Towards a Spanish LISA Global Fit Pipeline

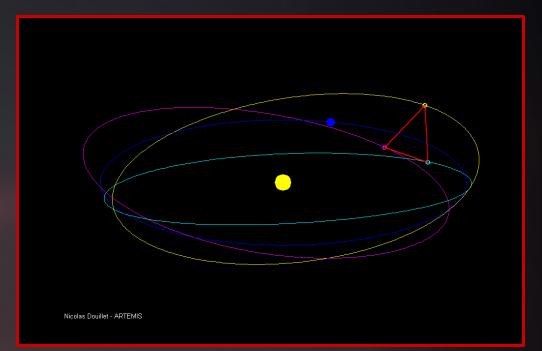
Ivan Martin Vilchez

2nd BIG&C Meeting

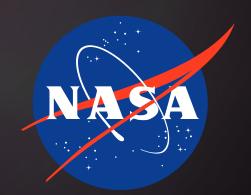
IFAE, January 22nd 2024

Institute of Space Sciences

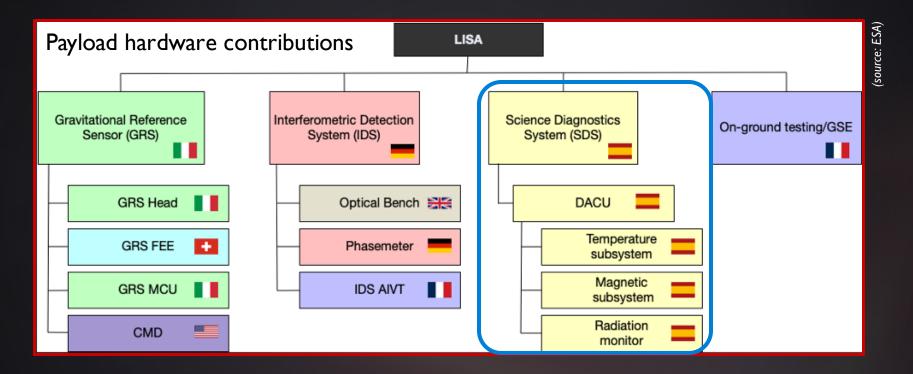
SIC

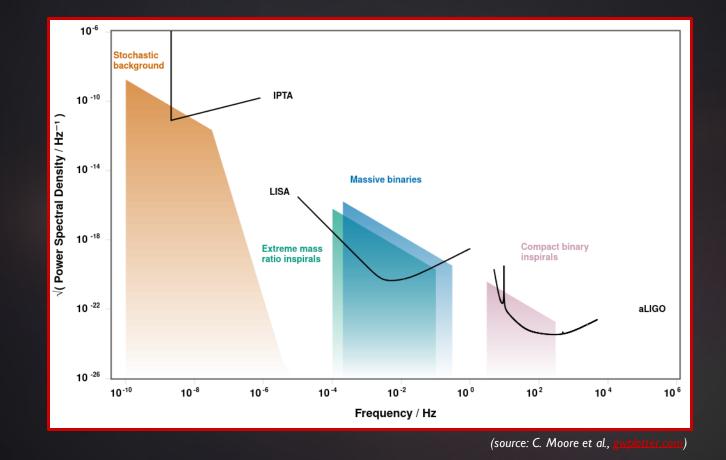


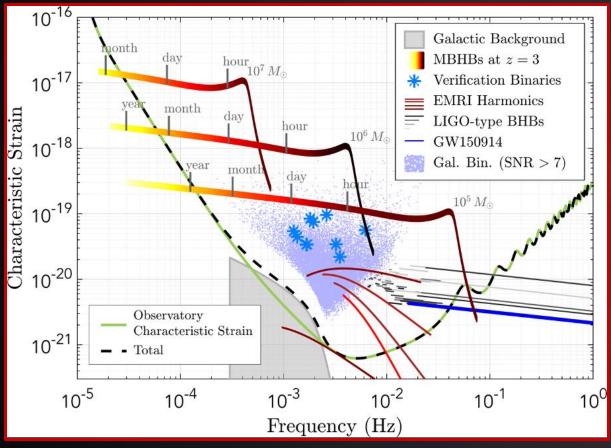
UAB Universitat Autònoma de Barcelona


The LISA mission

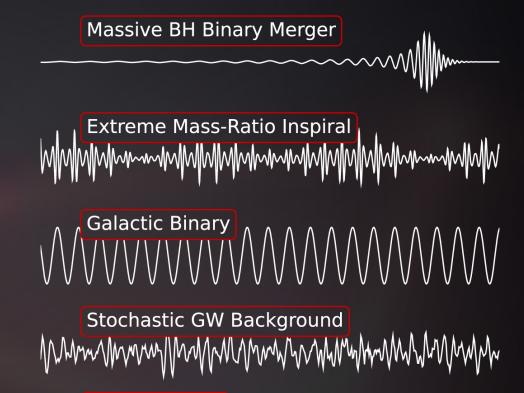
