High-energy event reconstruction at IWCD: Machine Learning

Annalisa De Lorenzis - PhD student

Universitat Autònoma SILM/NJ/Ree Barcelona Q U / N T U M · T E C H

14 June 2023

The Intermediate Water Cherenkov Detector (IWCD)

- Motivations for Machine Learning
- Machine Learning tools and architectures •
- Applications in IWCD

The Intermediate Water Cherenkov Detector

- DATA collected by IWCD:
- ~ 500 mPMT \times 19 PMT \times 2 (charge and time)

IWCD

1 mPMT (= 19 PMT)

©2007 Google^T

Motivations for Machine Learning

- Very successful in areas of computer vision and image processing
- Improves *particle identification* and kinematic resolution
- Remarkable improvements in *speed* (very fast to run once neural networks have *been trained*):

fitQun on CPU: ~ 1 event per minute ML reconstruction on GPU: 100 000 events per minute

WatChMaL.org : an international working group to develop ML for WC detectors

Deep network architectures for IWCD

*Adapted from N. Prouse's presentation: "NuFact 2022"

Residual CNN: ResNet18

- Residual CNNs contain Residual blocks, they implement skip connections
- Shortcut/skip connections prevent training problems of deep NNs (vanishing and exploding gradient problems)
- For this reason, Residual CNNs have had enormous success on computer vision tasks
- Used an adapted version of ResNet-18

*Adapted from [arXiv:1512.03385]

Input image for ResNet-18

Point Cloud NN: PointNet

• PointNet works on a set of points (*cloud*) rather than on the grid of fixed pixels of an image

• Each point of the cloud represents a hit PMT and has 5 "coordinates": time, charge, 3D position in space (t, q, x, y, z)

• The NN exploits the following properties of the input data: points are unordered (not fixed on a grid) - there are relations among close points - clouds are invariant under transformations (e.g. rotations and translations)

REVIEW: ML Applications in IWCD

- Classification for Particle type Identification (PID): \bullet
 - *e*/µ $- e/\gamma \\ - e/\pi^0$
- Classification for Single-Vertex / Multi-Vertex (Pile-up) \bullet
- Exploration of alternative methodologies: \bullet - e/γ using Quantum Machine Learning

While e/µ are classified reasonably well with traditional methods, there could be large improvements for e/π^0 and e/γ with ML

Regression: direction, position and energy reconstruction of the particles

Classification: e/µ

rejectic 0.55 ещие 0.50 0.45 % 8 0.40 ectro Ш

Classification for PiD in WCD

enstruction struction

- $e^{\underbrace{\omega}}_{and} \gamma$ are almost indistinguishable in Water Cherenkov detectors
- Point et performs better than ResNet for e/γ classification, except for small energy struction

Classification: Particle type

muon

Ο. Classification: *elγ*

*Plot from N. Prouse's presentation: "NuFact 2022"

- e and γ are almost indistinguishable
- ResNet for e/γ classification, except

- from WatChMaL meeting's presentation

- ับ .0.55 ย ۵.50 g
- Efficiency significantly drops for higher energies since photons from π^0 become more collimated uction

Classification: Particle ty n:fforces pro

Classification: Single-vertex VS Multi-Vertex (Pile-up)

Due to the intensity of the flux (d(IWC) $PARC) \sim 1 km$), up events wil significant (~ 20 %) in IWCD dete

Need to identify up events, separal complex multi events from m vertex pile-up eve

Neutral pion do to gammas

*Adapted from presentation of Nick Prouse: "IWCD Pile-up study" (11 August 2021)

*Adapted from presentation of Nick Prouse: "IWCD Pile-up study" (1

Classification: Single-vertex VS Multi-Vertex (Pile-up)

For the training: Dataset generated with 2 to 5 tracks originating from 1 or 2 vertices For the testing: Dataset generated with 2 tracks originating from 1 or 2 vertices

**ROC* : *Receiver operating characteristic curve* *AUC : Area under the curve

Prediction

Classification: Single-vertex VS Pile-up

Quantum Machine Learning

- Classification e/γ is a difficult task, need to explore alternative methods
- We are investigating the use of a *Quantum Classifier*
- Currently Quantum methods are restricted to low dimensional feature space
- We can use the *auto-encoder* to construct a dimensionally-reduced "latent" space of new features (compress the input image into a smaller "latent representation")
- The "latent" layer can be subsequently used as a (smaller) input for other analysis (e.g. classification)

STEP 1 : Auto-encoder

ResNet-18 and PointNet show promising results

- WCTE will allow to test new ideas with real data
- Exploring new techniques (e.g. quantum classifier)

Conclusions

Adding the time information provides significant improvement*

*Details in the back-up slides

GENIE RESULTS	LOSS	ACC	F1	AUC	NO-Physics RESULTS	LOSS	ACC	F1	ŀ
19 Q + 19 T	0,114	0,954	0,966	0,990	19 Q + 19 T	0,128	0,954	0,953	C
2 Q + 2 T	0,126	0,950	0,963	0,987	2 Q + 2 T	0,136	0,951	0,950	C
19 T	0,126	0,950	0,963	0,988	19 T	0,142	0,949	0,948	С
19 Q	0,180	0,924	0,943	0,976	19 Q	0,212	0,916	0,913	C

RESULTS (Pile-up study)

Events with only 2 tracks

**ROC* : *Receiver operating characteristic curve* *AUC : *Area under the curve*

Single-vertex vs Multi-vertex Rejection

Classification: Single-vertex VS Multi-Vertex (Pile-up)

DETAILS OF DATASETS USED

DATASET NO-PHYSICS (5M for the training + 1M for testing)

Obtained using an adapted *ParticleGunGeneretor* and *WCSim*

Track: - for each track, energy sampled from a uniform distribution with range [0, remaining energy] - tracks isotropically generated

For all datasets

Vertex position (= track initial position):

- x, z uniformly sampled in a circle of radius R = 400 cm
- y uniformly sampled in [-300, 300] cm

Vertex time (= track initial time) Sampled from a Gaussian distribution with $\mu = 200$ ns and $\sigma = 25$ ns

SV (MV) MaxTotEvisPerEvt=2000 MeV MaxVtxPerEvt=1 (2) MaxTrkPerEvt=5 MinTrkPerVtx=2 (1)

 $e^{-}, \mu^{-}, \pi^{0}, \pi^{-}$

DATASETS GENIE and NEUT (for testing)

Obtained using GENIE and NEUT software and WCSim

Physics taken into account

 $e^{-}, e^{+} \mu^{-}, \pi^{0}, \pi^{-}, \pi^{+}, p, \gamma$

Detector information used in the simulation

daq.mac

/DAQ/DigitizerOpt/TimingPrecision 0.1 /DAQ/TriggerSaveFailures/Mode 1 /DAQ/TriggerSaveFailures/TriggerTime 100 /DAQ/TriggerSaveFailures/PreTriggerWindow -400 /DAQ/TriggerSaveFailures/PostTriggerWindow +2950 /DAQ/TriggerNDigits/Threshold 2500000 /DAQ/TriggerNDigits/Window 200 #/DAQ/TriggerNDigits/AdjustForNoise true

