
El Port d’Informació Científica
Services

2

Outline

● PIC Introduction

● Landing at PIC

● PIC services
○ Batch system: HTCondor
○ Storage
○ Notebooks ecosystem: Jupyter
○ Version Control System: Gitlab
○ Big Data: Cosmohub & Spark

3

Port d’Informació Científica

● Founded in 2003: collaboration between IFAE and CIEMAT

● Team of 23 people (50% scientists - 50% engineers)
○ Agile teams that embed in scientific groups to

▪ Understand the experiment
▪ Follow the evolution of data analysis requirements
▪ Develop & prototype tools for data management and analysis

● What we do
○ R&D in methodologies and tools for advanced data analysis.

▪ Participate in R&D projects. Software and Computing WPs.

○ Operate services for the preservation, analysis and sharing of data.
▪ Run prod. services for experiments: LHC, MAGIC, CTA, PAUs,

Euclid, VIRGO/LIGO, DUNE
▪ Provide data analysis services for research groups: IFAE, CIEMAT +

others

4

Red Española de Supercomputación

● RES was founded in 2007 as a network
of supercomputers in Spain.

○ Competitive calls for CPU resources
open to all research groups in Spain.

● In 2020 RES increased its scope to
include data services

○ PIC joined RES in 2020.
○ Annual calls for data projects published

in December.

https://www.res.es/

6

● Connectivity
○ 2x100 Gbps to Academic Network
○ Largest data mover in Spanish academic network:

100 PB in+out per year

● Data processing services
○ Disk - dCache: 20 PB
○ Tape - Enstore: 63 PB
○ Computing - HTCondor: 12000 cores, 18 GPUs
○ Computing - Hadoop: 720 cores, 2.5 PB disk

● Facilities, ~120 kW IT
○ ~80 kW in 150 m2 air-cooled room

■ high efficiency, PUE 1.44

○ ~40 kW in 25 m2 liquid immersion cooling system
■ very high efficiency, PUE 1.1

●

PIC data center

IB
M

TS
45

00

7

PIC public wiki

https://pwiki.pic.es

8

Get a PIC account

https://www.pic.es/register/

9

HTCondor: Introduction

9

● HTCondor is a batch system
○ Software that manages the execution of several other programs (called jobs)
○ It allows the execution of a program without the direct supervision of the user
○ The execution can be in remote machines

● Other popular batch systems: SLURM, Torque, LSF, SGE

● HTCondor is a batch system meant for High-Throughput Computing (HTC) while
others are for High-Performance Computing (HPC)

○ HTC favours the execution of a lot of jobs consuming few resources each
(CPU, memory, etc.)

○ HPC favours the execution of parallel computing, few jobs consuming a lot of resources
(MPI, low-latency interconnection)

10

HTCondor: Introduction

10

● Batch systems generally rely on queues
○ Users submit jobs to queues that have different limits (maximum time, CPUs per job, etc.)
○ The jobs are executed in the remote WorkerNodes (WNs) according to a priority and the

resources available

● HTCondor is different. Your job has requirements and the WNs have resources, if they
match, your job will run

● HTCondor uses the fair-share concept
○ You or your group have a quota, a percentage of resources you can use. It is allowed to

exceed that quota but your priority will be reduced the next time

11

HTCondor: Introduction

11

● HTCondor scales to thousands of jobs and resources
○ There are ~160 WNs, ~12000 cpus and 18 GPUs in our cluster

● We manage more than 20 projects in the same cluster. From the large grid
experiments (LHC, CTA, etc.) to the local ones

● HTCondor User Guide:
○ https://pwiki.pic.es/index.php?title=HTCondor_User_Guide

https://pwiki.pic.es/index.php?title=HTCondor_User_Guide

12

UI (User Interface)

● To obtain access to PIC HTCondor cluster you can ssh to ui.pic.es

● UIs have access to shared data and allow you to submit and check your job status.
They are NOT for interactive execution

$ ssh user@ui.pic.es
user@ui.pic.es's password:
Last login: Wed Oct 4 10:40:06 2023