- Space-based GW observatory
- 3 spacecrafts in an interferometer configuration
- Arm length: 2.5M km
- Heliocentric orbit behind Earth
- ESA-led, with NASA as junior partner
- Estimated launch: ~2035
- Estimated adoption: in 3 days!




Spanish contribution to LISA

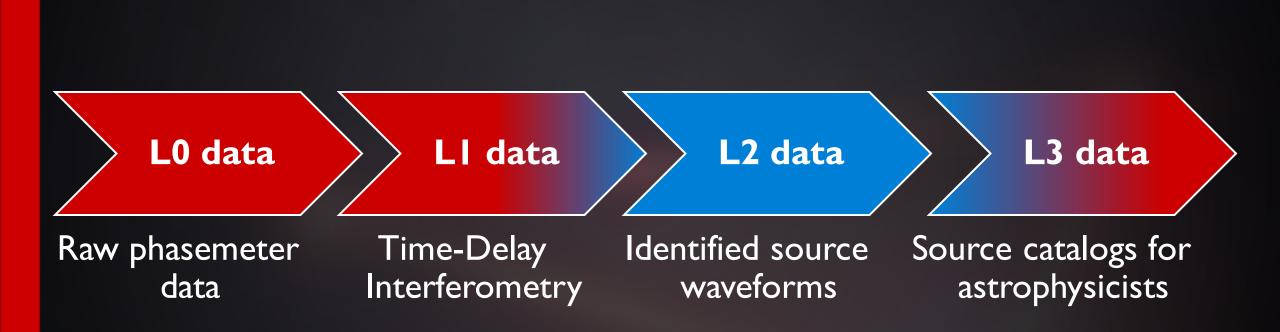

In the ground segment, Spain is committing to:

- Establishing a Data Processing Centre (DPC)
- Developing and running a Global Fit pipeline

