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Introduction/reminder

e Neutrino analysis software (in Python) for neutrino oscillations, flux and
cross-sections

@ Focus on flexibility: easy to include any neutrino source, cross-section
model and detector
Same framework, different analyses and any combination of them.

® Made to accommodate any number of experiments accounting for their
correlations implicitly
Joint analyses can be performed out of the box or with very little modifications
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Why python

* Flexible

* Makes it easier to expand — quickly implementing and testing new ideas and developments

* Much easier to install and better/easier handling of dependencies (we are trying to remove most
of tricky dependencies)

* Lots of developments in many areas, having access to state-of-the-art software

* Easy to include cross-platform tools

... but it's slow(er)ish

* Overcome the slowest parts using small packages inherited from C++ (numpy,
boost _histogram, nusquids, etc.)

* New implementations
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Summary of Pynu philosophy

Generalized and abstract analysis software focused on performance and flexibility

Pynu is not focused to any particular (neutrino) analysis, but implements a core structure on which
different analyses can be implemented
- All items defining an analysis are defined via an xml file

* Experiment: detector + source

* Analysis is made of: e —
» Detectors — including simulations and data

 Neutrino sources
 Cross-sections

PyNu Framework

° OSCI”a'[IonS The aim of this software is to perform neutrino analysis in the most general
and flexible way. There are three modules:
° Types of parameters: » PyNuFit: It is the core of the package handling simulations, data and
. ] . . fitting.
y M does nOt Change In the anaIySIS bUt a”OWS » Plot: A plotting toolkit to extract all the information from the analysis
to reweight the simulations to test different (UNDER CONSTRUCTION).
d I » Report: Automated module for preparing a report containing the
MOdeEIS detailed information of the analysis and the results (UNDER
* Nuisance: systematic paramters CONSTRUCTION).
¢ PhyS|CS free parameters to be f|tted W|th the For a more complete documentation, please open the docs/pynu.html

provided data or simulation feldeninyensbronses



Summary of Pynu philosophy

Performance, CPU time and handling large datasets are the main concerns towards future
neutrino analyses.

We aim to open this field to develop novel solutions within HK and adapt others.

In this presentation, after a bit more introduction, we will explain the main recent developments,
the next steps and also the physics motivation for all of it.
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(The goal of physics data analyses)

Extract the underlying physical parameters explaining a given observed data
For that, we need a theoretical model containing those parameters

Fit: compare the family of predictions made by the model against the data, and extract the values
of the physical parameters that better reproduce the data

What is better?
The usual approach is to build a likelihood functional with data and model inputs such that it
returns how likely it is for a particular prediction to explain the observed data

+ The best fit parameters are thos that maximize the likelihood

+ We want more, we want the precission (error size) of the measurement

To construct this likelihood we need to measure how close data and model are, but taking into
account the uncertainties of our experiment and model
+ statistics

+ systematics/nuisance 7/35



Physics Tunes

Given a model, physics tunes is the part of pynu that
applies the different parameter values

Systematics, physics parameters are treated in the
same way and generally called Physics Tunes

These are functions for each parameter of the flux,
Cross section, detector or oscillations

Therefore, each of them can be treated as systematics
(nuisance), physics or fixed in an analysis; and any
dependence is allowed (no need for linearization,
splines or interpolation)

All (nuisance) parameters are linked to a function
[}]-1:’:{?;]} which computes the weights associated to
that parameter for each event in the Monte Carlo
simulation used to fit the data.

TR — R™ (11)
n— @y (n) = (E@@).ipn)...)  (12)

In this approach, correlations between analysis-
relevant variables are implemented immplicitly and
allow for any parametrization.

Binning and number of expected events is comn-
puted at runtime after all the weights are calculated.
In turn, it means that there is no linearization in
terms of the event rate fraction.

E = > II wirm I wiv@| a3

ERWIS PEplhys

e hin

Vector Functions from a single Parameter to com-
pute non-linear Weights at Runtime

Wy : R — R™ (14)
W o— wa(W) = (BE(T),ip(7)...) (15}
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Derivatives of Physics Tunes

Having explicitly defined physics tunes as functions, it is rather straight forward to implement their

derivatives too

It's not only love (and mathness) for differentiating, their use will also become handy later.

