Atmospheric Flux [Norm <1 GeV 1 11
Cross section |0 (V1) 1 9 .
Oscillations o1 0% 0.517 13 > 11583 points
Am?s, 0.0025 9
Fixed
Block Name Value
Cross section [NC hadron prod. 1.0
Systematics Sin0;, 0.304
Block Name Prior sin?B1s 0.022
v/anti-v 5% Oscillations, 3f |Am?; 0.0000742
Atmospheric elu 204, 5CP 414
T Spectral index 20% Ordering normal
Cross section 2 2004
CCQE 10.00%

ﬁ

A test example

Neutrimo sources comnsidered:
+ Atmospheric

Neutrino targets considered:
+ Water

Detectors considered:
+ Hyperk

Notice: Parameter dCP has been moved to fixed.
Notice: Parameter Orderimg has been moved to fixed.
Oscillation scenario:

+ 3-0sc

List of Nuisance

+ From Atmespheric: ['nunubar_ratie', 'flavor_ratio', 'tilt’']
+ From Water: ['DIS', 'CCQE']

+ From HyperkK: []

+ From 3-0sc: []

List of Physics/Fit

+ From Atmeospheric: ['normalization_belowlGeV']

+ From Water: ['XSecNuTau']

+ From HyperkK: []

+ From 3-0sc: ['Sim2Thetaz3', 'Dm231']

List of Fixed

+ From Atmospheric: []

+ From Water: ['NCHad']

+ From HyperkK: []

+ From 3-0sc: ['S5im2Thetal2', 'Sin2Thetal3', 'Dm221', 'dCP',

You have specified the following files for each experiment and source:

- MC files for Atmospheric im Hyperk

+ ['/home/pablofer/HyperK/HKOsc/SK/all5K4 _mc.root.hdf5']

- Data files for Atmospheric im Hyperk
+ [1

Atmospheric neutrino sensitivity analysis
assuming 10 years of HyperK using SK-1V official
MC with H-neutron tagging.

The MC is scaled by 8.2 accounting for the
different volumen of HK w.r.t. SK.

Reduced number of systematics:

A test example

Neutrimo sources comnsidered:
+ Atmospheric

Neutrino targets considered:
+ Water

Detectors considered:
+ Hyperk

Notice: Parameter dCP has been moved to fixed.
Notice: Parameter Orderimg has been moved to fixed.
Oscillation scenario:

+ 3-0sc

List of Nuisance

+ From Atmespheric: ['nunubar_ratie', 'flavor_ratio', 'tilt’']
+ From Water: ['DIS', 'CCQE']

+ From HyperkK: []

+ From 3-0sc: []

List of Physics/Fit

+ From Atmeospheric: ['normalization_belowlGeV']
+ From Water: ['XSecNuTau']

+ From HyperkK: []

+ From 3-0sc: ['Sim2Thetaz3', 'Dm231']

List of Fixed

+ From Atmospheric: []

+ From Water: ['NCHad']

+ From HyperkK: []

+ From 3-0sc: ['S5im2Thetal2', 'Sin2Thetal3', 'Dm221', 'dCP',

You have specified the following files for each experiment and source:
- MC files for Atmospheric im Hyperk
+ ['/home/pablofer/HyperK/HKOsc/SK/all5K4 _mc.root.hdf5']
- Data files for Atmospheric im Hyperk
+ [1

Atmospheric neutrino sensitivity analysis
assuming 10 years of HyperK using SK-1V official
MC with H-neutron tagging.

The MC is scaled by 8.2 accounting for the
different volumen of HK w.r.t. SK.

Reduced number of systematics:

A test example

Y emosnarie o aered Atmospheric neutrino sensitivity analysis
———————————————————————————————————— assuming 10 years of HyperK using SK-IV official

Neutrino targets considered:

e — MC with H-neutron tagging.

Detectors considered:
+ Hyperk

Notice: Parameter dCP has been moved to fixed. The MC iS Scaled by 8-2 accountlng for the

Notice: Parameter Orderimg has been moved to fixed.

.................................... different volumen of HK w.r.t. SK.

Oscillation scenario:
+ 3-0sc

List of Nuisance .

+ From Atmespheric: ['nunubar_ratie', 'flavor_ratio', 'tilt’'] Reduced number Of Systematlcs:
+ From Water: ['DIS', 'CCQE']

+ From HyperkK: []

+ From 3-0sc: []

List of physice/Fit Arbitrary physics parameters to fit

+ From Atmeospheric: ['normalization_belowlGeV']
+ From Water: ['XSecNuTau']

+ From HyperkK: []

+ From 3-0sc: ['Sim2Thetaz3', 'Dm231']

List of Fixed

+ From Atmospheric: []

+ From Water: ['NCHad']

+ From HyperkK: []

+ From 3-0sc: ['S5im2Thetal2', 'Sin2Thetal3', 'Dm221', 'dCP', 'Ordering’']

You have specified the following files for each experiment and source:
- MC files for Atmospheric im Hyperk
+ ['/home/pablofer/HyperK/HKOsc/SK/all5K4 _mc.root.hdf5']
- Data files for Atmospheric im Hyperk
+ [1

A test example

Y emosnarie o aered Atmospheric neutrino sensitivity analysis
———————————————————————————————————— assuming 10 years of HyperK using SK-IV official

Neutrino targets considered:

A MC with H-neutron tagging.

Detectors considered:
+ Hyperk

Notice: Parameter dCP has been moved to fixed. The MC iS Scaled by 8-2 accountlng for the

Notice: Parameter Orderimg has been moved to fixed.

.................................... different volumen of HK w.r.t. SK.

Oscillation scenario:
+ 3-0sc

List of Nuisance .

