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Outline

● PIC Introduction

● Landing at PIC

● PIC services
○ Batch system: HTCondor
○ Storage
○ Notebooks ecosystem: Jupyter
○ Version Control System: Gitlab
○ Big Data: Cosmohub & Spark
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Port d’Informació Científica

● Founded in 2003: collaboration between IFAE and CIEMAT

● Team of 23 people (50% scientists - 50% engineers)
○ Agile teams that embed in scientific groups to

▪ Understand the experiment
▪ Follow the evolution of data analysis requirements
▪ Develop & prototype tools for data management and analysis

● What we do
○ R&D in methodologies and tools for advanced data analysis.

▪ Participate in R&D projects. Software and Computing WPs.

○ Operate services for the preservation, analysis and sharing of data.
▪ Run prod. services for experiments: LHC, MAGIC, CTA, PAUs, 

Euclid, VIRGO/LIGO, DUNE
▪ Provide data analysis services for research groups: IFAE, CIEMAT + 

others 
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Red Española de Supercomputación

● RES was founded in 2007 as a network 
of supercomputers in Spain.

○ Competitive calls for CPU resources 
open to all research groups in Spain.

● In 2020 RES increased its scope to 
include data services 

○ PIC joined RES in 2020. 
○ Annual calls for data projects published 

in December.

https://www.res.es/
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● Connectivity
○ 2x100 Gbps to Academic Network
○ Largest data mover in Spanish academic network: 

100 PB in+out per year

● Data processing services
○ Disk - dCache: 20 PB
○ Tape - Enstore: 63 PB
○ Computing - HTCondor: 12000 cores, 18 GPUs
○ Computing - Hadoop: 720 cores, 2.5 PB disk

● Facilities, ~120 kW IT
○ ~80 kW in 150 m2 air-cooled room 

■ high efficiency,  PUE 1.44 

○ ~40 kW in 25 m2 liquid immersion cooling system 
■ very high efficiency, PUE 1.1

●

PIC data center
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PIC public wiki

https://pwiki.pic.es
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Get a PIC account

https://www.pic.es/register/
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HTCondor: Introduction
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● HTCondor is a batch system
○ Software that manages the execution of several other programs (called jobs) 
○ It allows the execution of a program without the direct supervision of the user
○ The execution can be in remote machines

● Other popular batch systems: SLURM, Torque, LSF, SGE

● HTCondor is a batch system meant for High-Throughput Computing (HTC) while 
others are for High-Performance Computing (HPC)

○ HTC favours the execution of a lot of jobs consuming few resources each
(CPU, memory, etc.)

○ HPC favours the execution of parallel computing, few jobs consuming a lot of resources 
(MPI, low-latency interconnection)
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HTCondor: Introduction
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● Batch systems generally rely on queues
○ Users submit jobs to queues that have different limits (maximum time, CPUs per job, etc.)
○ The jobs are executed in the remote WorkerNodes (WNs) according to a priority and the 

resources available

● HTCondor is different. Your job has requirements and the WNs have resources, if they 
match, your job will run

● HTCondor uses the fair-share concept 
○ You or your group have a quota, a percentage of resources you can use. It is allowed to 

exceed that quota but your priority will be reduced the next time
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HTCondor: Introduction
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● HTCondor scales to thousands of jobs and resources
○ There are ~160 WNs, ~12000 cpus and 18 GPUs in our cluster

● We manage more than 20 projects in the same cluster. From the large grid 
experiments (LHC, CTA, etc.) to the local ones

● HTCondor User Guide:
○ https://pwiki.pic.es/index.php?title=HTCondor_User_Guide

https://pwiki.pic.es/index.php?title=HTCondor_User_Guide
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UI (User Interface)

● To obtain access to PIC HTCondor cluster you can ssh to ui.pic.es

● UIs have access to shared data and allow you to submit and check your job status. 
They are NOT for interactive execution

$ ssh user@ui.pic.es
user@ui.pic.es's password: 
Last login: Wed Oct  4 10:40:06 2023

