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Summary

• Neutron tagging

• Event reconstruction

• Tau identification
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Introduction
Neutrons produced in the detector 

thermalize and are captured by hydrogen

After the capture a 2.2 MeV photon is 

emitted with a mean half-live of 200 μs

H has a sizeable cross-section for capturing 

thermal neutrons, 0.329 barn

Given the amount of H in HK, it is 

guaranteed that all thermalised neutrons will 

be captured by hydrogen
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IBD sketch

Being this such a small signal (below the 

lowest energy trigger), only neutrons 

produced by in a previous triggered 

interaction are looked for



Simulation
• Following Izumiyama-san’s guidance, we simulated 2.2 MeV γ uniformly distributed in the

HK ID using WCSim (hybridPMT version)

• For the time being, we are using the nominal HK configuration, i.e. 20k B&L PMTs with

noise levels of 4.2 kHz

• As the reconstructed prompt signal is used to compute the TOF in the search for

neutron’s delayed signal, it is important to account for

the distance travelled by the neutron during the

thermalization
• this depends on the energy of the generated neutrons

• conservatively we are assuming neutrons generated from atmospheric

neutrinos

• this is included after the WCSim simulation in the TOF calculation
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SK atm. ν simulation, T.Irvine thesis



Selection of neutron candidates with Neural Networks

UP TO NOW

• Data sorted in time windows (10 ns latest 

works from Izumiyama-san)

• Threshold in the number of hits in 10 ns 

window to be considered as candidate

• Results around ~58% True Positive Rate (TPR) and 

~3% False Positive Rate (FPR)

OUR APPROACH

• Data sorted in 30 ns windows.

• Classification of whether the data of each 

PMT hit comes from signal or from 

background noise.

• We are planning to solve both detection 

of the signal, and a further step, 

identificate inside the signal which PMT 

measurements correspond to signal.
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Selection of neutron candidates with Neural Networks

OUR APPROACH

• As inputs for the NN we use not only the timing information but also the charge of the 

hit PMTs

• A small issue! Sometimes, several hits happen in the same ns. We choose to add the intensities to give the network all the 

information.

• We checked adding the intensities actually improves significantly the performance of the method

• Flag each PMT hit whether it comes from noise or signal
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Neutron Tagging with Neural Networks

SOME ISSUES WE HAD TO CONSIDER

• Selection of an adequate time window

• Structure of the network and the training for this problem.

• How to give a simultaneous answer to both detection of a signal and its

correspondent PMT hits identification problem
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Improving traditional approach for 
detection only

Using what we learned from the problem 
to set a network that identifies the nature 

of each ns data in a window of 30ns

Setting a rule to define if there is a signal 
in the data window, as a consequence of 

each ns identification data

A conservative rule: at least 3 
identifications are required to consider a 

detection 
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Neutron Tagging with Neural Networks



Neutron Tagging with Neural Networks
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30 ns data window

Hidden 

layers

30 outputs, indentify the PMT of each ns with hit

0 or 1 corresponding to if the hit is from bkg or sgn

If 3 or more sgn 

identifications

Detection of the sample as signal



Neutron Tagging with Neural Networks

04/14/2021 10

Input (Intensities in 30 ns window) NN output



Results over simulated data
SOME NUMERIC DATA RESULTS OVER SEVERAL ROC CUTS
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Comparison with previous results ~3% of FPR, that achieved ~58% of TPR
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IDENTIFICATION 10% CUT 30% CUT

TPR 0.8207 0.6175

TNR 0.966 0.9907

FPR 0.034 0.0093

DETECTION 60% CUT 90% CUT

TPR 0.7537 0.6294

TNR 0.9726 0.9893

FPR 0.0274 0.0107

At ~1% of FPR, we are achieving up to ~62% of  TPR

Identification of each ns hit has awesome results, ~3% of FPR with ~82% of TPR

A more conservative cut in Identification of each ns hit, allows ~1% of FPR with ~62% of TPR



Results over simulated data

ROC CURVE SAME ROC CURVE WITH LOGARITHMIC AXES
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- Information given by each of the PMTs was used to recover the position where neutrinos decay and 

thus identify their flavor, distinguishing between muonic and electronic neutrinos. 