+ From Atmespheric: ['nunubar_ratie', 'flavor_ratio', 'tilt’'] Reduced number Of Systematlcs:
+ From Water: ['DIS', 'CCQE']

+ From HyperkK: []

+ From 3-0sc: []

List of physice/Fit Arbitrary physics parameters to fit

+ From Atmeospheric: ['normalization_belowlGeV']
+ From Water: ['XSecNuTau']

+ From HyperkK: []

+ From 3-0sc: ['Sim2Thetaz3', 'Dm231']

List of Fixed

+ From Atmospheric: []
+ From Water: ['NCHad']
+ From HyperkK: []

+ From 3-Osc: ['Sin2Thetal2', 'Sin2Thetal3', 'Dm221', 'dCP', 'Ordering'] (Code for Convertlng root fIIeS Into hdf5 format)

You have specified the following files for each experiment and source:
- MC files for Atmospheric im Hyperk

+ ['/home/pablofer/HyperK/HKOsc/SK/all5K4 _mc.root.hdf5']
- Data files for Atmospheric im Hyperk
+ [1

Physics Tunes: Neutrino Oscillations

« Using nuSQuIDS (https://arxiv.org/pdf/2112.13804.pdf)
package to handle almost any kind of neutrino

oscillations and scenarios:
- 3-flavor oscillation scenario

- Sterilev .
pynu.PhysicsTunes

- N SI This module contains the PhysicsTunes class and all the submodules for each of the blocks. It also
contains a set uilities which are still under construction.

— Lorentz violation

Quantum decoherence and neutrino decay being included

- Calculation is done event-by-event or on a grid

Physics Tunes: Atm. Neutrino Flux

pynu.PhysicsTunes.Flux.AtmoFlux

ource
class AtmosphericFlux(PhysicsTunes.PhysicsTunes.Tune): » View Source

Class containing the tunes for the atmospheric neutrino flux.

def normalization(self, experiment, x): Vi
Method for modifying the atmospheric flux normalization.

Arguments:

« x (float): Value of the tuning parameter.
experiment (pynu.Experiments.Experiment class): Class containing the information of the

experiment,
of special interest are the Monte Carlos simulations.

Returns:
Numpy.array or float with the weights from this tune.

def diff_normalization(self, experiment, x): »View Source

Method for computing the derivative of the weights of the atm. flux normalization w.rt. the
tuning parameter.

Arguments:
« x (float): Value of the tuning parameter.
experiment (pynu.Experiments.Experiment class): Class containing the information of the
experiment,
of special interest are the Monte Carlos simulations.

Returns:

Numpy.array or float with the derivative of the normalization weights.

v Source

def tilt(self, experiment, x):

Method for modifying the power-law of the atmaspheric flux normalization taking as reference
E =10 GeV. Thatis &(E,) ~ (&)

Arguments:
« X (float): Value of the tuning parameter.
» experiment (pynu.Experiments.Experiment class): Class containing the information of the
experiment,
= of special interest are the Monte Carlos simulations.
Returns:

Numpy.array or float with the weights from this tune.

v Source

def diff_tilt(self, experiment, x): >V

Method for computing the derivative of the weights of the flux tilt w.r.t. the tuning parameter, i.e.

8%(Ev) | (E T, (B
Ir (E:,') In (£5)-
Arguments:
« x (float): Value of the tuning parameter.
experiment (pynu.Experiments.Experiment class): Class containing the information of the
experiment,
of special interest are the Monte Carlos simulations.

Returns:

Numpy.array or float with the derivative of the ti1t weights.

def zenith_up(self, experiment, x): » View Source

Method for modifying the zenith angle dependence of the up-going (negative cos #...,) fraction of
the atmospheric flux assuming the relative uncertainty is parametrized as,
M(cosOe) =1 —a tamhz(cosezm).

Arguments:

» X (float): Value of the tuning parameter.

» experiment (pynu.Experiments.Experiment class): Class containing the information of the
experiment,

» of special interest are the Monte Carlos simulations.

Returns:

Numpy.array or float with the weights from this tune.

def diff_zenith_up(self, experiment, x): " urce

Method for computing the derivative of the weights of zenith-dependence variation of up-going

neutrinos w.rt. the tuning parameter, i.e. % = — ta.u_hz(cus B.cn).

Arguments:

= X (float): Value of the tuning parameter.

» experiment (pynu.Experiments.Experiment class): Class containing the information of the
experiment,

» of special interest are the Monte Carlos simulations.

Returns:

Numpy.array or float with the derivative of the zenitn_up weights.

Physics Tunes: Neutrino-water cross section

pynu.PhysicsTunes.CrossSection
WaterXSection

» View Source
class WaterXSection(PhysicsTunes.PhysicsTunes.Tune): » View Source

Base class for physics tunes

def XSecNuTau(self, experiment, x): ¥ View Source
= oef xscchutaul telr, experlient, X < Function for tau neutrino cross section tune
16 tau = np.ones(experiment.NumberO0fEvents)
Y tau[np.abs{experiment.nuPDG) == 16] = x
18 return tau
def diff_XSecNuTau(self, experiment, x): v View Source
20 def diff_XSecNuTau(self, experiment, x):
21 tau = np.zeros(experiment.NumberOfEvents) 4 1 1
22 tau[np.abs{experiment.nuPDG) == 16] = 1 Its derlvatlve
23 return tau
def NCoverCC(self, experiment, x): » View Source
def diff NCoverCC(self, experiment, x): » View Source
def AxialMass(self, experiment, X): » View Source

def diff AxialMass(self, experiment, x): » View Source

Physics Tunes

Everything is done in runtime and on an event-by event basis (by default), that means:

* Binning is done during runtime

* Systematics are implemented as functions and their effect is computed during
runtime (no systematics pre-computation required)

* Allows any parametrization of systematics as function of any MC variable

We will focus on binned x2 (~ -2log(H/H,)) fit
and minimizing over systematics

ﬁ

X2 calculation

* Usual binned x2 calculation

V2 =2 ("3%‘;“3‘23’;)) Poisson stats,, 42 — 23", (E — 0; + O;1In (

o Py™(z)
7)) +25; (7ensy)

Oi: Observed number of events in ith bin (data or simulation with assumed true values)
Ei: Expected number of events in ith bin at a give physics point and with nominal nuisance
E’i: Expected number of events in ith bin modified by the values of nuisance parameters

Mi: nominal value of j" nuisance parameter

P;: Prior distribution for j" nuisance parameter
X;: current value of j'" nuisance parameter

ﬂ

X2 calculation

pynu.fitter.BinnedLogLikelihoodRatio

»View Source

Source

class BinnedLogLikelihoodRatio:

Class containing all the information needed to perform an analysis and the methods for computing
the log likelihood ratio (—2In (%) ~ Xz) given a set of binned observed data, binned expected

events at a given physics point and nuisance parameters, and assuming Poisson statistics.