********************************************************************************
*                                                                              *
*                 The "ui.pic.es" Public Login Unix Service                    *
*                            CentOS 7.8.2003 x86_64                            *
*                                                                              *
* Our Login Service grants you access to PIC datacenter and its batch          *
* system (HTCondor) on batch and interactive mode (condor_submit -i).          *
* We recommend consulting our HTCondor User Guide:                             *
*                                                                              *
* https://pwiki.pic.es/index.php?title=HTCondor_User_Guide                     *
*                                                                              *
* In case of problems, please contact the support:                             *
*            e-mail      user.support@pic.es                                   *
*                                                                              *
*                                            PIC WebSite: http://www.pic.es/   *
*                                                                              *
********************************************************************************
[user@ui02 ~]$ 

HTCondor: Access the cluster
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Submit file: communicate everything of your job to HTCondor (test.sub)

condor_submit to submit your job, condor_q to monitor, condor_rm to kill

HTCondor: Quick Start

13

$ cat test.sub
executable = test.sh
arguments = -c 1 -t 60
output = condor.out
error = condor.err
log = condor.log

queue

$ condor_submit test.sub 
Submitting job(s).
1 job(s) submitted to cluster 7952359.

$ condor_q 7952359

-- Schedd: submit01.pic.es : <193.109.174.82:9618?... @ 10/26/23 15:43:44
OWNER   BATCH_NAME     SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS
cacosta ID: 7952363  10/26 15:43      _      _      1      1 7952359.0

Total for query: 1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended 
Total for all users: 1661 jobs; 0 completed, 0 removed, 1387 idle, 267 running, 7 held, 0 
suspended

$ condor_rm 7952359
All jobs in cluster 7952359 have been marked for removal

$ cat test.sh
#!/bin/bash

/bin/stress $@

Your job identification is a 
$(ClusterID).$(ProcID): 
7952359.0
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Submit file. Executable, input, arguments, output, error and logs

● You have to specify the executable and optionally you can specify your input, output 
(stdout) and error (stderr) logs. 

● Make sure that your script is correct (location, permissions and shebang)!

● You can set the global path. However, if no path is specified, the directory from which 
the job was submitted is used

HTCondor: Submitting your job

executable = test.sh

input = input.txt

arguments = arg

output = test.out

error = test.err

log = test.log
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$ cat test-req.sub
executable = test.sh
arguments = -c 8 -t 60
output = test-req-$(ClusterId).$(ProcId).out
error = test-req-$(ClusterId).$(ProcId).err
log = test-req-$(ClusterId).$(ProcId).log

request_memory = 4 GB
request_cpus = 8

queue

This job asks for 4 GB of RAM (use units!) and 8 CPUs 

$ condor_q 1462.0 -af RequestCpus RequestMemory
8 4096 

Querying the resources requested, memory is in MB

HTCondor: Submitting your job

Submit file. Requesting resources

● You can request cpu, gpu, memory and disk for your job using request_cpus, 
request_gpus, request_memory and request_disk respectively

● If request options are not present in your submit file, these default values are taken:
○ 1 cpu, 2 GB of memory per cpu, 15 GB of local disk per cpu and no GPUs
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HTCondor: Submitting your job

Submit file. Requesting GPUs

● At PIC there are right now only 18 GPUs available
○ 8 GPUs for jupyter.pic.es (RTX 2080 Ti)
○ 8 GPUs for Magnesia group (V100)
○ 2 old GPUs for testing (GTX 1050 Ti)

● You can access any of them through HTCondor
○ However, RTX 2080 and V100 GPU work with preemption enabled: if a higher priority job 

needs the resources, your job will be killed and put in queue again
○ Contact us if you need to access to RTX2080 or V100 GPUs through HTCondor
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HTCondor: Submitting your job

Submit file. Requesting resources

● The default resources are 1 core and 2 GB of RAM. But you can access up to 8 cores 
and 32 GB without expecting long queue waits 

○ You can access to more resources if needed, but first contact us 

● The amount of resources requested determines the queue time: less resources, less 
time in queue

● Last 2 months Average Queue Time: 1.8 hours
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Submit file. The flavours

● 3 general flavours to limit the job’s walltime
○ short: 3 hours
○ medium: 48 hours
○ long: 96 hours

● Default flavour is medium

● When the job arrives to the time limit, it will be held and it remains in this status for 6 
hours in the queue (condor_q -af HoldReason)

● Jobs that exceed 50% over the requested memory will be also held

● If you need more than 96 hours, consult us

HTCondor: Submitting your job

$ cat test-flavour.sub
executable = test.sh
arguments = -c 1 -t 60
output = test-flavour-$(ClusterId).$(ProcId).out
error = test-flavour-$(ClusterId).$(ProcId).err
log = test-flavour-$(ClusterId).$(ProcId).log

