

ND280 upgrade towards ND280++

Institut de Física d'Altes Energies **Ewan Miller**

IFAE

30/09/2024

Ewan Miller - IFAE

- Present Day

ND280 in T2K Oscillation analysis

- Near Future

ND280 in Hyper-K Oscillation analysis

- Far Future

ND280++

T2K Oscillation Analysis Overview

T2K Oscillation Analysis

 Neutrino beam produced at J-PARC

Institut de Física d'Altes Energies

- Characterised by near detectors
- Travels to far detector
- Measured again to extract osc parameters

T2K Oscillation Analysis

ND280 Detector - Downstream Tracker

ND280 Detector - Upgrade Tracker

29/09/2024

Ewan Miller - IFAE

ND280 Detector - Upgrade Tracker

ND280 Detector - Upgrade Tracker

high angle events

WLS fibers

ND280 Detector - SFGD Assembly

(i) Support system assembly

(iv) Stop panels removed

(ii) First cube layer assembly

(iii) All 56 layers assembled

(vi) T

(v) Box closure

(vi) Transfer to new support

ND280 Detector - SFGD Assembly

(vii) Horizontal fibers assembly

(viii) Wall MPPCs assembly

(ix) Vertical fibers assembly

(x) Top MPPCs assembly

(xi) LED calib. modules assembly (xii) Light barrier/cables assembly

ND280 Detector - SFGD Assembly

Upgrade is now fully installed and has been taking data!

s assembly

cables assembly

Greatly

 improved
 efficiency,
 particularly for
 high angle
 muons

 Reduced threshold for
 proton tagging

proton tagging

 Possibility of tagging neutrons and reconstructing kinematics

T2K Oscillation Analysis - ND280 Part

nstitut de Física

T2K Oscillation Analysis - Model Constraints

• Greatly reduce uncertainties on event rates at far detector:

$$\begin{array}{l} \nu_{\mu}:\sim\!17\% \ \rightarrow \sim\!3\% \\ \nu_{e}:\sim\!17\% \ \rightarrow \sim\!5\% \end{array}$$

Ewan Miller - IFAE

- Tuned model gets propagated to far detector
- Greatly reduces uncertainties on event rates
- Crucial to provide world leading oscillation measurements

ND280 In Hyper-K

ND280 in Hyper-K

- Hyper-K will have **much** higher statistics than Super-K
- More statistics => systematic uncertainties become much more important

ND280 in Hyper-K

- Hyper-K will have **much** higher statistics than Super-K
- More statistics => systematic uncertainties become much more important
- Two different scenarios have been considered:
 - T2K 2020: Current (ish) model (constrained with "ND280-classic")
 - Improved: Estimated constraints from ND280 upgrade and IWCD

			•	0	· · · ·	
	μ -like		<i>e</i> -like			
Error model	ν -mode	$\bar{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	ν -mode	$ u/ar{ u} $ modes
			0 d.e.	0 d.e.	1 d.e.	0 d.e.
T2K 2020	3.0%	4.0%	4.7%	5.9%	14.1%	4.6%
Improved	1.2%	1.1%	2.1%	2.2%	5.2%	2.0%

Total percentage error on sample event rates:

ND280 in Hyper-K

 Studies done on ability to exclude cp conservation

 Time to reach goal of 5σ can be drastically reduced by improved systematics

d'Altes Energies

ND280++

ND280++

 Idea is to upgrade remaining un-upgraded part of ND280

ND280++

- Idea is to upgrade remaining un-upgraded part of ND280
- Potentially refurbish ecals
- Replace tracker region with some new detector/set of detectors
- This was the focus of the final day of the last T2K CERN workshop

ND280++ Goals

Physics goal of ND280++

- Measure $\sigma(\nu_e)$ vs $\sigma(\nu_\mu)$ and $\sigma(\nu_e)$ vs $\sigma(\bar{\nu}_e)$ precisely

 \Rightarrow need 3D granularity (possibly very fine), large mass, good calorimetry, and low threshold (<0.5 GeV), hadronic part (studies of C vs O)

• Measure interactions in water (u_{μ} and $\bar{
u}_{\mu}$)

 \Rightarrow need 3D granularity, large H₂O/CH content ratio, detailed hadronic part

• Reconstruct neutrons and reconstruct kinetic energy w/ time of flight (2p2h, direct $\bar{\nu}_{\mu}$ flux measurement, axial mass)

 \Rightarrow need 3D granularity, high hydrogen content, fully active, large mass, fast

• Reconstruct detailed hadronic part (e.g. protons below 300 MeV/c, vertex act.)

 \Rightarrow need very fine granularity

- What about Neutral Currents (break the degeneracy in IWCD-PRISM analysis, important NC1pi+)
 - \Rightarrow need 3D granularity, large mass, at least...