BinnedLogLikelihoodRatio(obervation, nominal_nuisance, sigma_nuisance, dist_nuisance)

Initiates the class by storing the non-changing items of the XQ calculation.

Arguments:

def stats_and_systematics(self, expectation, nuisance): » View Source

f 2 _ o P ()
Returns the value of binned 2 = 2%, (E, —0;+0;In (?)) +2%;In (m .
given the dictionary of binned expected number of events for each experiment of the analysis and

taking into account the nuisance penalty terms.

Arguments:
» expectation (dict): Produced by PyNuFit and follows the structue (Experiment(str): binned
events (numpy.array) similarly to obervation, but for a given physics and nuisance values.
« nuisance (list of float): Values for the nuisance parameters ordered as provided by
ParseXML class.

Returns:

Float with the value of XZ with nuisance.

« obervation (dict): Produced by PyNuFit and follows the structue (Experiment(str): binned
events (numpy.array).

« nominal_nuisance (list of float): Produced from the xml analysis file, it contains the nominal
values assumed for the nuisance parameters.

« sigma_nuisance (list of float): Produced from the xml analysis file, it contains the standard
deviation values assumed for the nuisance parameters.

« dist_nuisance (list of str): Produced from the xml analysis file, it contains the type of
distribution which is assumed for each nuisance.

def stats_only(self, expectation):

Returns the value of binned Xz =2 Eg (E, —0;+0;In (%)), given the dictionary of binned

expected number of events for each experiment of the analysis.

Arguments:
« expectation (dict): Produced by pynu.pynurit and follows the structue (Experiment(str):
binned events (numpy.array): similarly to obervation, but for a given physics and nuisance
values.

Returns:
Float with the value of XZ_

def gradient(self, expectation, diff_expectation, nuisance): » View Source

Returns the gradient of binned XZ computed analytically, given the dictionary of binned expected
number of events for each experiment of the analysis and its derivative with respect to every
nuisance parameter.

o Pa)
dz;

2 0;) 2E; 2
V,-X°:221(1*T‘)sz+py 5

LIMITATION: Currently, this is only done for nuisance following normal distributions. Other
distributions like Beta will come soon.

Arguments:

» expectation (dict): Produced by pynu.pynuFit and follows the structue (Experiment(str):
binned events (numpy.array) similarly to obervation, but for a given physics and nuisance
values.

«» diff_expectation (dict): Produced by pynu.pynuFit and follows the structue (nuisance
parameter (str): (Experiment(str): binned events (numpy.array)).

« nuisance (list of float): Values for the nuisance parameters ordered as provided by
ParseXML class.

Returns:
Numpy array with each component ofVXQ.

def nuisance_penalty(self, nuisance):
Returns the penalty term associated to nuisance parameters for the X2 computation.

Arguments:
« nuisance (list of float): Values for the nuisance parameters ordered as provided by

¢ pynu.analysis reader.ParsexML class.

Returns:

Float with 3 Tn (

def analytic_priors_bounds(self, expectation, diff_expectation): >V

Returns the first-order values of the nuisance parameters which minimize the x? at a given
physics points. Here, first-order means we assume that the binned expected number of events is
not modified by nuisance parameters, i.e. nuisance parameters are assumed to take the default
value in this approximation.

V;x? = 0, and at first order, B! =~ E; + gf’ (x; —), where Ej is the number of expected
3

events with nuisance at their nomnial values.

Ty

)=

7

Further, bounds for the final values of the nuisance parameters as follows.
x; € [@] — 6;,%; + d;], where §; = min(2 - [T7 — u;l,0)

All this information is very useful for the minimizer to find faster the values of nuisance
parameters minimizing the XQ.

Arguments:
= expectation (dict): Produced by pynu.pyNuFit and follows the structue (Experiment(str):
binned events (numpy.array) similarly to obervation, but for a given physics and nuisance
values.
» diff_expectation (dict): Produced by pynu.pynurFit and follows the structue (nuisance
parameter (str): (Experiment(str): binned events (numpy.array)).

Returns:

Numpy array with the estimate for the nuisance parameters. Tuple with the lower and upper
bounds for the nuisance parameters. Tuple(Tuple(lower,upper)).

X? minimization

* To be minimized over systematic parameters

- This is done numerically over the physically allowed
nuisance parameters (very CPU consuming)

* Then, the Jacobian over all nuisance j must be zero

OE! T — L
Vix* =2 E E (IE")OTJ + 2 *‘TJ? L =0
j

Exzpmnt. tcBins

Note: this assumes Gaussian
nuisance only for the time being

ﬁ

X2 calculation

pynu.fitter.BinnedLogLikelihoodRatio

v Source

ource

class BinnedLogLikelihoodRatio: "y

Class containing all the information needed to perform an analysis and the methods for computing

the log likelihood ratio (—2 In (ﬂg;’:;) ~ Xz) given a set of binned observed data, hinned expected

events at a given physics point and nuisance parameters, and assuming Poisson statistics.

BinnedLogLikelihoodRatio(obervation, nominal_nuisance, sigma_nuisance, dist_nuisance)
» View Source

Initiates the class by storing the non-changing items of the XQ calculation.

Arguments:

= obervation (dict): Produced by PyNuFit and follows the structue (Experiment(str): binned
events (numpy.array).

= nominal_nuisance (list of float): Produced from the xml analysis file, it contains the nominal
values assumed for the nuisance parameters.

« sigma_nuisance (list of float): Produced from the xml analysis file, it contains the standard
deviation values assumed for the nuisance parameters.

