

ET beampipe activities at CERN: Towards the TDR

ET-beampipe team at CERN

December 11th, 2023

ET-beampipe team at CERN

Name	Competences	Name	Competences				
Cedric Garion	Structural	Luigi Scibile	Premises and logistics				
	mechanics	Gregory Pigny	Vacuum control				
Carlotta Accettura	Mechanical design	Giusenne					
Ana Teresa Perez	Metallurgy	Bregliozzi	vacuum engineering				
Luca Gentini	Mechanical design	Carlo Scarcia	Vacuum engineering and metallurgy				
Gilles Favre	Manufacturing	Jose Ferreira	Vacuum modelling				
Audrey Vichard	Welding	Alice Michet	Vacuum measurement				
Stefano Sgobba	Metallurgy	Jan Hansen	Mechanical engineering				
Manjunath	Metallurgy	Ivo Wevers	Vacuum measurement				
Dakshinamurthy		Paolo	Coordination				
Leonel Ferreira	Surface treatments	Chiggiato					
Mauro Taborelli	Surface analysis						

Where we are in the ET galaxy

The CERN's team:

- is contractually linked to Nikhef and INFN through the Engineering Department.
- receives inputs (functional specifications) from the collaboration link persons: Aniello Grado and Nick Van Remortel.
- gives progress report to the collaboration during workshops, conferences and dedicated meetings.

Source: **M. Punturo**, CERN colloquium, November 30th, 2023 (simplified representation by **P. Verdier**).

ET Collaboration

Paolo Chiggiato | ET-PP INFRA-DEV Special Meeting

The main objective and deliverable

Our main objective: Provide the ET project with **technological solutions** for the beampipe that fulfil the requirements, and that are **less expensive than the baseline** (i.e., the existing VIRGO/LIGO beampipe).

Our main deliverable is the writing of the **TDR** for the ET beampipe. The TDR will be written in **two steps**:

- 1. A preliminary version by Q4-2024, including all requirements, beampipe and baffles design, materials, installation procedures, without fabrication details (i.e., no 2-D drawings).
- 2. A final version by Q4-2025 will encompass refined technical solutions. Fabrication details and 2D drawings will be included.

Towards the TDR

Source Wikipedia: Giacomo Balla "Dynamism of a Dog on a Leash "

How we are pursuing the TDR

Source Wikipedia Pieter Brueghel (II) - The four seasons, spring

CERN

Paolo Chiggiato | ET-PP INFRA-DEV Special Meeting

How we are pursuing the TDR

- Pre-prototype : Ø 400 mm x 2000 mm
- Pilot sector : Ø 1000 mm x 36000 mm

How we are pursuing the TDR: Personnel

In the same team, all required competences are available, but GWT operation for which we rely on the Virgo and LIGO experts.

Name	Competences	Workpackage	Name	Competences	Workpackage	
Cedric Garion	Structural	WP1	Luigi Scibile	Premises and logistics	WP4&WP5	
	mechanics		Gregory Pigny	Vacuum control	WP6	
Carlotta Accettura	Mechanical design	WP1	Ciucoppo			
Luca Gentini	Mechanical design	WP1	Bregliozzi	vacuum engineenng		
Ana Teresa Perez	Metallurgy	WP2/WP8	Carlo Scarcia	Vacuum engineering	WP2/WP6	
Gilles Favre	Manufacturing	WP2	Jose Ferreira	Vacuum modelling	WP6/WP7	
Audrey Vichard	Welding	WP2	Alice Michet	Vacuum measurement	WP6	
Stefano Sgobba	Metallurgy	WP2	Jan Hansen	Mechanical engineering	WP7	
Manjunath	Metallurgy	WP2	Ivo Wevers	Vacuum measurement	WP6/WP7	
Dakshinamurthy			Paolo	Coordination	WP8	
Leonel Ferreira	eira Surface treatments WP3		Chiggiato			
Mauro Taborelli	Surface analysis	WP3				

By contract, during the three-year agreement, **two FTE/y of CERN staff** and **two CERN fellows** are dedicated to ET.