**
* *
* The "ui.pic.es" Public Login Unix Service *
* CentOS 7.8.2003 x86_64 *
* *
* Our Login Service grants you access to PIC datacenter and its batch *
* system (HTCondor) on batch and interactive mode (condor_submit -i). *
* We recommend consulting our HTCondor User Guide: *
* *
* https://pwiki.pic.es/index.php?title=HTCondor_User_Guide *
* *
* In case of problems, please contact the support: *
* e-mail user.support@pic.es *
* *
* PIC WebSite: http://www.pic.es/ *
* *
**
[user@ui02 ~]$

HTCondor: Access the cluster

13

Submit file: communicate everything of your job to HTCondor (test.sub)

condor_submit to submit your job, condor_q to monitor, condor_rm to kill

HTCondor: Quick Start

13

$ cat test.sub
executable = test.sh
arguments = -c 1 -t 60
output = condor.out
error = condor.err
log = condor.log

queue

$ condor_submit test.sub
Submitting job(s).
1 job(s) submitted to cluster 7952359.

$ condor_q 7952359

-- Schedd: submit01.pic.es : <193.109.174.82:9618?... @ 10/26/23 15:43:44
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
cacosta ID: 7952363 10/26 15:43 _ _ 1 1 7952359.0

Total for query: 1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended
Total for all users: 1661 jobs; 0 completed, 0 removed, 1387 idle, 267 running, 7 held, 0
suspended

$ condor_rm 7952359
All jobs in cluster 7952359 have been marked for removal

$ cat test.sh
#!/bin/bash

/bin/stress $@

Your job identification is a
$(ClusterID).$(ProcID):
7952359.0

14

Submit file. Executable, input, arguments, output, error and logs

● You have to specify the executable and optionally you can specify your input, output
(stdout) and error (stderr) logs.

● Make sure that your script is correct (location, permissions and shebang)!

● You can set the global path. However, if no path is specified, the directory from which
the job was submitted is used

HTCondor: Submitting your job

executable = test.sh

input = input.txt

arguments = arg

output = test.out

error = test.err

log = test.log

15

$ cat test-req.sub
executable = test.sh
arguments = -c 8 -t 60
output = test-req-$(ClusterId).$(ProcId).out
error = test-req-$(ClusterId).$(ProcId).err
log = test-req-$(ClusterId).$(ProcId).log

request_memory = 4 GB
request_cpus = 8

queue

This job asks for 4 GB of RAM (use units!) and 8 CPUs

$ condor_q 1462.0 -af RequestCpus RequestMemory
8 4096

Querying the resources requested, memory is in MB

HTCondor: Submitting your job

Submit file. Requesting resources

● You can request cpu, gpu, memory and disk for your job using request_cpus,
request_gpus, request_memory and request_disk respectively

● If request options are not present in your submit file, these default values are taken:
○ 1 cpu, 2 GB of memory per cpu, 15 GB of local disk per cpu and no GPUs

16

HTCondor: Submitting your job

Submit file. Requesting GPUs

● At PIC there are right now only 18 GPUs available
○ 8 GPUs for jupyter.pic.es (RTX 2080 Ti)
○ 8 GPUs for Magnesia group (V100)
○ 2 old GPUs for testing (GTX 1050 Ti)

● You can access any of them through HTCondor
○ However, RTX 2080 and V100 GPU work with preemption enabled: if a higher priority job

needs the resources, your job will be killed and put in queue again
○ Contact us if you need to access to RTX2080 or V100 GPUs through HTCondor

17

HTCondor: Submitting your job

Submit file. Requesting resources

● The default resources are 1 core and 2 GB of RAM. But you can access up to 8 cores
and 32 GB without expecting long queue waits

○ You can access to more resources if needed, but first contact us

● The amount of resources requested determines the queue time: less resources, less
time in queue

● Last 2 months Average Queue Time: 1.8 hours

18

Submit file. The flavours

● 3 general flavours to limit the job’s walltime
○ short: 3 hours
○ medium: 48 hours
○ long: 96 hours

● Default flavour is medium

● When the job arrives to the time limit, it will be held and it remains in this status for 6
hours in the queue (condor_q -af HoldReason)

● Jobs that exceed 50% over the requested memory will be also held

● If you need more than 96 hours, consult us

HTCondor: Submitting your job

$ cat test-flavour.sub
executable = test.sh
arguments = -c 1 -t 60
output = test-flavour-$(ClusterId).$(ProcId).out
error = test-flavour-$(ClusterId).$(ProcId).err
log = test-flavour-$(ClusterId).$(ProcId).log