A word on oscillations as physics tunes

Oscillation probabilities tend to have a rather complicated long forms
with dependency on several parameters, so they are not easy to
differentiate in a general way. Especially if some kind of interpolation
or approximation is used.

Fort computing oscillations, the current version of
pynu uses nuSQuIDS, but it has been shown to be a
bottle-neck in the performance of the analysis

(~11 times slower than the rest of physics tunes)

- Jeremy to the rescue (next talk)

Alternative neutrino oscillation software

Speed up calculation of neutrino oscillations model
nuSQuIDS + SQuIDS + gsl — Eigen

Performance comparison
11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GH=z

Laptop-grade CPU from 2021
8 cores, 16 threads

1M points

Evaluate in single-thread mode

nuSQuIDS Eigen
11503 ms 676 ms

Eigen is faster by a factor of ~20
Each point/event is independent, turn on multi-threading
Eigen improves to just 100 ms




Binned negative Log-Likelihood

Negative log-likelihood

m(Ezp(0)|Obs) = % E E (E: — O; + O; - log (O

Expmmnt. re Bins

T

E:

)

Poisson statistics

—| D> 10eP@)

JEparaimns.

Nuisance and priors

Oi: Observed number of events in ith bin (data or simulation with assumed true values)
Ei: Expected number of events in ith bin at a give physics point and with nominal nuisance
E’i: Expected number of events in ith bin modified by the values of nuisance parameters

;: current value of j'" nuisance parameter
P: prior for nuisance

The usual covariance matrix (everythin-is-gaussian case) is
generalized to a block diagonal matrix, emphasizing:
e Parameter correlations (or their absence)
» Different parameters may be described by different
distributions, i.e. we are no longer restricted to assume
gaussianity of this term

(log P({%)

log P(61)

].Og ’P ( g-:»n ) )



Negative Log Likelihood

Having implemented the derivatives of physics tunes means that we can compute the gradient of
the log-likelihood w.r.t. any subset of parameters

O; \ OE! Vi P(6;)
w (@) = —= R Sl
Vin(0) = > :(1 E:) o S o

JEPATrants.

P(6;)

and,

- Orwg®
6kE£(9) — E ( ( H TU._E:.“ ('??) H 11}5”{9)) ’HJE?) where £ 1s a subindex of j.

e b NENULs G=phys J

Binning happens during runtime.
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Treatment of systematic uncertainties
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. Sample dependence intrinsic
Bottom-up and top-down systematics uncertainties in the physics and
limited statistics

4 T T T Ty r kbl | ke } b | T ) e T
e Top Down S sk s oKV

. Estimate Svstematics based on Control s gl oo sl . AR A ‘ P ST , ,,,,,,,,,,,,,,,,,,,, S i v B VTN
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. . — 0 - **._‘ 3 e r & *
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* Perfect when control sample matches i S y a _+ --------------------- B Bt
Slgnal ‘_-_4 :Eﬂi":ﬁxﬁl o e il el S s vl PRt SR |
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and/or interpolation oo sl

* Bottom Up | s R S R e ooty }

* Determine uncertainty in detector BEIEES=Se S A
response from uncertainty in input § ows 005 =]
parameters i

. Reguires knowledge of all parameters F o0
and uncertainties 5 oons

* No extrapolation and correlations can ; _ o3|
be understood o0 e - —A—

- +10% absarption length 1 b S S I 1
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Top-down: analysis example

- Z Z (Eg—().i+f)t-~log(gz )—F[??@??)

Erpmnt. i€ Bins

2 is the covariance matrix with all systematics and accounting for their correlation (off-diagonal
terms)

fij take into account the effect of nuisance parameters in terms of the event rates, s.t.