+flavour="long"

queue
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Submit file. The queue statement

● queue N, to submit N number jobs

● Powerful command. Several ways to use queue. Example:
○ From file: Queue commands reads the information contained in a file

HTCondor: Submitting your job

$ cat test-queue3.sub
executable = test.sh
arguments = -c $(option1) -t $(option2)
output = test-queue3-$(ClusterId).$(ProcId).out
error = test-queue3-$(ClusterId).$(ProcId).err
log = test-queue3-$(ClusterId).$(ProcId).log

queue option1,option2 from args/arg_list.txt

$ cat arg_list.txt 
1, 15
2, 10
1, 12
4, 13

4 jobs submitted, considering we have multiple options in a list file arg_list.txt
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The priority and the Accounting Group

● The priority of your job is calculated depending on 
the Accounting Group 

○ Your Accounting Group is defined by your primary 
group

○ HTCondor adds automatically the user to the 
Accounting Group

○ Each group have a quota of resources assigned to 
them

● If your primary group does not fit with the 
experiment you want to account for, you can add 
+experiment="experiment" in your submit file

$ cat test-experiment.sub
executable = test.sh
arguments = -c 1 -t 120
output = output-$(ClusterId).$(ProcId).out
error = error-$(ClusterId).$(ProcId).err
log = log-$(ClusterId).$(ProcId).log

+experiment="virgo"

queue

HTCondor: Submitting your job
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Interactive submission

● There is the possibility to submit interactive jobs: condor_submit 
-i/-interactive

HTCondor: Submitting your job

$ condor_submit -interactive
Submitting job(s).
1 job(s) submitted to cluster 7952079.
Waiting for job to start...
Welcome to slot1_6@tds228.pic.es!
You will be logged out after 7200 seconds of inactivity.
bash-4.2$ 
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Use of containers

● The use of containers is always encouraged. Apptainer (old singularity) recommended

● You just need to add +SingularityImage to run inside a container

● All the shared filesystems are available inside the container

+SingularityImage = "/opt/apptainer-images/pic-centos7.sif"

HTCondor: Submitting your job
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HTCondor: Submitting your job

JOB  A  jobA.sub
JOB  B  jobB.sub
JOB  C  jobC.sub
JOB  D  jobD.sub
JOB  E  jobE.sub
JOB  F  jobF.sub
JOB  G  jobG.sub
JOB  H  jobH.sub
PARENT A CHILD B C D
PARENT B C CHILD E
PARENT D CHILD F G H

DAGMAN

● HTCondor Dagman (Directed Acyclic Graph Manager) is a meta-scheduler. You submit 
to the queue a scheduler that manages the execution order of several jobs
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HTCondor: The generated files

The generated files

● $_CONDOR_SCRATCH_DIR is the directory where your job runs temporarily in the WN
○ All the data stored there is removed when the job finishes
○ It is recommended to avoid working directly in shared FS, work in the scratch of the node 

and copy at the end of your job if possible!

● The WNs have all your storage available, you can just decide how to move your data in 
your executable script

● The standard output and error are always transferred back when the job finishes 
(completed, removed or held)
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HTCondor: Checking your job

$ condor_q -const ‘RequestCpus > 1 && JobStatus == 1’ -nobatch -af ClusterId ProcId RequestCpus RequestMemory
630 0 4 2048
630 1 4 2048
630 2 4 2048

Autoformat (-af) allows you to control the format of condor_q output

Use constraint (-const) to filter your jobs, remember that -nobatch shows the jobs ungrouped
$ condor_q -const ‘RequestCpus > 1 && JobStatus == 1’ -nobatch

-- Schedd: submit01.pic.es : <193.109.174.82:9618?... @ 03/14/19 09:42:46
 ID      OWNER            SUBMITTED     RUN_TIME ST PRI SIZE CMD
 630.0   cacosta         3/14 09:42   0+00:00:00 I  0    0.0 test.sh --cpu 1 --timeout 10s
 630.1   cacosta         3/14 09:42   0+00:00:00 I  0    0.0 test.sh --cpu 1 --timeout 10s
 630.2   cacosta         3/14 09:42   0+00:00:00 I  0    0.0 test.sh --cpu 1 --timeout 10s

Total for query: 3 jobs; 0 completed, 0 removed, 3 idle, 0 running, 0 held, 0 suspended
Total for cacosta: 7 jobs; 0 completed, 0 removed, 5 idle, 2 running, 0 held, 0 suspended 
Total for all users: 7 jobs; 0 completed, 0 removed, 5 idle, 2 running, 0 held, 0 suspended

condor_q

● allows constraints and several output formats

● Use condor_q -l $ClusterId.$ProcId to obtain all the job attributes
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HTCondor: Checking your job

$ condor_q -better 7937412

[..]