+flavour="long"

queue

19

Submit file. The queue statement

● queue N, to submit N number jobs

● Powerful command. Several ways to use queue. Example:
○ From file: Queue commands reads the information contained in a file

HTCondor: Submitting your job

$ cat test-queue3.sub
executable = test.sh
arguments = -c $(option1) -t $(option2)
output = test-queue3-$(ClusterId).$(ProcId).out
error = test-queue3-$(ClusterId).$(ProcId).err
log = test-queue3-$(ClusterId).$(ProcId).log

queue option1,option2 from args/arg_list.txt

$ cat arg_list.txt
1, 15
2, 10
1, 12
4, 13

4 jobs submitted, considering we have multiple options in a list file arg_list.txt

20

The priority and the Accounting Group

● The priority of your job is calculated depending on
the Accounting Group

○ Your Accounting Group is defined by your primary
group

○ HTCondor adds automatically the user to the
Accounting Group

○ Each group have a quota of resources assigned to
them

● If your primary group does not fit with the
experiment you want to account for, you can add
+experiment="experiment" in your submit file

$ cat test-experiment.sub
executable = test.sh
arguments = -c 1 -t 120
output = output-$(ClusterId).$(ProcId).out
error = error-$(ClusterId).$(ProcId).err
log = log-$(ClusterId).$(ProcId).log

+experiment="virgo"

queue

HTCondor: Submitting your job

21

Interactive submission

● There is the possibility to submit interactive jobs: condor_submit
-i/-interactive

HTCondor: Submitting your job

$ condor_submit -interactive
Submitting job(s).
1 job(s) submitted to cluster 7952079.
Waiting for job to start...
Welcome to slot1_6@tds228.pic.es!
You will be logged out after 7200 seconds of inactivity.
bash-4.2$

22

Use of containers

● The use of containers is always encouraged. Apptainer (old singularity) recommended

● You just need to add +SingularityImage to run inside a container

● All the shared filesystems are available inside the container

+SingularityImage = "/opt/apptainer-images/pic-centos7.sif"

HTCondor: Submitting your job

23

HTCondor: Submitting your job

JOB A jobA.sub
JOB B jobB.sub
JOB C jobC.sub
JOB D jobD.sub
JOB E jobE.sub
JOB F jobF.sub
JOB G jobG.sub
JOB H jobH.sub
PARENT A CHILD B C D
PARENT B C CHILD E
PARENT D CHILD F G H

DAGMAN

● HTCondor Dagman (Directed Acyclic Graph Manager) is a meta-scheduler. You submit
to the queue a scheduler that manages the execution order of several jobs

24

HTCondor: The generated files

The generated files

● $_CONDOR_SCRATCH_DIR is the directory where your job runs temporarily in the WN
○ All the data stored there is removed when the job finishes
○ It is recommended to avoid working directly in shared FS, work in the scratch of the node

and copy at the end of your job if possible!

● The WNs have all your storage available, you can just decide how to move your data in
your executable script

● The standard output and error are always transferred back when the job finishes
(completed, removed or held)

25

HTCondor: Checking your job

$ condor_q -const ‘RequestCpus > 1 && JobStatus == 1’ -nobatch -af ClusterId ProcId RequestCpus RequestMemory
630 0 4 2048
630 1 4 2048
630 2 4 2048

Autoformat (-af) allows you to control the format of condor_q output

Use constraint (-const) to filter your jobs, remember that -nobatch shows the jobs ungrouped
$ condor_q -const ‘RequestCpus > 1 && JobStatus == 1’ -nobatch

-- Schedd: submit01.pic.es : <193.109.174.82:9618?... @ 03/14/19 09:42:46
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 630.0 cacosta 3/14 09:42 0+00:00:00 I 0 0.0 test.sh --cpu 1 --timeout 10s
 630.1 cacosta 3/14 09:42 0+00:00:00 I 0 0.0 test.sh --cpu 1 --timeout 10s
 630.2 cacosta 3/14 09:42 0+00:00:00 I 0 0.0 test.sh --cpu 1 --timeout 10s

Total for query: 3 jobs; 0 completed, 0 removed, 3 idle, 0 running, 0 held, 0 suspended
Total for cacosta: 7 jobs; 0 completed, 0 removed, 5 idle, 2 running, 0 held, 0 suspended
Total for all users: 7 jobs; 0 completed, 0 removed, 5 idle, 2 running, 0 held, 0 suspended

condor_q

● allows constraints and several output formats

● Use condor_q -l $ClusterId.$ProcId to obtain all the job attributes

26

HTCondor: Checking your job

$ condor_q -better 7937412

[..]