« dist_nuisance (list of str): Produced from the xml analysis file, it contains the type of
distribution which is assumed for each nuisance.

v Source

def stats_only(self, expectation): sy

Returns the value of binned X2 =2 EI (E‘ —0;4+0;In (%)), given the dictionary of binned

expected number of events for each experiment of the analysis.

Arguments:
» expectation (dict): Produced by pynu.pynurit and follows the structue (Experiment(str):
binned events (numpy.array): similarly to obervation, but for a given physics and nuisance
values,

Returns:
Float with the value DfX2.

»View Source

) 2 0, ‘=)
Returns the value of binned x* = 2%, (E, —0; 4+ O;In (E)) +2%;In ((=))
given the dictionary of binned expected number of events for each experiment of the analysis and
taking into account the nuisance penalty terms.

def stats_and_systematics(self, expectation, nuisance):

Arguments:
« expectation (dict): Produced by PyNuFit and follows the structue (Experiment(str): binned
events (numpy.array) similarly to obervation, but for a given physics and nuisance values.
« nuisance (list of float): Values for the nuisance parameters ordered as provided by
ParseXML class.

Returns:

Float with the value of X2 with nuisance.

v Source

def gradient(self, expectation, diff_expectation, nuisance): "V
Returns the gradient of binned x2 computed analytically, given the dictionary of binned expected
number of events for each experiment of the analysis and its derivative with respect to every
nuisance parameter.

4 pais
V=2 S (1)8 ¢ty
' 3

LIMITATION: Currently, this is only done for nuisance following normal distributions. Other
distributions like Beta will come soon.

Arguments:

« expectation (dict): Produced by pynu.pynurFit and follows the structue (Experiment(str):
binned events (numpy.array) similarly to obervation, but for a given physics and nuisance
values.

« diff_expectation (dict): Produced by pynu.pynuFit and follows the structue (nuisance
parameter (str): (Experiment(str): binned events (numpy.array)).

« nuisance (list of float): Values for the nuisance parameters ordered as provided by
ParseXML class.

Returns:

Numpy array with each component of VXE.

ource

def nuisance_penalty(self, nuisance):
Returns the penalty term associated to nuisance parameters for the X2 computation.

Arguments:
« nuisance (list of float): Values for the nuisance parameters ordered as provided by

® pynu.analysis reader.ParsexML class.
Returns:

Float with 3 In (

def analytic_priors_bounds(self, expectation, diff_expectation): >V

Returns the first-order values of the nuisance parameters which minimize the x 2 at a given
physics points. Here, first-order means we assume that the binned expected number of events is
not modified by nuisance parameters, i.e. nuisance parameters are assumed to take the default
value in this approximation.

V;x? = 0, and at first order, B! =~ B; + 35’ (x; — p5). where Ej is the number of expected
i

events with nuisance at their nomnial values.

Further, bounds for the final values of the nuisance parameters as follows.
x; € [@; — §,;,T; + d;], where §; = min(2 - [TF — |, 0)

All this information is very useful for the minimizer to find faster the values of nuisance
parameters minimizing the X2»

Arguments:

» expectation (dict): Produced by pynu.PyNuFit and follows the structue (Experiment(str):
binned events (numpy.array) similarly to obervation, but for a given physics and nuisance
values.

» diff_expectation (dict): Produced by pynu.pynurit and follows the structue (nuisance
parameter (str): (Experiment(str): binned events (numpy.array)).

Returns:

Numpy array with the estimate for the nuisance parameters. Tuple with the lower and upper
bounds for the nuisance parameters. Tuple(Tuple(lower,upper)).

X?> minimization

* Further, in first approximation:

ngEi—i—%é-{a:j—uj) 0. 1 OF.: 0 F.
2 ! N RPN E 1 ¢ _ o YE L

T —
+2 22 ~0

| _ 0:) 2B
Ef H.L'J .

Tj=p;+

o. [0 E,
E;* Oxy | _

X2 calculation

pynu.fitter.BinnedLogLikelihoodRatio

»View Source

Source

class BinnedLogLikelihoodRatio:

Class containing all the information needed to perform an analysis and the methods for computing
the log likelihood ratio (—2In (%) ~ Xz) given a set of binned observed data, binned expected

events at a given physics point and nuisance parameters, and assuming Poisson statistics.

BinnedLogLikelihoodRatio(obervation, nominal_nuisance, sigma_nuisance, dist_nuisance)

Initiates the class by storing the non-changing items of the XQ calculation.

Arguments:

« obervation (dict): Produced by PyNuFit and follows the structue (Experiment(str): binned
events (numpy.array).

« nominal_nuisance (list of float): Produced from the xml analysis file, it contains the nominal
values assumed for the nuisance parameters.

« sigma_nuisance (list of float): Produced from the xml analysis file, it contains the standard
deviation values assumed for the nuisance parameters.

« dist_nuisance (list of str): Produced from the xml analysis file, it contains the type of
distribution which is assumed for each nuisance.

def stats_only(self, expectation):

Returns the value of binned Xz =2 Eg (E, —0;+0;In (%)), given the dictionary of binned

expected number of events for each experiment of the analysis.

Arguments:
« expectation (dict): Produced by pynu.pynurit and follows the structue (Experiment(str):
binned events (numpy.array): similarly to obervation, but for a given physics and nuisance
values.

Returns:
Float with the value of XZ_

def stats_and_systematics(self, expectation, nuisance): » View Source

f 2 _ o P ()
Returns the value of binned 2 = 2%, (E, —0;+0;In (?)) +2%;In (m .
given the dictionary of binned expected number of events for each experiment of the analysis and

taking into account the nuisance penalty terms.

Arguments:
» expectation (dict): Produced by PyNuFit and follows the structue (Experiment(str): binned
events (numpy.array) similarly to obervation, but for a given physics and nuisance values.
« nuisance (list of float): Values for the nuisance parameters ordered as provided by

def nuisance_penalty(self, nuisance): ource

Returns the penalty term associated to nuisance parameters for the X2 computation.