         Slots
Step    Matched  Condition
-----  --------  ---------
[0]        1842  TARGET.WN_property == ifThenElse(MY.WN_property is undefined,"default",MY.WN_property)
[5]         423  TARGET.Disk >= RequestDisk
[6]         394  [0] && [5]
[7]           2  TARGET.Memory >= RequestMemory
[8]           0  [6] && [7]
[9]        2055  TARGET.FileSystemDomain == MY.FileSystemDomain

No successful match recorded.
Last failed match: Fri Oct  6 15:27:08 2023

Reason for last match failure: no match found 

7937412.000:  Run analysis summary ignoring user priority.  Of 161 machines,
    161 are rejected by your job's requirements
      0 reject your job because of their own requirements
      0 match and are already running your jobs
      0 match but are serving other users
      0 are able to run your job

WARNING:  Be advised:
   No machines matched the jobs's constraints

condor_q -analyze/-better/-better-analyze

● allows you to check if there are WNs that can run your jobs
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HTCondor: Checking your job

condor_history

● For finished and removed jobs that do not appear in the queue

● It allows similar constraints as condor_q (some of the attributes are slightly different, 
for instance LastRemoteHost for RemoteHost)

● Use -limit N to avoid very long queries

● You can check finished jobs up to 2 months ago
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HTCondor: Checking your job

condor_rm

● Use condor_rm and the ClusterId and/or ProcId of your job

● It allows the use of constraints and “-all” to remove all your jobs
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HTCondor: News and future

● Migration to AlmaLinux 9 OS in the coming month

○ Forced by the discontinuation of CentOs7

● Major upgrade from HTCondor 9 to 10 

○ Shouldn't have an impact on the users

● You will receive new information soon

● Remember that other changes and new features will be in the wiki
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Storage 

Storage at PIC is separated in:

● Disk storage for internal access: 3.5 PB
○ User Home. Small space, for scripts, logs, etc. Backups.
○ Software. Common space for group’s users. Small space. Backups.
○ Common. Common data for members of a group. Backups.
○ Scratch. No critical data. No backups. 

● Mass Storage for internal and external access: 
○ Disk: 20 PB. Tape: 63 PB.
○ Local access on PICs resources (UIs, nodes)
○ Allow sharing data between centers/users.
○ Optional use of tape for long term data or backups. IB
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TS

45
00



31

Storage (II)

● User home
○ Quota / Reduced space
○ Only important data

● SW
○ Common software for all users
○ Small space

● Common
○ Common data

● Scratch
○ Not critical data (no backups)
○ Big space
○ No backups

● /pnfs
○ Different retention policies (Disk/Tape)
○ Not 100% Posix

Space for external use

○ /pnfs (dCache)
○ External access (https)
○ Mounted on WN and UIs for local 

access

NFS space for internal use

○ Mounted on WN and UIs
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Backup policies for disk internal storage

● Snapshots
○ Hourly (3 last snapshots) / daily (14) / weekly (3) 

● Backup
○ Nightly copy to an external server

Storage (backups)

Endpoint Snapshots Backups

Home yes yes

Software yes yes

Common yes yes

Scratch no no
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Storage (https access)

● Webdav door
○ Read / Download files
○ Command line access (upload included)

● Frontend dCacheView
○ Upload/download files

Web interface
   /pnfs external access
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● jupyter.pic.es

● Launch a jupyter notebook server on PIC’s 
HTC cluster

● User-defined resources
○ CPUs
○ Memory
○ GPUs

● Only a web browser
and internet connection needed

● Access to PIC’s massive storage

● No need to download data anymore !!