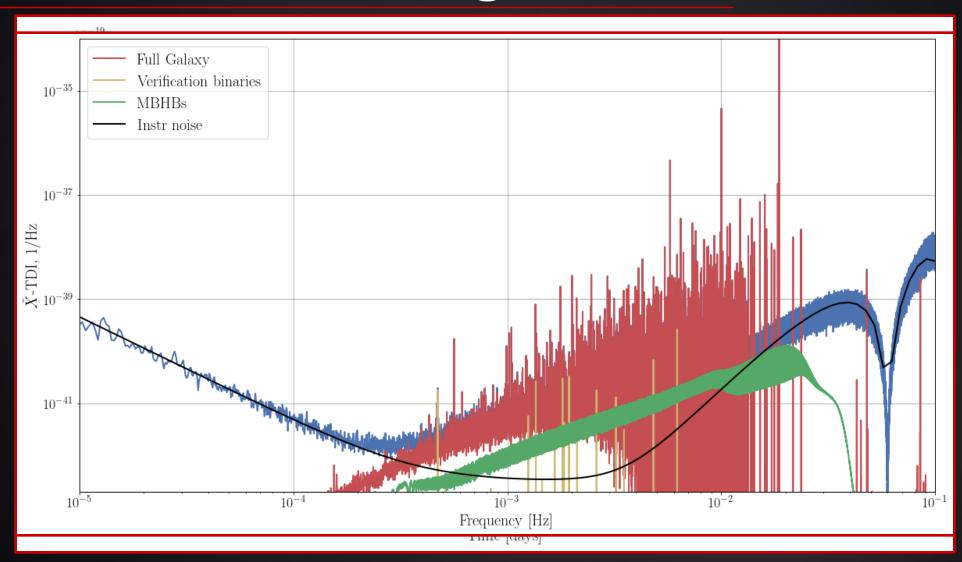

The LISA frequency band

GW sources in LISA

(source: K. Danzmann et al., USA mission proposal, arXiv: 1702.0078



Cosmic String Cusp


LISA Science Objectives

- SOI: Study the formation and evolution of compact binary stars and the structure of the Milky Way Galaxy
- SO2: Trace the origins, growth and merger histories of massive Black Holes
- SO3: Probe the properties and immediate environments of Black Holes in the local Universe using EMRIs and IMRIs
- SO4: Understand the astrophysics of stellar-mass Black Holes
- SO5: Explore the fundamental nature of gravity and Black Holes
- SO6: Probe the rate of expansion of the Universe with standard sirens
- SO7: Understand stochastic GW backgrounds and their implications for the early Universe and TeV-scale particle physics
- SO8: Search for GW bursts and unforeseen sources

LISA Ground Segment

The LISA Data Challenges

Fundamentals of GW data analysis

• Our signal is $\mathbf{d}(t; \boldsymbol{\theta}) = \mathbf{h}(t; \boldsymbol{\theta}) + \mathbf{n}(t)$ deterministic realization of a depends only on θ random process • If we assume $\mathbf{n}(t) = \mathbf{d}(t) - \mathbf{h}(t; \theta)$ is a Gaussian, stationary random process: $p(\mathbf{n} = \mathbf{n}_0) \propto \exp\left[-\frac{1}{2}(\mathbf{n}_0|\mathbf{n}_0)\right] = \exp\left[-\frac{1}{2}(\mathbf{d} - \mathbf{h}|\mathbf{d} - \mathbf{h})\right]$ SNR[h] $\simeq \sqrt{(\mathbf{h}|\mathbf{h})}$ $\rho(\mathbf{h}; \mathbf{d}) = \frac{(\mathbf{h}|\mathbf{d})}{\sqrt{(\mathbf{h}|\mathbf{h})}}$ with $(\mathbf{a}|\mathbf{b}) = 2 \int_0^\infty \frac{\tilde{\mathbf{a}}^*(f)\tilde{\mathbf{b}}(f) + \tilde{\mathbf{a}}(f)\tilde{\mathbf{b}}^*(f)}{S_n(f)} df$. Multiple data channels? The inner product then becomes: $(\mathbf{a}|\mathbf{b}) = 2\sum_{i,j} \int_0^\infty \mathrm{d}f \ \tilde{\mathbf{a}}_i^*(f) [\mathbf{S}_n(f)^{-1}]^{ij} \tilde{\mathbf{b}}_j(f) \ .$

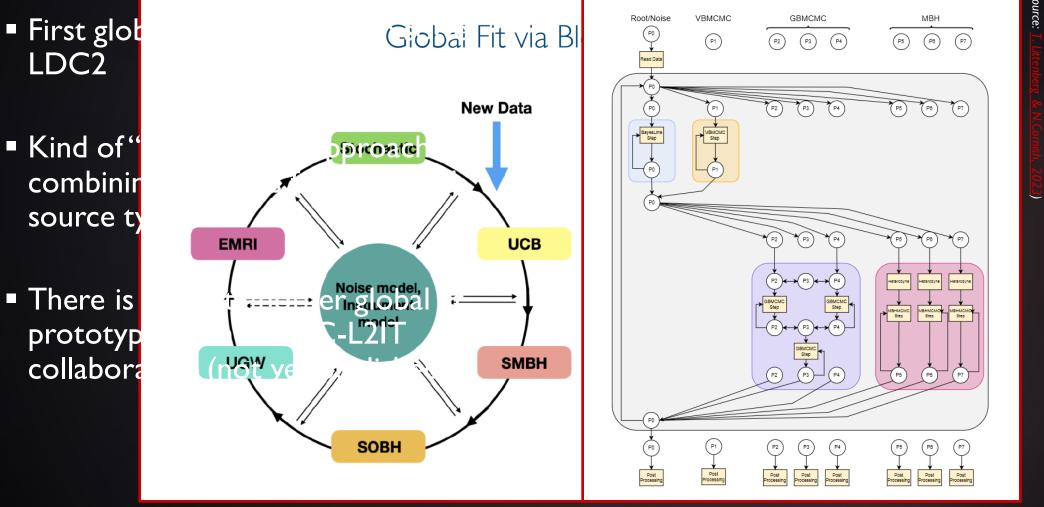
(it simplifies to a sum over streams if the channels are independent, e.g. TDI AET)