How we are pursuing the TDR: Collaborations

Institute	Subject	Type of agreement	Contacts
CNRS LAPP	Mechanical design	Informal collaboration Chair of WP1	Guillaume Deleglise
CNRS IJCLab	Design of 'baseline solution'	Informal collaboration	Denis Reynet / G. Iaquaniello
IFAE	Baffles design and integration	Framework agreement	Mario Martinez / Marc Andres
Nikhef	Pumping modules and alignment	Framework agreement	Martijn van Overbeek / Patrick Werneke / Marije Barel
Uni. Gent	Pipeline solution	Informal collaboration (Post-doc at CERN)	Leo Kestens / Alexey Gervasyev
Uni. Aachen	Supervision of a PhD student	Gentner programme	Achim Stahl
INFN	Magnetic and surface cleaning measurements	Framework agreement (PhD student at CERN)	Aniello Grado
Uni. Antwerp	Vac. eng. at CERN for 2 years	Collaboration agreement	Nick Van Remortel

Cooperation with industries: Aperam, Arvedi, SAES,...

How we are pursuing the TDR: Budget

We are gradually receiving:

For the payment of two CERN fellows: 600 kCHF (Nikhef and INFN).

For the compensation (50% of real costs) of **6 FTE-years of staff members**, including overheads: **433 kCHF** (Nikhef and INFN, 50% each).

For material: 100 kCHF from CERN, 50 kCHF from INFN and 50 kCHF from Nikhef.

Source Wikipedia: Giuseppe Bottani - Athena revealing Ithaca to Ulysses

Mild steel: firing not needed to attain requirements

> Q3-Q4-2022 Q1-2023 2022 Q2-Q3-2023 Q4 2023 Q1-2023 2024 **Ferritic stainless** steels: firing not needed to attain

requirements

Use of ferritic steels instead of the baseline AISI 304L

Pros:

- Lower cost of raw material per mass unit.
- High temperature degassing is not needed.

Points of development:

14

- Increase experience in ultrahigh vacuum systems.
- Calculate the effect of the high magn. permeability.
- Welding parameters to be studied in detail.
- For mild steels: procedure to prevent thick oxide formation.

Use of corrugated beampipes instead of the stiffened smooth pipes

Pros:

- Thinner sheets (around 1.5 mm) instead of 4 mm:
 - → lower material cost,
 - → easier handling,
 - → lower elect. current for bakeout.
- Expansion bellows are not needed.
- Coil-to-pipe automatise process.

Points of development:

- Optimisation of the support system.
- Industrialisation for ultrahigh vacuum applications.
- Optical baffle integration.

Sources:

- https://www.corrugatedmetalpipe.com/corrugatedmetalpipe/spiral-corrugated-pipe.html
- https://www.prdcompany.com/corrugated-metal-pipe/

Design of the pre-prototypes

Corrugated pipe with thin wall (thickness in the order of 1.3 mm)

- Three segments of 675 mm, total length of **2.1 m**
- Internal diameter: 402 mm
- Three materials: AISI 304, mild steel, and AISI 441

Proposal for a vacuum layout & control system

The sectorisation and the pumping module positions were investigated. The partial pressure profiles were calculated. We formulated the first proposal for monitoring and control of the vacuum sy

We formulated the first proposal for **monitoring and control** of the vacuum system.

Proposal for a vacuum layout & control system

Vibration transfer function at the position of the optical baffles calculated for a 315 m long section.

Proposal of supports aimed at reducing amplification of microseismic vibrations.

Details of the support, including electrical insulation.

Strategy for surface cleaning

It was decided to study two cleaning methods: **solvents** and **detergents**, both in the industry or in-situ.

For the **pilot sector**, three options were selected:

- cleaning in the industry (Poligrat GmbH, after assessment)

- Cleaning by robot at CERN (JettyRobot, after assessment)

- cleaning in the CERN existing facilities; in this case, the pilot sector unit length must be lower than 7 m.

Assessment matrix...

Choice of the space for the pilot sector

TT1 tunnel

Bulding 973

Pros of B. 973

- ✓ Available from Q1/Q2 2024.
- ✓ Easy access/installation.
- ✓ Sufficient space for double tube setup.

Cons of B. 973

✓ As it is now: no temperature and humidity control.