Jupyter: Introduction

https://jupyter.pic.es/
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Jupyter: jupyterlab



36

Main work areaLeft sidebar

Jupyter: jupyterlab

Menu bar
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Jupyter: jupyterlab

Menu
File browser

GPU dashboards

Dask

git

Resource usage

notebooks

Desktop apps: 
DS9, topcat

Visual 
Studio Code
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Terminal Text editor
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Jupyter: jupyterlab
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Jupyter: environments

We provide a python environment with the most common scientific libraries

Python 3.11 Numpy 1.24 Matplotlib 3.7 pandas 2.0 scipy 1.10

astropy scikit-learn scikit-image Dask

bokeh

pillow

plotlyseaborn

And some additions

statsmodels jupyter stack
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Jupyter: environments

If this is not enough, you can still create custom environments and make them 
available to be used in your notebooks

> mamba create (-n {name} | -p {path}) ipykernel [pkg1 pkg2 …]

> mamba activate ({name} | {path})

> python -m ipykernel install –user –name {display name}

Detailed instructions here: 
https://pwiki.pic.es/index.php?title=JupyterHub#Python_virtual_environments

https://pwiki.pic.es/index.php?title=JupyterHub#Python_virtual_environments
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Jupyter: GPUs

● GPUs available
○ gpu01: 8 x RTX 2080 Ti, available via jupyter 

and HTCondor with preemption
○ gpu05: 8 x V100, available via HTCondor 

with preemption, and a subset of 4 available 
via jupyter

○ gpu02 & gpu03: 1 x GeForce 1050 Ti, 
available via HTCondor

● GPUs are a scarce resource. Don’t request for a 
GPU unless you are really going to use it

● GPU dashboards in jupyterlab show the GPU 
usage

● No GPU libraries in the base environment 
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Jupyter: Dask

Dask provides the ability to scale Python data analytics 
to multiple machines

Why Dask?

● When going to large datasets, the analysis may not fit in a single machine
● Numpy and Pandas were not intended to scale to multiple machines
● Similar API (arrays and dataframes) but with lazy loading
● Can scale down to a single computer (e.g. for testing)
● Suited to scale up using PIC’s HTC cluster (with your account limitations) 

using a lot of small workers
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Jupyter: Dask

Launch a Dask cluster 
on HTCondor using the 
Dask dashboard

And use it in your notebooks
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Jupyter: Dask

Aggregated CPU load
When we call the compute() method, 
the calculation is performed
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Gitlab: introduction

● Version Control System (VCS)
○ A tool to track and manage changes to 

digital assets (e.g. code)
○ Single source of truth
○ Enables parallel development / team 

collaboration
○ Full history

● Git
○ Started by Linus Torvald in 2005
○ Open source and free distributed VCS
○ Fast, Flexible, Secure … very good!
○ Has become the de facto standard
○ Is a MUST-have skill in software development
○ Has some learning curve

● Gitlab
○ Web-based Dev(Sec)Ops platform
○ Git repository manager
○ Many more features: CI/CD, issues, wiki
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Gitlab: git overview

The gitflow branching strategy

● Commit: snapshot of your code

● Branch: dynamic pointer to a commit

● Tag: immutable pointer to a commit
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Gitlab: git overview

Commands

● commit: make a snapshot of your code
● push: upload your changes to the remote 

repository
● checkout: change your local copy to 

another snapshot
● pull: download changes from the 

remote repository
● add: select changes to be commited
● clone: create a local copy of a remote repository
● merge: add changes made in a snapshot to the current version of the code
● log, branch, status, diff, config, init, etc
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Gitlab: git best practices / suggestions

● General rules
○ Make small and atomic changes. Commit/push often.
○ Use branches for dedicated/long developments
○ Keep the main branch stable: the tests should always pass (yes you should have tests!!)
○ Write descriptive commit messages: avoid messages like “changes”, “test”  or “.”
○ Adopt a branching strategy: gitflow, trunk-based,...
○ Do code reviews if feasible

● Our contributions
○ Use git. If you work alone or in a team, use it!
○ Do not upload big binary files to a git repository. Git is not for data, it is for code. 
○ Use .gitignore to track only relevant files
○ Do not track  jupyter notebooks (.ipynb) directly, pair them with a script
○ Do not upload confidential data (NEVER!) passwords, ssh keys, etc will be there forever
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Gitlab: CI/CD

● Continuous Integration / Continuous 
Deployment

● Automate the stages of software 
development, that come after writing 
the code

○ Build
○ Test
○ Deploy

● When should you use it?
○ Whenever you want to automate some 

of these steps
○ Nearly always
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PIC’s Gitlab in numbers

