Thermodynamics prom the S-matrix reloaded, with applications to QCD \& Flux Tubes.
w/ P. Banctelk, E. Gendy
N.B. Today I will mostly cover the INTRO of our upcoming- papen.
$18 / 7 / 2024$
\qquad
\qquad

$$
\left\{\begin{array}{l}
\text { 1.- Motivation } \\
\text { 2.- Forual derivation }
\end{array}\right.
$$

3.- Applications
 spectum, gree enagy, conimin eregy, thenal nor,...
e.g. $S(s)=1+i \frac{s}{4} l_{s}^{2}-\frac{s^{2}}{32} l_{s}^{4}+i\left(\gamma_{3}-\frac{1}{384}\right) s^{3} l_{s}^{6}+\cdots$

$$
E_{0}(R)=\frac{R}{l_{s}^{2}} \sqrt{1-\frac{\pi l_{s}^{2}}{3 R^{2}}}+o\left(R^{-a}\right)
$$

$=+x+\not \alpha+(x \not \alpha)+\cdots$
some sout of tracing involved:

$$
5+8+(x)+5+\cdots
$$

This irturtior is ridaed roolizad.
Mone than halg a conteng ago Dashen, Ma, Baunstein [Plyy. Rev. 197 (1969) 345-370] uncoverad this beautifere formula
punely innagiury

$$
Z(\beta)=Z_{0}(\beta)-\frac{\beta}{2 \pi i} \int_{0}^{\infty} d E e^{-\beta E} T_{n} \log S(E)
$$

$\rightarrow S(E)$ is the vocum s-matix, the integpol with Boltzan weights geortes thenal physis.
L_{8} cquation moitly mad in mos rolotivistric contarcts. $\quad\langle\alpha| S\left(\epsilon=\epsilon_{\alpha}\right)|\beta\rangle=1+2 \pi i \delta\left(\varepsilon_{\alpha}-E_{\beta}\right) T_{\alpha \beta}\left(\varepsilon_{\alpha}\right)$
 as degper of preedo is the entropy conting (obvidedy...) $\quad w / G_{0}(z)=\frac{1}{z-H_{0}}$ \rightarrow Why mow?

* Many new results contraicing the spoce of EFT's, typicolly exprened is ters of s-matix w/o refeance to h. How con we thanope thi infor to athos plyy obs?

Q.2. Ghent condensation of $P\left(X=\partial, \phi \alpha^{*} \varphi\right)$ theories: spoed of sou d <lisct

$$
\Rightarrow P(x) \cos v x .
$$

$$
\binom{\text { Proog: on } x=\text { te bcky }}{c_{s}=\frac{p^{\prime}(x)}{p^{\prime}(x)+2 x p^{\prime \prime}(x)}<1}
$$

* With the doveloppent of onshell buinens we hove oceen to precise matix element with arrittang murben of paticles. Bad connangace of thamel QCO. Now calculation sclane (no ghat, wo gange radendoncia). Aetternctive theatrant boed or IR sare s-matrix?

The method stive wher the path intequl fonulation is nat avxibable: graity, stiuess, spinings particls,...
2.- Formal derivation: shaight fewart to add, I'll onit poo now on.

$$
\begin{aligned}
Z(\mu, \beta) & =\operatorname{Th} e^{-\beta(H-\mu Q)} \\
& =\int_{0}^{\infty} d E e^{-\beta \epsilon} \pi[\underbrace{}_{\equiv G^{*}-G \text { Recall } \underbrace{}_{\epsilon \rightarrow 0} \frac{1}{\epsilon-H+i O^{+}}-\frac{1}{\epsilon-H-i 0^{+}}]} \text {In } \frac{i \pi}{x+i t}=\delta(x)
\end{aligned}
$$