Arguments:
« nuisance (list of float): Values for the nuisance parameters ordered as provided by

® pynu.analysis reader.ParsexML class.
Returns:

Float with 3 In (

ParseXML class.
Returns:
Float with the value of XZ with nuisance.

def gradient(self, expectation, diff_expectation, nuisance): » View Source

Returns the gradient of binned XZ computed analytically, given the dictionary of binned expected
number of events for each experiment of the analysis and its derivative with respect to every
nuisance parameter.

o Pa)
dz;

2 0;) 2E; 2
V,-X°:221(1*T‘)sz+py 5

LIMITATION: Currently, this is only done for nuisance following normal distributions. Other
distributions like Beta will come soon.

Arguments:

» expectation (dict): Produced by pynu.pynuFit and follows the structue (Experiment(str):
binned events (numpy.array) similarly to obervation, but for a given physics and nuisance
values.

«» diff_expectation (dict): Produced by pynu.pynuFit and follows the structue (nuisance
parameter (str): (Experiment(str): binned events (numpy.array)).

« nuisance (list of float): Values for the nuisance parameters ordered as provided by
ParseXML class.

Returns:

Numpy array with each component ofVXQ.

def analytic_priors_bounds(self, expectation, diff_expectation): >V

Returns the first-order values of the nuisance parameters which minimize the x? at a given
physics points. Here, first-order means we assume that the binned expected number of events is
not modified by nuisance parameters, i.e. nuisance parameters are assumed to take the default
value in this approximation.

AE;
Dz,
events with nuisance at their nomnial values.

V;x? = 0, and at first order, B! =~ E; + (x; — pj), where Ej is the number of expected

Further, bounds for the final values of the nuisance parameters as follows.
x; € [@F — 8;,T; + d;], where §; = min(2 - [TF — |, 0)

All this information is very useful for the minimizer to find faster the values of nuisance
parameters minimizing the XQ.

Arguments:
= expectation (dict): Produced by pynu.pyNuFit and follows the structue (Experiment(str):
binned events (numpy.array) similarly to obervation, but for a given physics and nuisance
values.
» diff_expectation (dict): Produced by pynu.pynurFit and follows the structue (nuisance
parameter (str): (Experiment(str): binned events (numpy.array)).

Returns:
Numpy array with the estimate for the nuisance parameters. Tuple with the lower and upper
bounds for the nuisance parameters. Tuple(Tuple(lower,upper)).

X2 calculation

The performance:

- Without any analytic implementations, each point of the (11853 in the) analysis
takes on average 5min 31s (timescale of official fitters)

- With analytic derivatives and estimation, each point of the (11853 in the) analysis

takes on average 15s
_p-theta showcase of failed convergence

a factor 22 improvement in time, the results are E oo
almost identical |

— Wwith analytic additions the x2 is lower, which means o0
that the method and minimization is more robust

— Cholesky
----- normal

g
I|III|III|III|III|III IIIII

PRI RS P TP M L
0.80225 00023 0.00235 0.0024 000245 0.0025 0.00255 0.0026 0.00265 _0.0027

Am3, (eV?)

(Data set is 2M events)

25
20
4o
15 4
T
10 4 30
99%
5 -
lo
0 T T T T T
0.00200 0.00225 0.00250 0.00275 0.00300
0.65 Am3, [eV?]
———- 90% C.L.
—— 99% C.L.
0.60 +
<
C:'E 0.55 4
0.50 4
0.45 T T T T
. 0.0020 0.0022 0.0024 0.0026 0.0028 0.0030
314 B, ([69F]
— ---- 90% C.L.
Y —— 99% C.L.
'5 1.2
E
= 1.0 1
a
S
0.8
=
=
S 0.6 T T T T
= 0.0020 0.0022 0.0024 0.0026 0.0028 0.0030
AmZ, [eV?]
E ---- 90% C.L.
L —— 99% C.L.
1.1
Q:“
= 1.0
S
0.9 +
0.8

T T T T
0.0020 0.0022 0.0024 0.0026 0.0028 0.0030

Am2. [eV?2]

0.0030
---- 90% C.L.
—— 99% C.L.
0.0020 T T T
0.45 0.50 0.55 0.60 0.65
25 sin®0s3
20 4
E 40
15
=
10 9 30
E 99%
5
o b b\
T T T T T
0.45 0.50 0.55 0.60 0.65
% sin?6y3
T 1.4
— g ---= 90% C.L.
Y4] —— 99% C.L.
2 TP
=
5]
=
= 1.0
&
S]
w 0.8 1
E j
Ex |
g 0.6 T T T
Z 045 0.50 0.55 0.60 0.65
sin?0s3
B ---- 90% C.L.
1.2 7 —— 99% C.L.
14
cg ~
= 1.0
[S
09, e
0.8 4
7 T T T
0.45 0.50 0.55 0.60 0.65
Sin260o-

0.0030
1 ---- 90% C.L.
e _ —— 99% C.L.
% 0.0026
£ 0.0024
<]
0.0022
0.0020 T T .
0.6 0.8 1.0 1.2 1.4
L85 Atm. Flux Normalization < 1 GeV
T ---- 90% C.L.
] —— 99% C.L.
0.60 4
S]
< 0.55 4
=]
0.50
0.45 . T .
0.6 0.8 1.0 1.2 1.4
o5 Atm. Flux Normalization < 1 GeV
20
E 4o
15 7
e
10 7 30
E 99%
54
E lo
O T T T T T
0.6 0.8 1.0 1.2 1.4
Atm. Flux Normalization < 1 GeV
E ---- 90% C.L.
1.2 5 —— 99% C.L.
1.1 4
= 1
= 1.0
[
0.9 4
0.8 -
1 T T T
0.6 0.8 1.0 1.2 1.4