AISI 304 pre-prototype manufactured & installed

Workshop Beampipe for Gravitational Wave Telescopes 2023

Beampipes for Gravitational Wave Telescopes 2023 Beampipe know-how for GW observatories

The direct detection of gravitational waves (GWs) in 2015 opened a new window to the universe, allowing researchers to study the cosmos by merging data from multiple sources. There are currently four gravitational wave telescopes (GWTs) in operation: LIGO at two sites in the US, Virgo in Italy, KAGRA in Japan and GEO600 in Germany. Discussions are ongoing to establish an additional site in India. The detection of GWs is based on Michelson laser interferometry with Fabry-Perot cavities, which reveals the expansion and contraction of space at the level of ten-thousandths of the size of an atomic nucleus, i.e. 10⁻¹⁹ m. Despite the extremely low strain that needs to be detected, an average of one GW is measured per week of measurement by studying and minimising all possible noise sources, including seismic vibration and residual gas scattering. The latter is reduced

Beam me up

The participants of the March workshop that was dedicated to vacuum technologies for beampipes of next-generation gravitational-wave telescopes.

solutions were adopted, then the uum pipe system would amount to the estimated cost of the CE and al one-third of the ET, with undergn civil engineering the dominant am Reducing the cost of vacuum sys requires the development of diff technical approaches with respect to vious-generation facilities. Develocheaper technologies is also a key su

Caltech-LIGO MIT-LIGO CERN **CNRS-LAPP CNRS-IJCLab** Cornell University DESY EGO-Virgo FermiLab Forschungszentrum Jülich GmbH Ghent University IFAE INFN (INAF, Roma, LNF, Perugia) KIT KEK Material Forensics LLC NIST

Institutes:

Nikhef Rheinisch Westfaelische Tech. Hoch. Syracuse University / Cosmic Explorer The Barcelona Institute of Science and Technology Universiteit Antwerpen University of Padua

Workshop on Beampipes for GWT at CERN

Industry:

Agilent Vacuum Product Division APERAM Atlas Copco C3DM Germany Ecoclean GmbH FEF Aachen Leybold SAES Getters S.p.A VDL ETG Voestalpine

- 84 participants (20 from CERN)
- 26 talks
- 3 topical discussions with final reporting
- Visits to surface treatments and mechanical workshops
- CERN visit.

Courier

Published in the July-August issue of the CERN

Martijn van Overbeek (Nikhef)

32

 \sim

Welding studies for AISI 430, 444 and 441

AISI 430 TIG autogenous weld (1st trial): The piece presented a major failure at the level of the longitudinal weld during corrugation operation. This results triggered a systematic studies of ferritic stainless-steel weldability

Paolo Chiggiato | ET-PP INFRA-DEV Special Meeting

December11th, 2023

1 mm

Pilot sector: design, integration, bakeout

December11th, 2023

Welding issues solved

			Weld characterization											
	Welding methods	RT	Metallurgy	Tensile trans.	Tensile long.	Flexural long.	corrugation test							
	TIG auto	-	Large grains	A= 17%	A=26%	-	PT OK							
441	Laser CW	TBD	OK ¹	A=30%	A= 29%	PT OK	PT OK ²							
	Laser Pulsed	-	OK ¹	A=28%	A= 31%	PT OK	PT OK							
	TIG auto	-	Large grains	A= 18%	A=22%	-	PT OK							
444	Laser CW	-	OK ¹	A=22%	A= 30%	PT OK	PT OK							
	Laser Pulsed	-	OK ¹	A=27%	A= 28%	PT OK	PT OK							

NOTES:

Elongation at break (A) in the BM~ 30% ¹The compliance to be checked according ISO 13919-1 level B Flexural test (ISO 5173 Longitudinal face bend test specimen for a butt weld - LFBB) 110 and 180° PT : Dye Penetrant Testing. All the parts have been inspected by Penetrant Testing, and found to be conforming the standard ISO 23277 level 2x

² This is the only sample without any indications from PT

December11th, 2023

180°

Planning for pilot sector: Virgo-like pipe tested first, then corrugated one

Planning for pilot sector: Virgo-like pipe tested first, then corrugated one

HTT - High Temperature Treatment **Costs** - relative to the Virgo like baseline.