Noxt we need to relate thi Kemal to the S-matix.
Define $G_{0}(E)=\frac{1}{E-H_{0}+i 0^{+}}$\& $G(G)=\frac{1}{E-H+i_{0}+}$
Two stop proof:
1.- Clain: $S(E)=G_{0}^{*}\left(G^{*}\right)^{-1} G G_{0}^{-1}$ - proof pron Lippron-Schwingh

$$
\begin{aligned}
& t_{\Omega(z)=G(z)} G_{i}^{-1}(z) ; \Omega^{-1}=1-G . V \\
& S=\Omega^{-1} \Omega
\end{aligned}
$$

simple abgeno

$$
\begin{aligned}
& \text { 2.- } T_{n} S^{-1} \partial_{E} S=T_{n}\left[-G_{0}^{*}+G^{*}-G+G_{0}\right] \\
& \Rightarrow Z(\beta) \\
& \Rightarrow \frac{1}{2 \pi_{i}} \int d E e^{-\beta \epsilon}\left\{T_{n}\left[S^{-1}(E) \partial_{\epsilon} S(\epsilon)\right]-T_{n}\left[G_{0}(\epsilon)-G_{0}^{*}(\epsilon)\right]\right. \\
& \\
& =Z_{0}(\beta)-\beta \int_{0}^{\infty} \frac{d \epsilon}{2 \pi i} e^{-\beta \epsilon} T r \log S(\epsilon)=e^{-\beta F}
\end{aligned}
$$

$f=\operatorname{le}_{V \rightarrow} \frac{F}{V}$. upon tating the log we get an extusive quartity, a si-sle powan of V.

$$
\log z=f \cdot V \times \beta
$$

$$
F(\beta)=F_{0}(\beta)-\frac{1}{2 \pi i} \int_{0}^{\infty} d E e^{-\beta t} T_{r_{c}} \log S(E)
$$

\triangle Fion the pee -rengs thomodymair guatitas follow:

$$
F=E-T S \text {, thas. } \quad S=-\partial_{T} F=-\frac{F}{T}+\frac{E}{T} \text {; }
$$

$$
p=-f ; \rho=-\frac{\partial(\beta p)}{\partial \rho} ; \omega=\frac{p}{\rho}
$$

\rightarrow or deived quatition sund as $c_{\nu}=T \frac{\partial^{2} p}{\partial T^{2}} ; \quad C_{s}^{2}=\frac{\partial e}{\partial p}$.
3.- Applications

* simplest thing first: pree theory.

$$
-\beta F_{0}=T_{c} e^{-\beta H_{0}}=\sum_{N=0}^{\infty} \frac{1}{N!} \int d^{3} k_{1} \cdots d^{3} k_{A}\left\langle k_{1} \ldots k_{L}\right| e^{-\beta H_{0}}\left|k_{1} \ldots, k_{\mu}\right\rangle
$$

Noet une that H_{0} is diagonal and $\left\langle k_{1}, \ldots, k_{n} \mid k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right\rangle=\delta\left(k_{1}^{\prime}-k_{1}\right) \cdots \delta\left(k_{n}^{\prime}-k_{\perp}\right) \pm$ perms. When we identify $k_{i}=K_{i}^{\prime}$ throced the troce we get mary $\delta(0)^{\prime} s$ up to $\delta(0)^{N}$. Here "c" enters cuncidly, levaing terms with a single $\delta(0)$. (no $\delta(0)$ for $N=0$)

For a given connected haitary there ore ($N-1$)! egnivelant ones, due ter cyclic perms. All in all:

$$
-\beta F_{0}=1+\delta(0) \int d^{3} k \sum_{N=1}^{\infty} \frac{1}{N} e^{-N \beta E(k)}=1-\delta(0) \int d^{3} k \log \left(1-e^{-\beta \epsilon(k)}\right)
$$

$\delta(0) \rightarrow V /(2 \pi)^{3}$ and then

$$
f_{0}=\frac{T}{\substack{\text { glens }}} \frac{T}{2 \pi^{3}} \int_{0}^{\infty} d k k^{2} \ln \left(1-e^{-\beta k}\right)=-\frac{\pi^{2} T^{4}}{90} \times \underbrace{2\left(N_{c}^{2}-1\right)}_{\text {gloss } \times \text { puls }}
$$