Atm. Flux Normalization < 1 GeV

0.0030
--== 90% C.L.
0.0028 oo
= 0.0026 -
£ 0.0024
4
0.0022
0.0020 T T T T T
08 09 1.0 1.1 12
HyO
0.65 A
-=== 90% C.L.
— 99% C.L.
o604 7
&
% 0.55
w2
0.50 4
0.45 T T T T T
_ 08 09 1.0 1.1 1.2
HxO
314 G
— --=-= 90% C.L.
vV — 99% C.L.
§1.2
2
£
= 1.0 4
g
2
- 0.8
=
=
= 0.6 T T T T T
= 08 09 1.0 1.1 12
HxO
25 =
20
4o
15
T
10 1 30
99%
5 -
lo
0 T T T
0.8 1.0 1.2
oH20

Bonus goodness

Computing the posterior probabilities of the nuisance parameters has been only implemented
for T2K fitters

With the derivative information of the nuisance parameters we can estimate the Fisher
information and, therefore, the posterior distribution

912 10 , 10
X B 2 b Prlc?r o'hst. .] — Hrior .1st. |
- [t . - l Post dist. l —— Post dist.
8 _ (mbf) ™~ _post ('Tj' &:_j) 8 Osgemr 81 i il
Ly g, : :
6] 6]
post : U 2
2 ost P(‘I? y G-j) 4 4 20
(2%7°") =~ —21lo - -
X T ~ g . .
* P, . -
2 2 1
: lo
O - ~ T d B = 2 I g v v ¥ T v 0 -' L L e
0.95 1.00 1.05 0.9 1.0 1.1
Atm. Flux v/v Atm. Flux e/p

ﬂ

Make official oscillation analysis for HyperK or SuperK and compare it with Osc3++ (almost
there)

Make sterile neutrino and NSI sensitivty studies for HyperK (trivial once the previous)

Keep developing (do you?)

All SuperK phases are implemented, try to develop for data analysis in SK? Already
proposed

ﬂ

Back up!

i

5"

Preliminary attempt of posterior nuisance with derivatives information

10 , 10 10 10 ;
] Prior dist.] —] —— Prigr dist.] —— Pripf dist.
8] Pos'terior dist. N] — N] —— Posterior dist. 8] — Po<lterior dist.
6 ' : 6 ‘ ! 6 — 6 - i
| i - s %] 4] a
44 i 442 i 442 442 |
5. g 5] ; 7 5]
] i] 10 i 1 10] 10
O - = T g 2 : = ¥ T 2 0 -' LI I : L 0 - = T ¥ = ¥ g T = 0 - ~ T - K g i T =
0.95 1.00 1.05 0.9 1.0 1.1 0.5 1.0 1.5 0.8 1.0 1.2
10 Atm Flny 1.0 Atm Fluvx 1.0 At Bl Tl (AN 1.0 ~H20
8 0.8 0.8 0.8
6 0.6] 0.6] 0.6]
44 2 0.4 0.4 0.4
2 - 0.2 - 0.2 - 0.2 -
] 10 1 J
O -' ¥ OO - S LI LI | 00 S B L N = 00 T LI LI I
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

X2 considerations

* This is assuming nuisance are Gaussian distributed,
but this is not always the case!
— Beta distribution case is implemented everywhere except for the
derivative (ongoing)

X2 considerations

, . . o distributions
* The case of nuisance distributed ..;— " == " A==
as a Beta function between -
. 0.0075]
0 and 1(ideal for efficiencies)
0.005 0.0025
1 oA\ B—1 . 000
. _ T (1 3_7) o 00 02 04 06 08 10 o 00 02 04 06 08 10
B(mﬂ a? /8) - B Efficiency Efficiency
(Oz, 8) £=0.97, 0=0.025 1=0.9, 0=0.07
ey S e o
vy @D
[ﬂ, ,8) = m 0.06 1 0.020
0.044 0.0157
0.010
0.021
0.005
0.00- 0.000
00 02 04 06 08 10 00 02 04 06 08 10
Efficiency Efficiency

ﬂ

X2 considerations

log of distributions

* The case of nuisance distributed B I
as a Beta function between
0 and 1(ideal for efficiencies)
r (1 —)Pt AN = b ..~ J
B j , — 0.2 O‘Z}%]ﬂ-]ciencgﬁ 0.8 0.2 0.4) 0.6 0.8
(m) 3) B(Q’B) 1=0.97, 0=0.025
B(a,g) - L@r®)

IN'a+8)

A working example

Definition of experiment

A working example

Definition of the experiment class

s DRI Each experiment has a dedicated class which:
(dict_of _details) * Inherits the structure of a general Experiment class

L4 j (self):

Definition

* General Binning functions

A working example

[self): # Start
PhysicsWeight

ts{self, w):
PhysicsWeight = w PhysicsWeight

Definition of the experiment class

Each experiment has a it
(ICUp_Atm (dict_of_details) dedicated class which: G =
Detector = *IceCube-Upgrade * Inherits the structure Of
e a general Experiment |-
class L
* Functions which € Emiaiee o3k e st it oF e et
compute the weights | —
based on input -
PhysicsTunes

(self, w):
MuisanceWeight = w NuisanceWeight

(self):
ExpectedWeight PhysicsWeight NuisanceWeight

(self):

ExpectedBinned { ExpectedWeight)
{'Expected’)
(self)
DataFit:
ObservedBinned {)
ObservedBinned { NominalWeight)
FewEntries ObservedBinned > 4

{'Observed’)

LS

A working example

d_Etrue MC[' tx
EReco MCT y'][condition]
CosZReco = np { MC['reco_zenith'])
CosZTrue = np | MC[ith'])
AziTrue MC[' true_azimutt
cC MC['current
nuPDG = np {
ETrue MC[' true

Definition of the experiment class et = se17 WL v

Sample MC[" pic

Mode ()

(ICUp_Atm CEREESER Jedicated class which: }.;t;be;:_.fs;ngie{ —

Detector = 'IceCube-Upgrade * Implements specific e

Target Water . B = i

SC'L.'Z’EE' Atmospheric Items Of the) E_ecg;: [Erec_minm Erec_max]
I _edges [-1, 1]

5cenario = scenario eXpeI’Iment
' * MCVariables

Noxm 365 * 24

A

(self, array, shift_E=1, bias_E=@):