 Slots
Step Matched Condition
----- -------- ---------
[0] 1842 TARGET.WN_property == ifThenElse(MY.WN_property is undefined,"default",MY.WN_property)
[5] 423 TARGET.Disk >= RequestDisk
[6] 394 [0] && [5]
[7] 2 TARGET.Memory >= RequestMemory
[8] 0 [6] && [7]
[9] 2055 TARGET.FileSystemDomain == MY.FileSystemDomain

No successful match recorded.
Last failed match: Fri Oct 6 15:27:08 2023

Reason for last match failure: no match found

7937412.000: Run analysis summary ignoring user priority. Of 161 machines,
 161 are rejected by your job's requirements
 0 reject your job because of their own requirements
 0 match and are already running your jobs
 0 match but are serving other users
 0 are able to run your job

WARNING: Be advised:
 No machines matched the jobs's constraints

condor_q -analyze/-better/-better-analyze

● allows you to check if there are WNs that can run your jobs

27

HTCondor: Checking your job

condor_history

● For finished and removed jobs that do not appear in the queue

● It allows similar constraints as condor_q (some of the attributes are slightly different,
for instance LastRemoteHost for RemoteHost)

● Use -limit N to avoid very long queries

● You can check finished jobs up to 2 months ago

28

HTCondor: Checking your job

condor_rm

● Use condor_rm and the ClusterId and/or ProcId of your job

● It allows the use of constraints and “-all” to remove all your jobs

29

HTCondor: News and future

● Migration to AlmaLinux 9 OS in the coming month

○ Forced by the discontinuation of CentOs7

● Major upgrade from HTCondor 9 to 10

○ Shouldn't have an impact on the users

● You will receive new information soon

● Remember that other changes and new features will be in the wiki

30

Storage

Storage at PIC is separated in:

● Disk storage for internal access: 3.5 PB
○ User Home. Small space, for scripts, logs, etc. Backups.
○ Software. Common space for group’s users. Small space. Backups.
○ Common. Common data for members of a group. Backups.
○ Scratch. No critical data. No backups.

● Mass Storage for internal and external access:
○ Disk: 20 PB. Tape: 63 PB.
○ Local access on PICs resources (UIs, nodes)
○ Allow sharing data between centers/users.
○ Optional use of tape for long term data or backups. IB

M
TS

45
00

31

Storage (II)

● User home
○ Quota / Reduced space
○ Only important data

● SW
○ Common software for all users
○ Small space

● Common
○ Common data

● Scratch
○ Not critical data (no backups)
○ Big space
○ No backups

● /pnfs
○ Different retention policies (Disk/Tape)
○ Not 100% Posix

Space for external use

○ /pnfs (dCache)
○ External access (https)
○ Mounted on WN and UIs for local

access

NFS space for internal use

○ Mounted on WN and UIs

32

Backup policies for disk internal storage

● Snapshots
○ Hourly (3 last snapshots) / daily (14) / weekly (3)

● Backup
○ Nightly copy to an external server

Storage (backups)

Endpoint Snapshots Backups

Home yes yes

Software yes yes

Common yes yes

Scratch no no

33

Storage (https access)

● Webdav door
○ Read / Download files
○ Command line access (upload included)

● Frontend dCacheView
○ Upload/download files

Web interface
 /pnfs external access

34

● jupyter.pic.es

● Launch a jupyter notebook server on PIC’s
HTC cluster

● User-defined resources
○ CPUs
○ Memory
○ GPUs

● Only a web browser
and internet connection needed

● Access to PIC’s massive storage

● No need to download data anymore !!