(arises the textbook culuclation gives

$$
\left.\begin{array}{l}
\text { glace } \\
\vdots=\frac{-\pi^{2} T^{4}}{90}\left(N_{c}^{2}-1\right) \times 4 \\
\vdots \\
\text { ghat }
\end{array}\right)
$$

* Interactions at leading order:

$$
\begin{aligned}
F-F_{0} & =\int d \epsilon e^{-\beta \epsilon} T_{r_{c}}[T \delta(\epsilon-H)]+O\left(T^{2}\right) \\
\text { a bit of } & =\underbrace{(2 \pi)^{3} \delta(0)}_{V_{0}} \sum_{N=2}^{\infty} \frac{1}{N!} \int \prod_{i=1}^{N} d^{3} \tilde{k}_{i} M\left(k_{i}\right)\left\langle k_{1} \ldots k_{\Lambda}\right| T\left(k_{1} \ldots k_{\lambda}\right\rangle+O\left(T^{2}\right)
\end{aligned}
$$

$w / d^{2} \tilde{k}_{i}=\frac{d^{2} K_{i}}{(2 \pi)^{2} 2 \pi \epsilon_{i}} \quad \& n\left(K_{i}\right)=\frac{1}{e^{p E_{k}}-1}$ the number density.
$f \equiv F / v$, gree energy density.

* QCD at $O\left(\alpha_{s}\right)$

We need the $2 \rightarrow 2$ s-matix element:
all incounving: $\quad M\left(1^{c}, 2^{6}, 3_{+}^{c}, 4^{9}\right)=2 g_{5}^{2}\langle 14\rangle^{2}[23]^{2}\left(\frac{f^{a b e} f^{c d e}}{s_{12} s_{14}}+\frac{f^{a c e} f^{b d e}}{s_{13} s_{14}}\right)$
contains all dymanical infor por $++\rightarrow++, \ldots \rightarrow+\ldots$
Fowond limit vey simple for all of them:

$$
\operatorname{lin}_{\text {forwand }} M=-2 g_{s}^{2} f^{a b c} f^{a b c}=-2 g_{s}^{2} N_{c}\left(N_{c}^{2}-1\right)
$$

Therepore

$$
\begin{aligned}
f-f_{0} & =2 g_{s}^{2}\left(\frac{1}{2}+\frac{1}{2}+1\right) N_{c}\left(N_{c}^{2}-1\right)\left[\int_{0}^{\infty} \frac{4 \pi k^{2} d k}{(2 \pi)^{3} 2 k\left(e^{0 k}-1\right)}\right]^{2}+o\left(g_{s}^{4}\right) \\
& =\alpha_{s} N_{c}\left(N_{c}^{2}-1\right) \frac{\pi T^{4}}{36}
\end{aligned}
$$ ant is $g_{3}^{4}+$ remunations.

To be compoed w/ text book conpuntation, e.2. Ch. 4.5 of Laine \& Unorinon, "Bories of Therund Fiold Th.".

$$
\begin{aligned}
& \left.\operatorname{Gog}^{90}\right\}=\frac{g^{2}}{4} 3 N_{c} \xi_{1} \frac{\delta^{a c} g_{\mu}}{k^{2}} \xi_{1}^{-1} \frac{1}{k^{2}}=3 g^{2} N_{c}\left(N_{c}^{2}-1\right) \frac{T^{4}}{(12)^{2}} \\
& \text { Eos } \left.=-\frac{3 g^{2} N_{c}}{12} \oint_{k} \frac{\delta^{21}}{k^{2}} \sum_{p} \frac{k^{2}+(k-p)^{2}+p^{2}}{p^{2}(k-p)^{2}}=-\frac{9}{4} g^{2} N_{c}\left(N_{c}^{2}-\right)\right)\left(\frac{T^{2}}{12}\right)^{2} \\
& \cdots=-\frac{1}{2}\left(-g^{2} N_{c}\right) \S \frac{\delta^{a}}{\kappa^{2}} £ \frac{p^{2}-k-p}{p^{2}(k-p)^{2}}=\frac{g^{2}}{4} N_{c}\left(N_{c}^{2}-1\right)\left(\frac{T^{2}}{12}\right)^{2}
\end{aligned}
$$