CosThetaReco CosZReco

(array, shift_E=1

[self):
dCosThetaReco dCosZReco

DataFit: . * \Which binni,ng% o

{
|
Erec_min}, np
Erec_max), NErec
zl@bins = np ([-1

EnergyBins {@: erec, 1: erxec} 23

CTBins {@: zlebins, 1: zl@bins}

A working example

normal

PhysicsTunes —
AtmosphericFlux

):
[se EXperiment, x)
x
(self, experiment, x)
L
nev = np {experiment . Num
nev [experiment . ETrue 1] X
new
experiment, x)
nev = np {experiment . NumberOfEvents)
nev [experiment . ETrue 1] 1
new
[self t, x):
nev = np {experiment . NumberOTEy
nev [experiment . ETTue 1] X
new
x)
nev = np {experiment . NumberOfEvents)
nev [experiment . ETTue 1] 1
new
experiment, x):
EBGam g GE
nev = [experiment.ETrue / E@Gam)**x
new
(self, experiment, x):
EBGam = 18 GE
nev = (experiment.ETrue / E@Gam)**x * np {experiment . ETrue

new

E@Gam)

23

A working example

t ection()
(s : x):
tau np {experiment . NumberOfEvents)
. . . taulnp (experiment . nuPDG) 16] = x
Definition of water cross section parameters turn tou
PhySICSTuneS (self, experiment, x):
tau = np {experiment . HumberOfEvents)
s t ey ETE 2 tau[np (experiment.nuPDG) 16]
) N Lo t tau
1 (self, experiment, x):
Fna Ta nc = np {experiment . Number0fEvents)
= ErE nc[experiment .CC == @] = x
% nc
8.75
1.25 (s % x):
nc = np (experiment . NumberOTEvents)
1.0 nc[experiment . CC 2]
nc
Tt 1 {self, experiment, x):
1 cc = np (experiment . NumberQfEvents)
8.85 cc[experiment . CC 1] 1 + 8.242
1.8 fx - 1) 1.85 * np {experiment. ETrue[experiment.CC 1])
(a3
normal
(self, experiment, x):
cc np {experiment . NumberOfEvents)
cc[experiment . CC 1] 0,942 1.85
] {experiment . ETrue[experiment . CC 1])
cE
[self, e nt, x):
nc = np (experiment . NumberQfEvents)
nc[experiment . CC 2] X
nc
(self, experiment, x}:
nc = np (experiment . NumberOfEvents)

nc[experiment. CC 2]
nc

A working example

Definition of oscillations PhysicsTunes

Scenario = scenario

Source = source
NSI

3 NSI Scenario nsi Scenario:
D N5I
0.304 NeutrinoFlawors = neutrino_flawvors
! Osc
B.022 4.14 Parameters[’'5in2Thetal
IR 4.14
13" R 4.14
s o PhysicsTunes - . o
@.65 - . . 1 Eps
. 9 Oscillations hl =x * (1 eps)
2.0e-3 W {experiment, h@)
— ' D22 3.0e-3 Wl {experiment, hl)
| 2.58-3 dw = ((wd - wl) / (h@ - hl)})
7.42e-5 i Parameters['5in2Thetall'] ¥
1 & '
normal .
normal
normal

23

The xml file

* Provides all information about the analysis
- Sources and experiments and their simulation files
— Physics scenario
— Systematic uncertainties
- Physics parameters

* All parametrizations are contained in Physics Tunes, the xml file labels
them as physics and systematics parameters for the analysis (core of
flexibility)

- For example, no difference between the implementation of detector
systematics and oscillation calculation

Custom analysis from xml file:

* Specify any number of detectors

* Associate any number of neutrino sources to those
detectors (e.g. HK-FD atm. and accel.)

* And all the related Physics Tunes, physics or systematics

- This eases (basically trivial for most cases) the implementation of
joint analyses and their correlation (e.g. atm. and accel. neutrinos in
HK-FD and accel. neutrinos in ND-280 and IWCD)

ﬁ

Neutrino Oscillations

* Using nuSQuIDS (https://arxiv.org/pdf/2112.13804.pdf)
package to handle almost any kind of neutrino
oscillations and scenarios:

- 3-flavor oscillation scenario
— Sterile v searches
- NSI

- Lorentz violation

* Calculation is done event-by-event or on a grid

ﬁ

Systematics handling

* Systematics are specified in the xml file and classified
depending to their source:

- Flux - Detector

- Cross-sections — Oscillations
* Flexible implementation allows:

- Event-by-event weighting (compute effect of syst. on runtime)

- Binned 10 fractional error matrix/vector

* with interpolation to avoid rigidity between other and this analysis binninE

Systematics handling

Neutrino sources considered:
+ Atmospheric

Experiments considered:
+ HyperK , at ../Simulation/Hyperk/data/output/HK/combined.hdf3

Neutrino detectors considered:

* Systematics are split by labels into:

- Common among experiments

- Experiment independent

, with no restrictions in combination

* Joint analyses are assumed by default

+ Water

Neutrino physics considered:
+ Three Flavour

List of Systematics
+ From Atmospheric: ['FluxNormalization_BelowlGeV', 'FluxNormalization_AbovelGeV', 'FluxTilt',
'NuNuBarRatio', 'FlavorRatio', 'ZenithFluxUp', 'ZenithFluxDown']
+ From HyperK_Htag: ['SKIV_SKEnergyScale', 'SKIV_FCPCSeparation', 'SKIV_FiducialVolume',
'SKIV_FCReduction', 'SKIV_PCReduction', 'SKIV_SubGeV2ringPi®', 'SKIV_SubGeViringPi®',
'SKIV_MultiRing_NuNuBarSeparation', 'SKIV_MultiRing_EOtherSeparation',
'SKIV_PC_StopThruSeparation', 'SKIV_Pi0_RingSeparation', 'SKIV_E_RingSeparation'
'SKIV_Mu_RingSeparation', 'SKIV_SingleRing_PID', 'SKIV_MultiRing_PID', 'SKIV_DecayETagging']
+ From Water: ['XSecNuTau', 'NCoverCC', 'NCHad', 'DIS', 'CCQE', 'CCQENuBarNu', 'CCQEMUE',
'CC1Pi_Pi0Pi', 'CCIPi_NuBarNut', 'CC1Pi_NuBarNuMu', 'CCiPiProduction', 'CohPiProduction’,
'AxialMass']
+ From Three Flavour: []