● Already being actively used by many 
groups / users

○ 795 projects
○ 82 groups
○ 358 users
○ 160k commits
○ 700 issues
○ 1100 MRs

● CI /CD
○ ~6.4k pipelines
○ ~22k jobs

● Hardware
○ VM with 4 cores and 8GB RAM
○ 75GB of disk

Group N pipelines

IFAE websites 2318

Magic 762

Hadoop (PIC) 598

Virgo SW 565

Rucio (PIC) 488
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Big Data service

●                      cluster
○ 30 nodes, 720 cores, 15 TiB RAM, 60 TiB NVMe cache, 2.5 PiB net storage

■ ⅔ in production next month

○ Based on a custom developed in-house Hadoop distribution

● CosmoHub (based on          )
○ Interactive exploration and distribution of astronomical catalogs

■ Suited for very large tables (>100 million rows)

○ User Defined Functions
○ Bring your own data!

●
○ Parallel processing framework (similar to Dask)
○ Supports Python, Scala and R
○ Oriented towards accessing/processing catalogs stored on Hive
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CosmoHub

https://cosmohub.pic.es
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User Defined Functions (UDFs)

● HEALPix
○ Following healpy calling semantics BUT using resolution order instead of nside
○ Implemented functions: 

■ Pixel conversion: ang2pix, ang2vec, pix2ang, pix2vec, vec2ang, vec2pix
■ Ordering conversion: nest2ring, ring2nest 
■ Other: angdist, neighbours, npix2nside, nside2npix, nside2order

● Array
○ To aggregate on equinumerous array columns (e.g. spectra, pdf, …)
○ Implemented functions:

■ array_min, array_max, array_count, array_sum
■ array_avg, array_stddev_pop, array_stddev_samp, array_var_pop, array_var_samp

● Geometric (ADQL)
○ Deal with spherical geometries: POINT, CIRCLE, BOX/POLYGON and REGION
○ Implemented functions:

■ Initialize geometries: adql_point, adql_circle, adql_box, adql_polygon, adql_region
■ Basic operations: adql_area, adql_centroid, adql_coord1, adql_coord2, adql_distance
■ Set operations: adql_contains, adql_intersects, adql_complement
■ Aggregations: adql_union, adql_intersection
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> 100 catalogs~ 150 active users ~ 13K custom catalogs ~ 40 TiB hosted data

Public catalogs
● Gaia (DR3, Mean Spectrum, EDR3, DR2 & DR1)

● DESI Legacy Survey (DR9, DR8 PZ)
● DESI Legacy Survey with Photoz (DR8)
● COSMOS 2020 (Classic | Farmer)
● COSMOS 2015 Laigle (v2.1)
● LSST DESC DC2 (Truth-match | Object table)
● DES DR2
● DES Y1A1 Morphological catalog (v1.0)
● DES Y1A1 Gold Data (v1.0)
● GLADE (v2.3, v2.4) & GLADE +
● VIPERS photometry and spectroscopy (PDR2)

● KiDS (DR4)
● CANDELS Bulge-Disk decomposition (2018)

● CFHTLenS (good fields) (v1.2)
● Alhambra photometric redshifts (v1.0)
● ALHAMBRA S/G CLASSIFIED (v1.0)
● PAUS+COSMOS photo-z catalog (v0.4)
● PAUS-COSMOS Early Data Release (v1.0)
● PAU.MillGas Lightcone (2016-07-18)
● DEEP2 Redshift catalog (DR4)
● MICE halo properties
● MICECAT (v2.0, v1.0)

https://cosmohub.pic.es/home
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Bring your own data!!!

How to upload new catalogs into Hive/CosmoHub

● Catalog data
○ Download into any PIC storage (pnfs, scratch)
○ Or provide clear download information (URL, path and credentials)
○ Preferred formats, in order (Parquet, FITS, CSV)

● Metadata
○ For each catalog

■ provide a name, version, short and long description, in Markdown
■ specify whether this data is simulated or comes from observations
■ list which groups/projects have access, or public otherwise

○ For each column, specify its data type, units and description, in plain text.
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● Parallel processing framework
○ 3 compatible APIs

■ SQL
■ Dataframes
■ RDD

○ Interfaces with Hive/CosmoHub tables
○ Can also access massive storage (PNFS/Ceph/NFS)
○ Dual execution: notebook and batch
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PIC services

● Computing, data processing and analysis
○ Batch processing through HTCondor
○ JupyterHub

● Mass storage (tens of Petabytes)
○ Tape
○ Disk

● Big Data - Hadoop Cluster
○ CosmoHub
○ Spark Notebooks*

● Web Services (Gitlab, Wiki, Redmine, Webdav, Monitoring, etc.)