obscures UV firiteries, gange isvariace, Thernol V.S. vacum loops.

* Adding QCD matter + comnents

We need two amplitudes:
$\lim _{\text {forwod }} M\left(1 g_{-}^{a}, 3 g_{+}^{0}, 3 u_{i}, 4 u_{j}^{-}\right)=\lim _{\text {fowor }} M\left(1 u_{0 i}, 3 \bar{i}+, 2 \bar{u}_{j}, 4 u_{u}^{2}\right)=-g^{2}\left(N_{c}^{2}-1\right)$

$$
\begin{aligned}
-\Delta g_{\text {duanks }}= & 4 \int d \mu_{g} d \mu_{q}\left[M\left(g_{-} u_{+} \rightarrow g_{-} u_{+}\right)+M\left(g_{+} u_{+} \rightarrow g_{+} u_{+}\right)\right]+ \\
& +2 \int d \mu_{n} d \mu_{n} M\left(\bar{u}_{+} u_{-} \rightarrow \bar{u}_{+} u_{-}\right)+4 \int \frac{d \mu_{1} d \mu_{2}}{2} M\left[u_{-} u_{-} \rightarrow u_{-} u_{-}\right] \\
= & \alpha_{s}\left(N_{c}^{2}-1\right) \frac{\pi T^{4}}{36} \frac{5}{4} N_{q} . \\
& \int d \mu_{q} / q \equiv \int \frac{d^{3 k}}{(2 T)^{3} 2 k\left(e^{\left.()^{k} \mp 1\right)}\right.}=T^{2}\left\{\begin{array}{l}
\frac{1}{24} \text { bonod } \\
\frac{1}{48} \text { sernion. }
\end{array}\right.
\end{aligned}
$$

*QCD state of the out:

~~ $=T \int d^{3} k \frac{\left(g^{2} T^{2}\right)^{2}}{\left(k^{2}+g^{2} T^{2}\right)^{2}} \sim \frac{g^{4} T^{5}}{g-T}=g^{\prime} T^{4}<\alpha_{r}^{3 / 2}$

$$
\pi_{\infty 0} \propto g^{2} T^{2}
$$

Lo Deby a mons, electiv comporent, gnentes mon-intage " α " powas.

EFT for zero modes. Matching at long distores $R \gg 1 / T$

$$
L_{\in Q C D}=\frac{1}{4} G_{i \sigma}^{a} G_{i o}^{c}+\frac{1}{2}\left(D_{i} A_{0}^{a}\right)^{2} \frac{1}{2} \mu_{E}^{2} A_{0}^{a} A_{a}^{a}+\frac{1}{8} \lambda_{E}\left(A_{0}^{c}\right)^{2}
$$

$t_{\text {sculo adjosint }}$
$A^{i}(x)$, magnetatatic fiald. ; $D_{i} A_{0}^{a}=\left(\partial_{i}+\delta_{E} \epsilon^{c b c} A_{i}^{f} A_{0}^{c}\right) A_{0}^{a}$

$$
\begin{aligned}
\mu_{\epsilon}^{2} & =\left(1+N_{\delta}^{\sigma}\right) g^{2} T^{2} ; \lambda \epsilon=\frac{q-N_{\lambda}}{12 \pi^{2}} g^{\prime} T ; \mu_{\sigma} \propto \alpha T^{2} \ldots \\
L_{\text {nQCD }} & =\frac{1}{4} G_{i \sigma}^{\Delta} G_{i \sigma}^{c}+o\left(g^{\prime \prime}\right) ;-\frac{\log Z_{\text {MaCD }}}{V}=\left(\begin{array}{c}
\left.a+6 \log \frac{\Lambda}{\delta_{M}^{2}}\right) g_{n}^{6}
\end{array}\right.
\end{aligned}
$$ latrice.