Jupyter: Introduction

https://jupyter.pic.es/

35

Jupyter: jupyterlab

36

Main work areaLeft sidebar

Jupyter: jupyterlab

Menu bar

R
ig

ht
 s

id
eb

ar

37

Jupyter: jupyterlab

Menu
File browser

GPU dashboards

Dask

git

Resource usage

notebooks

Desktop apps:
DS9, topcat

Visual
Studio Code

de
bu

gg
in

g

Terminal Text editor

38

Jupyter: jupyterlab

39

Jupyter: environments

We provide a python environment with the most common scientific libraries

Python 3.11 Numpy 1.24 Matplotlib 3.7 pandas 2.0 scipy 1.10

astropy scikit-learn scikit-image Dask

bokeh

pillow

plotlyseaborn

And some additions

statsmodels jupyter stack

40

Jupyter: environments

If this is not enough, you can still create custom environments and make them
available to be used in your notebooks

> mamba create (-n {name} | -p {path}) ipykernel [pkg1 pkg2 …]

> mamba activate ({name} | {path})

> python -m ipykernel install –user –name {display name}

Detailed instructions here:
https://pwiki.pic.es/index.php?title=JupyterHub#Python_virtual_environments

https://pwiki.pic.es/index.php?title=JupyterHub#Python_virtual_environments

41

Jupyter: GPUs

● GPUs available
○ gpu01: 8 x RTX 2080 Ti, available via jupyter

and HTCondor with preemption
○ gpu05: 8 x V100, available via HTCondor

with preemption, and a subset of 4 available
via jupyter

○ gpu02 & gpu03: 1 x GeForce 1050 Ti,
available via HTCondor

● GPUs are a scarce resource. Don’t request for a
GPU unless you are really going to use it

● GPU dashboards in jupyterlab show the GPU
usage

● No GPU libraries in the base environment

42

Jupyter: Dask

Dask provides the ability to scale Python data analytics
to multiple machines

Why Dask?

● When going to large datasets, the analysis may not fit in a single machine
● Numpy and Pandas were not intended to scale to multiple machines
● Similar API (arrays and dataframes) but with lazy loading
● Can scale down to a single computer (e.g. for testing)
● Suited to scale up using PIC’s HTC cluster (with your account limitations)

using a lot of small workers

43

Jupyter: Dask

Launch a Dask cluster
on HTCondor using the
Dask dashboard

And use it in your notebooks

44

Jupyter: Dask

Aggregated CPU load
When we call the compute() method,
the calculation is performed

45

Gitlab: introduction

● Version Control System (VCS)
○ A tool to track and manage changes to

digital assets (e.g. code)
○ Single source of truth
○ Enables parallel development / team

collaboration
○ Full history

● Git
○ Started by Linus Torvald in 2005
○ Open source and free distributed VCS
○ Fast, Flexible, Secure … very good!
○ Has become the de facto standard
○ Is a MUST-have skill in software development
○ Has some learning curve

● Gitlab
○ Web-based Dev(Sec)Ops platform
○ Git repository manager
○ Many more features: CI/CD, issues, wiki

46

Gitlab: git overview

The gitflow branching strategy

● Commit: snapshot of your code

● Branch: dynamic pointer to a commit

● Tag: immutable pointer to a commit

47

Gitlab: git overview

Commands

● commit: make a snapshot of your code
● push: upload your changes to the remote

repository
● checkout: change your local copy to

another snapshot
● pull: download changes from the

remote repository
● add: select changes to be commited
● clone: create a local copy of a remote repository
● merge: add changes made in a snapshot to the current version of the code
● log, branch, status, diff, config, init, etc

48

Gitlab: git best practices / suggestions

● General rules
○ Make small and atomic changes. Commit/push often.
○ Use branches for dedicated/long developments
○ Keep the main branch stable: the tests should always pass (yes you should have tests!!)
○ Write descriptive commit messages: avoid messages like “changes”, “test” or “.”
○ Adopt a branching strategy: gitflow, trunk-based,...
○ Do code reviews if feasible

● Our contributions
○ Use git. If you work alone or in a team, use it!
○ Do not upload big binary files to a git repository. Git is not for data, it is for code.
○ Use .gitignore to track only relevant files
○ Do not track jupyter notebooks (.ipynb) directly, pair them with a script
○ Do not upload confidential data (NEVER!) passwords, ssh keys, etc will be there forever