E! = E; (1+ > fz-j-a:j>

fj are the linearized (1t order) fractional change of the event rate w.r.t. the nuisance parameter j
at bin i
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Top-down: analysis example

A140
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Bottom-up: the physics

By definition, in bottom-up approach, there will be fewer correlations between nuisance parameters;
correlations are removed by

* Independent calibration sources and detector features

* Redundant calibration to decouple effects

Enables
* More precise implementation of physics analysis
» Better understanding of impact of nuisance parameters, calibration and detector performance

Requires

» Dedicated simulations to compute parametrizations and weight functions
* More work and communication between calibration and physics

16 /35



Going from top-down approach <

Change of parametrization s.t. it makes
> “more diagonal” the covariance matrix

to bottom-up

In the case of top-down approach, the covariance
matrix is defined for top-level variables which depend
on several common parameters, thus exhibiting
significant correlations. Another feature of this
approach is that computing the f;; using top-level
variables is quite natural and straight-forward.

In the bottom-up approach, variables carrying
the uncertainties are more fundamental, therefore
their correlations are much smaller in the covariance
matrix. On the other hand, the computation of the
fi; becomes a bit more complex in the sense that a
single given nuisance parameter will affect more bins
and in different ways (affects to several top-level
variables).

and removes most of the correlations

The covariance matrix X is a positive, symmetry
square-matrix, so 3 a matrix P s.t. PTYpP = X,
where > is a diagonal matrix.

The nuisance term is invariant under a change of
variables in which the covariance matrix is diagonal.

i =P7 (5)

7T — T (6)

/l. \
I

¥ g — T -
\ B




Bottom-up: pynu implementation

All (nuisance) parameters are linked to a function
[ﬁi(?}}] which computes the weights associated to
that parameter for each event in the Monte Carlo
simulation used to fit the data.

wy: R — R™ (11)
n— @y(n) = (E(m),ip(n),...)  (12)

In this approach, correlations between analysis-
relevant variables are implemented implicitly and
allow for any parametrization.

Binning and number of expected events is com-
puted at runtime after all the weights are calculated.

In turn, it means that there is no linearization in
terms of the event rate fraction.

E = Z I v I wst o)

TCNULS fephys

evchin

Of course, explicit correlation of nuisance
parameters can be implemented as well
simply generalizing the previous, that is
each diagonal block has its own vector
multivariate function

7 — W () = (E(T), (7). )

These functions are exactly the same as those
obtained from calibration analyses
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Prior distributions

In addition to the
physical/philosophical
motivation of bottom-up
approach, it also brings some
computation advantages

Being able to de-correlate most
of nuisance parameters and
following a bottom-up approach,
also enables the capability to
plug in more meaningful priors,
beyond Gaussian distributions
and avoiding nonphysical values

Pynu accomodates any prior
dsitribution for any parameter
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Fitting strategies

Profiling and marginalizing (inference)

The final result is the same in most cases and their difference relies on how the model parameters
are treated during the fitting

Both are very time-consuming processes (weeks to months to run on clusters)

+ Part of the reason are oscillations
+ The rest is due to the complexity of the numerical optimization problem of the likelihood

over O(10%) parameters/dimensions
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Profiling

In profiling, we assume some parameters are the physics we want to measure and for which we obtain their distribution
and best fit values; others are considered nuisance or systematics and for which only the best fit value matters (i.e. the

mode of the distribution)
Therefore, for every point of the physics parameter space the systematics must vanish the gradient of the log-likelihood

1 = Estimators -+ gradient
L=

Estimators

- Being able to compute the gradient 1
analytica“y instead Of numerica“y, 1~ === Numerical only (default)
makes the minimization much faster.

3
— First order estimators and bounds 7
improve the performance by reducing
the volume of the parameter space to

probe.

CPU time (s)

102

10+ 4

21735
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Profiling

In profiling, we assume some parameters are the physics we want to measure and for which we obtain their distribution
and best fit values; others are considered nuisance or systematics and for which only the best fit value matters (i.e. the

mode of the distribution)

Therefore, for every point of the physics parameter space the systematics must vanish the gradient of the log-likelihood

. Being able to compute the gradient 10° ]

analytically instead of numerically,
makes the minimization much faster.

— First order estimators and bounds
improve the performance by reducing
the volume of the parameter space to
probe.

)
t{de fault)

r
= 1,-" n s st

10—1 ]

—— Estimators + gradient
Estimators
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Marginalizing

In marginalization, all parameters are treated in the same way in the analysis, we want to obtain their distribution and
best fit values. Afterwards, some of these parameters are considered nuisance of the analysis and
marginalized/integrated over.