* Simplen set up, Yarg - Mills confining flux twbo:
whitte down the most gnowil 2d uction reolizing (mon-lineonly) the symety broaking pattien ISO(D-1, 1) $\mapsto S O(1,1) \times S O(D-2)$. There ore " $O-2$ " soldstore boross or transvase excitatios. For $D=3$, thre is ar integpble realizotion of the system. (i.e. the wiesor coefcicints of the rection con be pixed to realized the following fectorised s-matux):

$$
S_{\alpha \beta}=e^{i \frac{l_{i}^{2}}{4} \sum_{i=i}^{1} f_{i 2}}\langle\alpha \mid \beta\rangle \leftrightarrow f(\beta)=\frac{1}{l_{s}^{2}} \sqrt{1-\frac{l_{s}^{2}}{\rho^{2}} \frac{\pi}{3}}
$$

$$
\begin{aligned}
& =\frac{d}{l_{s}^{2}}-\frac{\pi}{6 \beta^{2}}-\frac{l_{s}^{2} \pi^{3}}{z 2 \rho^{4}}-\frac{l_{s}^{4} \pi^{3}}{432 \beta^{6}}-\frac{5 l_{6}^{6} \pi^{4}}{10368 \beta^{\gamma}}+\cdots \\
& x+\log x+\log y x+>x
\end{aligned}
$$

Fwll binory tree, counted by Catalan nunbers.

* Comerts a theunol man:

Think of Form Forton (FF) os penturtutions of the S-matrix.

$$
F \rightarrow F[h]=F_{0}-\int \frac{d E}{2 \pi i} e^{-\beta \epsilon} \pi_{c} h S[h]
$$

Action $S \rightarrow S+\int h \times \theta$.
E averbop with elemantoys excitutiors.

$$
\left.\frac{\delta F}{\delta h}\right|_{h=0}=\int d \in \frac{e^{-\beta \epsilon}}{2 \pi i} \tau_{c}\left[S^{-1}[0] \times \int \theta_{(k)}\right]
$$

(2) leoding onde, $\sum_{T}(p)=-\int \frac{d^{3} k}{(2 \pi)^{3} 2 \epsilon_{k}} \mu\left(\epsilon_{k}\right) T(k+p \rightarrow k+p)$

Review of Asymptotic Betle Ansatz

Two posticle state in infinste volume

$$
\psi\left(x_{1}, x_{2}\right)=\langle 0| \phi\left(x_{1}\right) \phi\left(x_{2}\right)\left|p_{1}, p_{2}\right\rangle
$$

Considen $x_{1} \ll x_{2}$ (mutatis mutandis $x_{1} \gg x_{2}$)

$$
\psi\left(x_{1} \gg x_{2}\right)=e^{i p_{1} x_{1}+i p_{2} x_{2}}+e^{i p_{1} x_{2}+i p_{2} x_{1}} \int_{12}\left(p_{1}, p_{2}\right)
$$

Place the theory at firite voluse w/ $x_{1} \ll x_{2} \ll x_{1}+R$,

$$
\psi\left(x_{1}, x_{2}\right)=\psi\left(x_{1}+R_{1} x_{2}\right) \quad \Rightarrow \quad e^{i P_{1} R} S_{12}\left(P_{1} P_{2}\right)=1
$$

Sane logic for unltiple rescatterings, all in all

$$
p_{i} R+\sum_{j} 2 \delta_{i j}\left(p_{i}, p_{j}\right)=2 \pi N_{i}
$$

Winding conactions expenatiallz supprened fo monive theovies.