49

Gitlab: CI/CD

● Continuous Integration / Continuous
Deployment

● Automate the stages of software
development, that come after writing
the code

○ Build
○ Test
○ Deploy

● When should you use it?
○ Whenever you want to automate some

of these steps
○ Nearly always

50

PIC’s Gitlab in numbers

● Already being actively used by many
groups / users

○ 795 projects
○ 82 groups
○ 358 users
○ 160k commits
○ 700 issues
○ 1100 MRs

● CI /CD
○ ~6.4k pipelines
○ ~22k jobs

● Hardware
○ VM with 4 cores and 8GB RAM
○ 75GB of disk

Group N pipelines

IFAE websites 2318

Magic 762

Hadoop (PIC) 598

Virgo SW 565

Rucio (PIC) 488

51

Big Data service

● cluster
○ 30 nodes, 720 cores, 15 TiB RAM, 60 TiB NVMe cache, 2.5 PiB net storage

■ ⅔ in production next month

○ Based on a custom developed in-house Hadoop distribution

● CosmoHub (based on)
○ Interactive exploration and distribution of astronomical catalogs

■ Suited for very large tables (>100 million rows)

○ User Defined Functions
○ Bring your own data!

●
○ Parallel processing framework (similar to Dask)
○ Supports Python, Scala and R
○ Oriented towards accessing/processing catalogs stored on Hive

52

CosmoHub

https://cosmohub.pic.es

53

User Defined Functions (UDFs)

● HEALPix
○ Following healpy calling semantics BUT using resolution order instead of nside
○ Implemented functions:

■ Pixel conversion: ang2pix, ang2vec, pix2ang, pix2vec, vec2ang, vec2pix
■ Ordering conversion: nest2ring, ring2nest
■ Other: angdist, neighbours, npix2nside, nside2npix, nside2order

● Array
○ To aggregate on equinumerous array columns (e.g. spectra, pdf, …)
○ Implemented functions:

■ array_min, array_max, array_count, array_sum
■ array_avg, array_stddev_pop, array_stddev_samp, array_var_pop, array_var_samp

● Geometric (ADQL)
○ Deal with spherical geometries: POINT, CIRCLE, BOX/POLYGON and REGION
○ Implemented functions:

■ Initialize geometries: adql_point, adql_circle, adql_box, adql_polygon, adql_region
■ Basic operations: adql_area, adql_centroid, adql_coord1, adql_coord2, adql_distance
■ Set operations: adql_contains, adql_intersects, adql_complement
■ Aggregations: adql_union, adql_intersection

54

> 100 catalogs~ 150 active users ~ 13K custom catalogs ~ 40 TiB hosted data

Public catalogs
● Gaia (DR3, Mean Spectrum, EDR3, DR2 & DR1)

● DESI Legacy Survey (DR9, DR8 PZ)
● DESI Legacy Survey with Photoz (DR8)
● COSMOS 2020 (Classic | Farmer)
● COSMOS 2015 Laigle (v2.1)
● LSST DESC DC2 (Truth-match | Object table)
● DES DR2
● DES Y1A1 Morphological catalog (v1.0)
● DES Y1A1 Gold Data (v1.0)
● GLADE (v2.3, v2.4) & GLADE +
● VIPERS photometry and spectroscopy (PDR2)

● KiDS (DR4)
● CANDELS Bulge-Disk decomposition (2018)

● CFHTLenS (good fields) (v1.2)
● Alhambra photometric redshifts (v1.0)
● ALHAMBRA S/G CLASSIFIED (v1.0)
● PAUS+COSMOS photo-z catalog (v0.4)
● PAUS-COSMOS Early Data Release (v1.0)
● PAU.MillGas Lightcone (2016-07-18)
● DEEP2 Redshift catalog (DR4)
● MICE halo properties
● MICECAT (v2.0, v1.0)

https://cosmohub.pic.es/home

55

Bring your own data!!!

How to upload new catalogs into Hive/CosmoHub

● Catalog data
○ Download into any PIC storage (pnfs, scratch)
○ Or provide clear download information (URL, path and credentials)
○ Preferred formats, in order (Parquet, FITS, CSV)

● Metadata
○ For each catalog

■ provide a name, version, short and long description, in Markdown
■ specify whether this data is simulated or comes from observations
■ list which groups/projects have access, or public otherwise

○ For each column, specify its data type, units and description, in plain text.

56

● Parallel processing framework
○ 3 compatible APIs

■ SQL
■ Dataframes
■ RDD

○ Interfaces with Hive/CosmoHub tables
○ Can also access massive storage (PNFS/Ceph/NFS)
○ Dual execution: notebook and batch

Backup slides

PIC - Barcelona

Port d’Informació
Científica

60

PIC services

● Computing, data processing and analysis
○ Batch processing through HTCondor
○ JupyterHub

● Mass storage (tens of Petabytes)
○ Tape
○ Disk

● Big Data - Hadoop Cluster
○ CosmoHub
○ Spark Notebooks*

● Web Services (Gitlab, Wiki, Redmine, Webdav, Monitoring, etc.)