ETH zürich

Hyper-K ND280++

D.Sgalaberna

4

Taken from Davides

 <u>discussion slides</u>
 from HK part of CERN
 ND280++ workshop

ND280++ Goals

Physics goal of ND280++

• Measure $\sigma(\nu_e)$ vs $\sigma(\nu_\mu)$ and $\sigma(\nu_e)$ vs $\sigma(\bar{\nu}_e)$ precisely

and low threshold (<0.5 GeV), hadronic part (studies of C vs O)

• Measure interactions in water (u_{μ} and $\bar{
u}_{\mu}$)

 \Leftrightarrow need 3D granularity, arge H₂O/CH content ratio, detailed hadronic part

= need 3D granularity high hydrogen content, fully active, large mass, fast

• Reconstruct detailed hadronic part (e.g. protons below 300 MeV/c, vertex act.)

 \Rightarrow need very fine granularity

 What about Neutral Currents (break the degeneracy in IWCD-PRISM analysis, important NC1pin)

 \Rightarrow nee (3D granularity, large mass, at least...

ETH zürich

Hyper-K ND280++

- Taken from Davides

 <u>discussion slides</u>
 from HK part of CERN
 ND280++ workshop
- Strong theme of high granularity with 3D reconstruction

D.Sgalaberna

4

ND280++ Goals

Physics goal of ND280++

• Measure $\sigma(\nu_e)$ vs $\sigma(\nu_\mu)$ and $\sigma(\nu_e)$ vs $\sigma(\bar{\nu}_e)$ precisely

and low threshold (<0.5 GeV), hadronic part (studies of C vs O)

• Measure interactions in water (u_{μ} and $\bar{
u}_{\mu}$)

 \Rightarrow need 3D granularity, large H₂O/CH content ratio detailed hadronic part

 Reconstruct neutrons and reconstruct kinetic energy w/ time of flight (2p2h, direct u
_u flux measurement, axial mass)

= need 3D granularity high hydrogen content fully active large mass, fast

Reconstruct detailed hadronic part (e.g. protons below 300 MeV/c, vertex act.)
 ⇒ need very fine granularity

 What about Neutral Currents (break the degeneracy in IWCD-PRISM analysis, important NC1pin)

 \Rightarrow nee 3D granularity large mass, at least...

ETH zürich

Hyper-K ND280++

D.Sgalaberna

- Taken from Davides

 <u>discussion slides</u>
 from HK part of CERN
 ND280++ workshop
- Strong theme of high granularity with 3D reconstruction
- Also large mass with high H/ H2O content

29/09/2024

4

(some of the) Possible technologies

Hyper FGD (HFGD)

- Same concept as the super FGD
- 1cm plastic scintillator cubes read out by WLS

fibres

Hyper FGD (HFGD)

- Same concept as the super FGD
- 1cm plastic scintillator cubes read out by WLS

fibres

• But More!!!

Hyper FGD (HFGD)

- Same concept as the super FGD
- 1cm plastic scintillator cubes read out by WLS fibres
- But More!!!
- + Technology is now mature and tested in SFGD
- Installation for SFGD was very difficult – for HFGD.... Best not to think about

d'Altes Energies

Segmented WBLS

Similar confixed segments
 Similar confixed segments
 Similar confixed segments
 Structure for the second s

 Similar concept but with fixed segmented cell structure filled with water based liquid scintillator (WBLS)

<u>Link to talk</u>

Segmented WBLS

 Similar concept but with fixed segmented cell structure filled with water based liquid scintillator (WBLS)

- Same target as HK
- Similar spatial resolution as SFGD
- Being developed and prototyped at ETH

Link to talk

Scintillating Fibres (SciFi)

Motivation: Fine-grain 3D particle tracking

 Based on similar concept to existing FGDs in ND280

Link to talk

Scintillating Fibres (SciFi)

Motivation: Fine-grain 3D particle tracking

- Based on similar concept to existing FGDs in ND280
- Just on a very different scale
- Sub-mm thickness fibres giving incredible spatial resolution
- Being worked on at ETH in early prototype stages

ND280 ++ Baseline

 (very) rough proposal of baseline design

 Taken from Davides <u>discussion slides</u> from HK part of CERN ND280++ workshop

Institut de Física d'Altes Energies

Summary

Summary

- ND280 plays a crucial role in constraining the cross section and flux uncertainties for T2K
- For Hyper-K this will be even more important, given the greatly reduced systematic uncertainties – there will be nowhere left to hide!

Summary

- ND280 plays a crucial role in constraining the cross section and flux uncertainties for T2K
- For Hyper-K this will be even more important, given the greatly reduced statistical uncertainties – there will be nowhere left to hide!
- Lots of excitement and interest about ND280++
- Great deal of R&D ongoing into possible new technologies

Hyper-K ND280++ workshop					
27 July 2024 CERN Europe/Zurich timezone					
Overview Timetable Contribution List	Participant List 75 participants				

Thanks for listening!