

T2K antineutrinos oscillation results

JZR

Federico Sánchez IFAE/BIST (Barcelona)

v oscillations

Similar to quarks, flavour and Lorentz eigenstates of massive neutrinos are not identical.

The two eigenbases are related through the Pontecorvo-Maki-Nakagawa-Sakata matrix (UPNMS).

$$U_{PNMS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

2

v oscillations

<u>atmospheric</u>

 $U_{PNMS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{21} & \sin\theta_{21} & 0 \\ -\sin\theta_{21} & \cos\theta_{21} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$\begin{pmatrix} \nu_e & \nu_\mu & \nu_\tau \end{pmatrix} = U_{PNMS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- With 3ν , there are 3 angles and 1 imaginary phase:
- The phase allows for CP violation similar to the quark sector.
 - There are also 2 values of Δm^2 : traditionally Δm^2_{12} & Δm^2_{23} .

V vs. V

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\left(1 - 2S_{13}^{2}\right) \end{split}$$

• From neutrinos to antineutrinos the boxed terms change the sign.

$$\frac{N(\nu_{\mu} \to \nu_{e}) - N(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{N(\nu_{\mu} \to \nu_{e}) + N(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \approx 2 \frac{C_{12}C_{23}S_{12}sin\frac{\Delta m_{21}^{2}L}{4\Delta E}}{S_{13}S_{23}} \sin \delta$$

V vs. V

 $P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right)$ +8 $C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E}$ -8 $C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E}$ +4 $S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E}$ -8 $C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\left(1 - 2S_{13}^{2}\right)$

Assuming flux and cross-section to be the same

• Rate $V = \text{Rate } \overline{V}$

• $\delta_{CP} = -\pi/2$

• Rate V > Rate V

•
$$\delta_{CP} = -\pi/2$$

• Rate
$$V \leq Rate V$$

Beam

01

ND280

Super-Kamiokande

Î

Beam

0 1

ND280

Super-Kamiokande

Î

To make antineutrinos we simply reverse the B field changing the horn current pulse polarity.

Flux prediction

In pA interaction we produce more π^+ than π^-

- Total delivered beam:
 - 4x10²⁰ protons on target for anti-neutrinos
 - 6.6x10²⁰ protons on target for anti-neutrinos

Beam

0 1

ND280

Super-Kamiokande

V cross-section

• VA cross-section is a factor of \sim 3 larger than the $\overline{V}A$ cross-section

Off-axis: ND280

- Off-axis ND280 is a detector complex with tracking calorimeters, time projection chambers and Electromagnetic calorimeters in the UA1/Nomad 0.2T magnet.
 - V interaction target polystyrene (CH) and water.
 - Particle ID by dE/dx and calorimetry.
 - Charge sign by curvature.
- Specific π^0 detector (P0D) made of water, CH and brass optimised for NC π^0 measurement.

Magnet was granted by CERN

Off-axis: V_{μ} analysis

 $\overline{\mathbf{v}}$ in $\overline{\mathbf{v}}$ beam

v in \overline{v} beam

The T2K Near Detector helps controlling the wrong-sign background.

MR

v oscillation analysis

Beam

ND280

à.

Super-Kamiokande

0 1

Procedure

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

- Fit for $\bar{\theta}_{23}$ and $\overline{\Delta m^2}_{32}$
- Use separate parameters for neutrino oscillations and marginalize.
- The solar parameters and θ_{13} are fixed to PDG world average.

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

- Very little number of events expected.
- The main goal is to establish the appearance of $\bar{\nu}_e$

♠

V_µ disappearance

F.Sánchez IFAE Pizza Seminar 4th Nov 2015

17

Better determination of θ_{23}

CPT is conserved!

n

V_e appearance

3 events! 2000 $-\beta$ scales 0.4 Events per 0.050 GeV $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$ $\nu_{\mu} \to \nu_{e}$ NC 0.35 green 1000 0.3 0.25 Bkg other 0 0.2 0.15 -1000 0.1E 0.05 **0**0 0.8 -2000 -2000 0.2 0.4 0.6 1.2 1 1000 -1000 2000 0 v Reconstructed Energy (GeV)

		5 1					
pectations		$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$
	Sig $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$	1.961	2.636	3.288	2.481	3.254	3.939
	Bkg $\nu_{\mu} \rightarrow \nu_{e}$	0.592	0.505	0.389	0.531	0.423	0.341
	Bkg NC	0.349	0.349	0.349	0.349	0.349	0.349
	Bkg other	0.826	0.826	0.826	0.821	0.821	0.821
X	Total	3.729	4.315	4.851	4.181	4.848	5.450

R

V_e appearance

Kinematical properties of the events. Distribution shape will help!

• Relative weight between the neutrinos and antineutrinos depend on δ_{CP} .

- $\delta_{CP} = -\pi/2$ gives the worst ratio of antineutrinos/neutrinos.
- $\delta_{CP} = +\pi/2$ gives the best ratio of antineutrinos/neutrinos.

Result

- We are interested in detecting the transition $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$.
- We model the data a $N = N_{\nu_e} + \beta N_{\bar{\nu}_e}$

Comparing to V

- Analysis of the 4 samples in T2K in a single analysis:
 - The goal is to improve on the δ_{CP} limit.

	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$			
Sig $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	1.961	2.636	3.288			
Bkg $\nu_{\mu} \rightarrow \nu_{e}$	0.592	0.505	0.389			
Bkg NC	0.349	0.349	0.349			
Bkg other	0.826	0.826	0.826			
Total	3.729	4.315	4.851			
	▲	-				

- More and more (and more) data:
 - improvement in accelerator performance.(>400 MW in 2016).
 - Run in antineutrinos until POT is equal to neutrinos.

What's next ?

• Analysis of the 4 samples in T2K in a single analysis:

$$\nu_{\mu} \rightarrow \nu_{e}, \ \nu_{\mu} \rightarrow \nu_{\mu}, \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$$

- The goal is to improve on the δ_{CP} limit.
- Nedd more and more (and more, and more...) data:
 - improvement in accelerator performance.(>400 MW in 2016).
 - Run in antineutrinos until POT is equal to neutrinos.
 - Then alternate forward and reverse horn operation.