● Consulting support

https://www.pic.es/services/
https://pwiki.pic.es/index.php?title=HTCondor
https://jupyter.pic.es/
https://cosmohub.pic.es/
https://gitlab.pic.es/
https://pwiki.pic.es/index.php?title=Main_Page

61

Big Data service

● New cluster
○ 30 nodes, 720 cores, 15 TiB RAM, 60 TiB NVMe cache, 2.5 PiB net storage
○ Based on a custom developed in-house Hadoop distribution
○ (intro hadoop, replica, ec, hdfs, yarn)

● Hive
○ Data warehouse based on distributed architecture
○ Better suited for very large tables (>100 million rows, >100 columns)

● CosmoHub
○ Custom web interface in front of Hive
○ Interactive plots
○ Download custom subsets
○ Standard formats: CSV, FITS, ASDF, Parquet
○ Additional functions: HEALPix, Array, Geometric

● Spark
○ Parallel processing framework (similar to Dask)
○ Supports Python, Scala and R
○ Oriented towards accessing/processing catalogs stored on Hive

■ i.e. producing/validating mocks

62

Login/Register

63

Catalog list

64

Catalog description

65

Columns, Sampling and Filters

66

SQL view, interactive plots

67

SQL editor, plot configuration

68

Query execution progress

69

Heatmap plot

70

Output format and Citation info (I)

71

Output format and Citation info (II)

72

Activity panel

73

UDF (I)

● HEALPix
○ Following healpy calling semantics

■ BUT using resolution order instead of NSIDE

○ Implemented functions:
■ Pixel conversion: ang2pix, ang2vec, pix2ang, pix2vec, vec2ang, vec2pix
■ Ordering conversion: nest2ring, ring2nest
■ Other: angdist, neighbours, npix2nside, nside2npix, nside2order

● Examples
○ Get pixel from sky coordinates

■ SELECT udf.hp_ang2pix($ORDER, ra, dec, True) AS hpix FROM ...
■ SELECT udf.hp_vec2pix($ORDER, x, y, z) AS hpix FROM ...

○ Generate PARTIAL maps
■ SELECT udf.hp_ang2pix($ORDER, ra, dec) AS hpix, AVG(redshift)

FROM ...
GROUP BY udf.hp_ang2pix($ORDER, ra, dec)
ORDER BY udf.hp_ang2pix($ORDER, ra, dec)

74

UDF (II)

● Array
○ To aggregate on equinumerous array columns

■ i.e. spectra, probability distribution functions...

○ Implemented functions:
■ array_min, array_max, array_count, array_sum
■ array_avg, array_stddev_pop, array_stddev_samp, array_var_pop, array_var_samp

● Example
○ Get average redshift probability distribution function of a sample

■ SELECT udf.array_avg(redshift_pdf) AS redshift_pdf
FROM ...
WHERE ...

75

UDF (III)

● Geometric (ADQL)
○ Deal with spherical geometries: POINT, CIRCLE, BOX/POLYGON and REGION

■ All edges are great circle arcs, including for BOX (!)
■ A REGION represents an arbitrary footprint (MOC)
■ Any geometry can be converted into a REGION
■ Performance is proportional to the number of pixels in the REGION/MOC, use moderate precision

○ Implemented functions:
■ Initialize geometries: adql_point, adql_circle, adql_box, adql_polygon, adql_region
■ Basic operations: adql_area, adql_centroid, adql_coord1, adql_coord2, adql_distance
■ Set operations: adql_contains, adql_intersects, adql_complement
■ Aggregations: adql_union, adql_intersection

76

UDF (III)

● Example
○ Compute approximate area of a sample

■ SELECT udf.adql_area(-- compute total area
 udf.adql_union(-- merge all regions
 udf.adql_region(-- convert to region
 udf.adql_point(-- create a point for each object
 ra, dec
), 5 -- use a coarse resolution; NSIDE=2^5=32
)
)
)
FROM ...
WHERE ...

77

Spark

78

Spark

79

Spark

80

Spark