- the intensity measured by each photomultiplier and the time when each photon produced by the 

Cherenkov radiation reaches the PMT’s were simulated.

- As a first approach, we only used the information given by those PMT’s located in the cylinder’s 

body, ignoring the cylinder’s heads. 

- Two tasks were developed: a classifier for neutrino classification and two additional networks for the 

position determination;

- Due to muons and electrons independently and each of them is used depending on the classifier 

output. This approach is hinted as the different nature of both kinds of particles suggest different 

interaction models. 

Reconstruction of high energy neutrinos using artificial intelligence 
techniques for the Hyper-Kamiokande experiment

TFG by Pedro Pablo Reyes Riera
Supervised by Sergio and Pablo
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Reconstruction of high energy neutrinos using artificial intelligence 
techniques for the Hyper-Kamiokande experiment

Histogram of electronic events: distance 
from the network to the actual event

Histogram of muonic events: distance from 
the network to the actual event

Note: In perspective, the maximum possible error corresponds to the distance of two opposed 
sides of the tank ~105m, which means that we are achieving a very preliminary 2% raw error 



Application of artificial intelligence techniques for the identification 
of Tau neutrinos in the experiment Super-Kamiokande.
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TFG by Paula Obladen Aguilera
Supervised by Sergio and Pablo

- Detection can only be placed if charged-current neutrino interactions take place. Also, its large mass 

and short lifetime result in a suppression of its Charged-current cross section, which makes a direct 

detection of these particles very difficult. 

- Moreover, atmospheric neutrinos are mainly electron or muon flavoured, making the abundance of 

these heavier particles less probable, being neutrino flavour oscillations the main process through which 

Tau neutrinos are present.

-The objective is then to separate between background and tau signal. An MLP is used in the analysis 

process. It takes the input directly from the MC simulation
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Classification as tau 

with a precision of an

AUC ~0,948
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Classification with only six

variables;

excluding log10(Evis) with

precision of an AUC ~0,940



Summary
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• Detection of neutron singal has increased, at ~3% 

of FPR, from ~58% of TPR to ~75%

• Identification of which PMTs hits are  from a 

positive signal are classified, at ~3% of FPR, with

~82% of TPR 

• Promising first steps both in recontruction and tau

identification.



Next Steps
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• Try out more HK configurations (mPMTs, afterpulse, increase dark rate...)

• Converge on first selection method

• WCSim python interface for better integration of machine learning methods

• Post-production code to recover timing information and merge split signals.

• Continue with the last two topics presented, hopefully, with new students for their

doctoral tesis.



Back up
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Simulation
SK atm. ν simulation, T.Irvine thesis

ΔTOF (true-prompt) [ns]
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NN features
First nanosecond (w[0]) of the 30 ns interval 

shows larger values of the NN output than 

average of the rest

Last nanosecond (w[30]) of the 30 ns interval 

shows lower values of the NN output than 

average of the rest
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Full results
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Full results
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Other examples of results


	Diapositiva 1: Machine learning examples in Hyper-Kamiokande
	Diapositiva 2: Summary
	Diapositiva 3: Introduction
	Diapositiva 4: Simulation
	Diapositiva 5: Selection of neutron candidates with Neural Networks
	Diapositiva 6: Selection of neutron candidates with Neural Networks
	Diapositiva 7: Neutron Tagging with Neural Networks
	Diapositiva 8: Neutron Tagging with Neural Networks
	Diapositiva 9: Neutron Tagging with Neural Networks
	Diapositiva 10: Neutron Tagging with Neural Networks
	Diapositiva 11: Results over simulated data
	Diapositiva 12: Results over simulated data
	Diapositiva 14: Reconstruction of high energy neutrinos using artificial intelligence techniques for the Hyper-Kamiokande experiment 
	Diapositiva 15: Reconstruction of high energy neutrinos using artificial intelligence techniques for the Hyper-Kamiokande experiment 
	Diapositiva 16: Application of artificial intelligence techniques for the identification of Tau neutrinos in the experiment Super-Kamiokande.
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21: Summary
	Diapositiva 22: Next Steps
	Diapositiva 23: Back up
	Diapositiva 24: Simulation
	Diapositiva 25: NN features
	Diapositiva 26: Full results
	Diapositiva 27: Full results
	Diapositiva 28: Other examples of results