December11th, 2023

Baffles integration in pilot sector

Work performed in collaboration with the IFAE team.

Paolo Chiggiato | ET-PP INFRA-DEV Special Meeting

December11th, 2023

- > Poligrat facility can clean pipes up to 15 m in length and 1.2 m in diameter
- Cleaning is done by recirculation of internal surface
- Cleaning trials performed on samples as-received and samples with standard CERN contamination
- FTIR and XPS studies ongoing

Threshold for UHV compatibility at CERN: %C = 31.3

											-				
Sample	Ag	AI	С	Ca	Cr		Fe	Мо		Na	Nb	0		Pb	
Mild Steel - as received I	0.06	2.2	51.8	0.1	-	0.04	6.6	-	6.3	-	-	30.1	2.9	-	-
Mild Steel - as received II	0.01	0.4	52.5	0.3	-	0.05	9.2	-	5.9	-	-	29.4	2.3	-	-
Mild Steel - standard contamination I	0.01	1.2	53.8	0.1	-	0.04	7.1	-	6.0	-	-	29.1	2.6	-	-
Mild Steel - standard contamination II	0.03	0.6	52.1	0.1	-	-	10.0	-	5.7	-	-	28.8	2.8	-	-
Ferritic Steel - as received I	-	-	35.4	0.5	3.3	0.6	12.8	0.5	0.5	3.8	0.3	37.7	0.4	0.1	4.2
Ferritic Steel - as received II	-	-	46.0	0.5	2.7	0.5	12.5	0.4	1.0	0.2	0.3	31.8	0.3	0.1	3.7
Ferritic Steel - standard contamination I	-	-	23.9	0.2	4.4	0.7	18.2	0.5	0.4	0.2	0.6	45.1	0.5	0.1	5.2
Ferritic Steel - standard contamination II	-	-	31.2	0.3	4.0	0.7	15.5	0.5	0.6	0.2	0.4	40.5	1.0	0.1	5.0

Poligrat degreasing process

Ferritic samples cleaning procedure:

- Degreasing at 50 °C, 10 minutes;
- Rinsing;
- Drying in air;
- Packed in aluminium foil.

	As	С	Cr	Cu	F	Fe	К	Мо	Ν	Nb	0	Ρ	Pb	Si	Zn
Mild Steel Firbimatic #1	1.2	24.3	-	4.4	-	19.5	0.1	-	2.5	-	47.5	-	-	-	0.5
Mild Steel Firbimatic #2	1.1	28.8	-	2.9	-	17.3	0.04	-	2.7	-	46.6	-	-	-	0.5
Ferritic Steel Detergent #1	-	12.6	6.1	-	1.0	17.0	0.1	0.6	-	0.5	55.1	0.7	0.2	6.2	-
Ferritic Steel Detergent #2	-	13.6	5.0	-	0.8	15.8	0.2	0.5	-	0.5	55.1	0.7	0.2	7.5	-

CERN degreasing process

There are margins of improvement.

Short-term objectives

December11th, 2023

Review of the options proposed for the beampipe pilot sector

This review aims to:

- **Provide peer advice** on the validity and maturity of choices made for the ET beampipe pilot sector, encompassing materials and their qualification, design, fabrication, vacuum systems, and bakeout procedures.
- Evaluate the **proposed support system** and provide constructive feedback for enhancement.
- Assess the feasibility and effectiveness of the proposed **baffle integration** within the sector.
- Review the **proposed experimental** program and offer guidelines for potential extension and improvement.
- Evaluate and provide comprehensive guidance on the dust control plan.
- Assess the maturity of the study to facilitate the launch of price enquiries for fabrication processes.

Conclusions

- The TDR is the most important deliverable of our participation in the ET project,
- The TDR will be **issued in two stages**: a preliminary one in Q4-2024 and, one year later, the final one.
- Today, we have clear objectives, right personnel, adequate premises, and hopefully budget to attain our target.
- **Discussions** with and **feedbacks** from GWD experts are essential.
- At the present time, our work is focused on the **construction of the pilot sector**. This infrastructure could require **additional personnel during installation and operation**.
- The results that will be obtained with the pilot sector could affect the final stage of the TDR.