Bayesian inference

Likelihood $\log p(\mathbf{d} | \boldsymbol{\theta}) = \sum_{n \in \{A, E, T\}} 2 (\mathbf{h}(\boldsymbol{\theta}) | \mathbf{d})_n - (\mathbf{h}(\boldsymbol{\theta}) | \mathbf{h}(\boldsymbol{\theta}))_n$ integrals! $p(\boldsymbol{\theta} | \mathbf{d}) = \frac{p(\mathbf{d} | \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathbf{d})} \xrightarrow{} \text{Prior}$ Posterior $\mathbf{p}(\mathbf{d}) = \int p(\mathbf{d} | \boldsymbol{\theta}) d\boldsymbol{\theta}$

Markov Chain Monte Carlo (MCMC)

- Random number generation that can follow an arbitrary distribution eventually
- Propose points, then accept/reject with some criterion
- Large zoo of algorithms, some more suitable than others depending on situation
- Lots of evaluations of the likelihood ⇒ potentially slow



The need for a Global Fit

- In reality, our data will contain:
 - Non-stationary instrumental noise (+glitches, gaps)
 - O(10) MBHBs/year
 - $O(10^7)$ GBs (!!!)
 - Of these, $\overline{\mathcal{O}(10^4)}$ will be individually resolvable
 - There are 37 known GBs: verification binaries
 - *O*(1 − 1000) EMRIs
 - *O*(10⁴) SBBHs
 - SGWBs
 - maybe some surprises...?
- Since one source may interfere with another, this all needs to be extracted and estimated, at once!

(source:

First Global Fit prototype

(slide stolen graciously borrowed from: N. Cornish & T. Littenberg, "The LISA Global Fit @ Montana-MSFC",

Computational requirements: the DDPC

- Based on LDC1 results, some studies have been made on the computational cost of 1 year of LISA analysis.
 - Assuming current techniques and usage of CPUs. Using GPUs may accelerate this.
 - Storage requirement is very high for intermediate data ("scratch volume") but reasonable for the end products.
 - We need to account for potential bugs/recalibration and having alternative Global Fits as backup/reassurance ⇒ multiply all these numbers by a factor of ~6.
- We need to build a DDPC to analyse all this data.
- It is imperative that we find ways to increase the efficiency of data analysis! Either through "tricks" in existing algorithms or by using entirely new ones.

[Source type	CPU-hours	Scratch volume	Informative volume
[Galaxy	(180-250)K	(260-2000)GB	120GB
[MBHBs	(1.2-300)K	(5-50)TB	(0.6-6)GB
	EMRIs	(4-6)M	(16-24)TB	(12-20)GB

100TB

(50-260)GB

200MB

(1-5)GB

Requirements for analysis of 1 year of LISA data for individual sources

14M

(0.5-3)K

SBBHs

Noise

Per year of data	CPU-hours	Scratch volume	Informative volume
#1 With SBBH	30M	500TB	160GB
#1 without SBBH	17M	225TB	160GB
#2 with SBBH	(14.5-52.5)M	500TB	160GB
#2 without	(7.5-15)M	225TB	160GB
Low-latency	550K	52TB	6GB

Table 2: Summary of the resources required for detection and characterization of all individually resolvable sources in 1 year of LISA data.

(source: S. Babak, "Computational cost and storage for L1, L2, L3 production", technical report ref. LISA-TN-001, 2021)

The Spanish LISA Data Analysis collaboration

- Currently beginning to take shape
- The plan: develop a Global Fit pipeline that uses more "experimental" ML techniques (+ all the tools/infrastructure needed to support it)
- Currently, we have collaborators from:

Institute of Space Sciences EXCELENCIA MARÍA DE MAEZTU

Institut d'Estudis Espacials de Catalunya

Interested? Get in touch!

Thank you!