● Consulting support

https://www.pic.es/services/
https://pwiki.pic.es/index.php?title=HTCondor
https://jupyter.pic.es/
https://cosmohub.pic.es/
https://gitlab.pic.es/
https://pwiki.pic.es/index.php?title=Main_Page
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Big Data service

● New cluster
○ 30 nodes, 720 cores, 15 TiB RAM, 60 TiB NVMe cache, 2.5 PiB net storage
○ Based on a custom developed in-house Hadoop distribution
○ (intro hadoop, replica, ec, hdfs, yarn)

● Hive 
○ Data warehouse based on distributed architecture
○ Better suited for very large tables (>100 million rows, >100 columns)

● CosmoHub
○ Custom web interface in front of Hive
○ Interactive plots
○ Download custom subsets
○ Standard formats: CSV, FITS, ASDF, Parquet
○ Additional functions: HEALPix, Array, Geometric

● Spark
○ Parallel processing framework (similar to Dask)
○ Supports Python, Scala and R
○ Oriented towards accessing/processing catalogs stored on Hive

■ i.e. producing/validating mocks



62

Login/Register
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Catalog list
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Catalog description
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Columns, Sampling and Filters
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SQL view, interactive plots
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SQL editor, plot configuration
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Query execution progress
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Heatmap plot
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Output format and Citation info (I)
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Output format and Citation info (II)
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Activity panel
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UDF (I)

● HEALPix
○ Following healpy calling semantics

■ BUT using resolution order instead of NSIDE

○ Implemented functions: 
■ Pixel conversion: ang2pix, ang2vec, pix2ang, pix2vec, vec2ang, vec2pix
■ Ordering conversion: nest2ring, ring2nest 
■ Other: angdist, neighbours, npix2nside, nside2npix, nside2order

● Examples
○ Get pixel from sky coordinates

■ SELECT udf.hp_ang2pix($ORDER, ra, dec, True) AS hpix FROM ...
■ SELECT udf.hp_vec2pix($ORDER, x, y, z) AS hpix FROM ...

○ Generate PARTIAL maps
■ SELECT udf.hp_ang2pix($ORDER, ra, dec) AS hpix, AVG(redshift)

FROM ...
GROUP BY udf.hp_ang2pix($ORDER, ra, dec)
ORDER BY udf.hp_ang2pix($ORDER, ra, dec)
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UDF (II)

● Array
○ To aggregate on equinumerous array columns

■ i.e. spectra, probability distribution functions...

○ Implemented functions:
■ array_min, array_max, array_count, array_sum
■ array_avg, array_stddev_pop, array_stddev_samp, array_var_pop, array_var_samp

● Example
○ Get average redshift probability distribution function of a sample

■ SELECT udf.array_avg(redshift_pdf) AS redshift_pdf
FROM ...
WHERE ...
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UDF (III)

● Geometric (ADQL)
○ Deal with spherical geometries: POINT, CIRCLE, BOX/POLYGON and REGION

■ All edges are great circle arcs, including for BOX (!)
■ A REGION represents an arbitrary footprint (MOC)
■ Any geometry can be converted into a REGION
■ Performance is proportional to the number of pixels in the REGION/MOC, use moderate precision

○ Implemented functions:
■ Initialize geometries: adql_point, adql_circle, adql_box, adql_polygon, adql_region
■ Basic operations: adql_area, adql_centroid, adql_coord1, adql_coord2, adql_distance
■ Set operations: adql_contains, adql_intersects, adql_complement
■ Aggregations: adql_union, adql_intersection
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UDF (III)

● Example
○ Compute approximate area of a sample

■ SELECT udf.adql_area(            -- compute total area
    udf.adql_union(              -- merge all regions
        udf.adql_region(         -- convert to region
            udf.adql_point(      -- create a point for each object
                ra, dec
            ), 5                 -- use a coarse resolution; NSIDE=2^5=32
        )
    )
)
FROM ...
WHERE ...
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Spark
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Spark
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Spark
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Spark