Processing simulation of HyperK experiment with a exposure of 5.0 years.
Your simulation file has 50 years

==================== Star‘ting analysis

0.304 0.02 0.57 7.42e-05 0.00245 3.9 normal process started

- Correlations between common and independent systematics across
the given experiments

Performance

ﬁ

X2 calculation

* Usual binned x2 calculation

- L(Exp(0)|Obs) Poisson stats. 2 , O, i —xi\?
2 — 21 = E _— i it 1 I J J
X n (£(Obs| Obs) > X E :—O0; +0; - log B + E —Uj

Erpmnt. i€ Bins JESyst.

X2 calculation

* Usual binned X2 calculation

—

2
- L(Exp(0)|Obs) Poisson stats. 2 , O, Wi — T
2 =21 — E E -0, +0; log [= E i~
X . (L(Obs|Obs) > X :—O0; +0; - log 3 + -

¢ 1EBins JESyst.

Exrpmn

- If fj are given as inputs, the re-weighting is linear

E=B(1+ X fw)). fo)=nfo

JjESyst.

~

X2 calculation

* Usual binned X2 calculation

. . L — L 2
=2 (PPmﬂdd) Poisson stats. 2 = E § : (E: —0,+ 0, log (%)) N Z (uj T?>
s "t. (T

data/truth Ezpmnt. i€Bins J
- If fj are given as inputs, the re-weighting is linear

E=B(1+ X) fle)=z5,

- Or more compl E o . Wi - wj,(z;) neighting is done event-
o= ; g 1 i i 11
by-event fij = filz;) =

Zk € it* bin Wi - 'u,'i‘ (z;)
E! = Ef(l +) = ¥ Bt = = :

jESyst kg i'" bin

Nominal weights from MC simuldtior E Wi
Events in bin it and physics parameters k € i*" bin

X?> minimization

* To be minimized over systematic parameters

- Usually this is done numerically over the physically allowed
systematic parameters (very CPU consuming)

X?> minimization

* To be minimized over systematic parameters

* Then, the Jacobian over all systematics j must be zero

O; \ OL! [— T

2 1 1] 1 . .
= 1l — — 2 ——— V ¥2 implementation
Vo =2 E: E:(E;)a..rﬁ e R oL

) . J
Expmmnt. i€ Bins

ﬂ

X?> minimization

* To be minimized over systematic parameters

* Then, the Jacobian over the systematics must be zero

O- E)E{ 'LL- —_ 'I’:.

2 1 ; j j . .

A L= 2 = V ¥2 implementation

R Z(Ei)&f 7 Q p >
Expmnt. tEBins

Where' Binned syst. Event-by-event syst. 2 wlien
{-jE’.I: — E e T ()_E: = F. . _d fi‘ (T}) y d f?(r.}) _ Zk € i'" bin ’ 4
O . o f“ or E)Ij ' d;lﬁ'j dr; § W
Lg 'k
k € it" bin

ﬂ

X?> minimization

* Further, in first approximation:

E:fJE d .y
Vix’ =0 V”x'?—zg E (E;—0;) fl”"f) JJ;J%U

Expmmnt. i€Bins
This removes the dependence with the rest of systematics

J

X?> minimization

* Further, in first approximation:
E:UZEI . d f;(x.: s — I
ijz{] >V?X2=2 E E (Ei—Oz') ﬁfﬁj)‘kg ;ujgz r; ~ 0

— J
Expmmnt. i€EBins
This removes the dependence with the rest of systematics

from which we can estimate the x; parameter at minimum x2

— d fi(x;) “Analytical estimate of fit
Ci = g ' i — U : < , ,
Tj =i+ 05 E : E : (E O] dr; priors and their bounds”

Expmnt. 1€ Bins

ﬂ

X?> minimization

Even more, we can estimate the allowed range for each x;

since This condition is relaxed in case of data
E! € [min(E;, O;), max(E;, O;)] fit to account for /arger unpredictable
fluctuations
L . Ei
Minimization of x2 is such that x; makes E'; as close X,
as possible to O; from E; - O;
B X
§ J:J E’
IS
S
(\9)
variable

ﬂ

X?> minimization

Even more, we can estimate the allowed range for each x;

since This condition is relaxed in case of data
E! € [min(E;, O;), max(E;, O;)] fit to account for larger unpredictable
: e v fluctuations
Minimization of x2 is such that x; makes E'; as close L% .

as possible to O; from E;

then W

variable
. ~ ~ “Analytical estimate of fit
N~ R R T N i < - -
z; € [min(p;, 75), max(p;, ;)] priors and their bounds”

events/bin

OK... why would you care?

 Implementation of the previous reduces dramatically the

minimization time and the required computing time with
no differences in the value of x2

physically allowed values

e

erical w/ analytic priors w/ VX2 w/ ana. priors and
only and bounds bounds + V2
CPU time 7282 3240 (Y5.25) 193 (M37.7) 91 (Ys0)

()

for illustration, used toy MC of 1M events of atm. v at
a HK-like experiment with 37 systematic parameters

ﬁ

Other Features

* Sampling over physics parameter space:
- Grid of points
* Sequential
* Single point or range of points (for cluster)
* Parallelization on local machine

- Markov Chain Monte Carlo sampling

 Parallelization on local machine
* Parallelization on cluster (ongoing)

ﬂ

Other Features

* Most of the work done at runtime, just before the fit:
- Binned or event-by-event re-weighting (including oscillations)
- Binning done after binning

— Reduces steps of the analysis, which helps the binning and
parametrization optimization studies

ﬂ

HyperK Atmospheric v analysis example

* nuflux package for atm. v flux (originally for IceCube,
included low energy atm. v)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