Therefore, we don’t minimize the log-likelihood but infer the overall distribution.

Metropolis-Hastings Markov Chain Monte Carlo (Mach3) or numerical integration using Choleski decomposition (P-
Theta) is the widely used method for this integration, but there exist methods which scale better with dimensionality
(validation ongoing).

We will focus on the implementation of Hamiltonian Monte Carlo. This is an active field mainly in machine learning which
originated in lattice field theory and is one of the most effective/efficient MC integration algorithms currently.
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Marginalizing

Hamiltonian Monte Carlo

Instead of random walks of MCMC, HMC simulates predictable trajectories (of random but constant energy-
probability) probing the entire probability distribution and following Hamiltonian-like dynamics

_ o Potential energy as the
H{6,p) =U(8) + K{(p) with U(o) = mn(0) target negative log likelihood
l 1] H n L H
Thetas are the parameters of the analysis and p are the K(p)= =p M~ 1 pT GaUSSIE_:\n kinetic energy
conjugate variables (analog of Hamiltonian formulation momenta) 2 from which to draw

momenta to probe the
distribution

Hamilton egs. are solved easily and efficiently by having the information of the gradient of the log-likelihood and with

methods from I-QCD

. 5 H o oOH
=" p=—"2
Op ol

solutions for thetas follow then the canonical distribution, whi

ch is-eurtaraet._distribution
P(6,p) < exp(—H(0,p)) — K(p))

24/ 35
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Marginalizing

Hamiltonian Monte Carlo in pynu

Several versions of HMC have already been implemented in pynu and are being further developed an adapted to
this problem (paper in preparation)
Just 20 points
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Marginalizing

Hamiltonian Monte Carlo vs Metropolis-Hastings

* Usual MH-MCMC scales with dimension as d? whereas HMC goes as d**
It converges to the target distribution much faster

« Acceptance rate in MH-MCMC is between 20% to 25%, in HMC is 80% to 95% (only due to
error in trajectory computation)

* One of the main obstacles in MH-MCMC is that autocorrelation times between points is
larger and can only be solved with more points. In HMC, correlation between points
decreases much quicker

« Additionally, we make a first order analytical approximation of the best fit value (mode of the

distribution). By starting the trajectories near the modes, they can probe efficiently the overall
distribution
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l Other approaches for the future

 Stein Variational gradient descent (partially implemented). A type of variational
inference method

(https://papers.nips.cc/paper/2016/file/b3ba8flbeel238a2f37603d90b58898d-
Paper.pdf)
* Unbinned likelinhood fit (roughly implemented)

* Likelihood-free inference

27 /35



A word on the motivation of having a flexible framework to make joint fits

Philosophy of combined data analyses with the atmospherics showcase

Different experiments: independent measurements
Joint fit: Enhanced precission systematics cancellation/reduction

In the end we want both, a precise and reliable measurment

Will ordering will be measured and the octant of 823 ?
Learn more about low energy uncertainties

Inputs from previous LBL experiments, NovA and T2K (and MINOS)

Joint analysis of accelerator and atmospherics, the official SK+T2K joint fit will be out soon
T2K+NOVA official joint fit is ongoing 28 /35



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.L051101
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.041055

Combined fits and the start of HyperK -- atmospherics

Atmospherics joint fit for 2030: IC-UP (5 years), ORCA (3 years), SK (current+5 years) and HK (2.5 years)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.L051101
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.041055

Combined fits and the start of HyperK -- atmospherics
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Combined fits and the start of HyperK -- atmospherics

Atmospherics have a huge sensitvity to the CP phase, if it weren't for the systematics...

Atmospherics joint fit for 2030: IC-UP (5 years), ORCA (3 years), SK (curr
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—— Flux norm.
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Flux v/7

All systematics

ocp

o0
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-- DIS
CCQE e/u
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dcp

40

e_rJt+5 years) and HK (2.5 years)

—— Stats. only

SK detector
—— [C-Up detector
—— ORCA detector
—— HK detector

= All systematics

Main showstopper are the flux uncertainties but it partially benefits from cross section
measurements and detector control.

31/35
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Combined fits and the start of HyperK -- atmospherics

Nevertheless, in 2030, HK LBL and combined atmospherics will have comparable sensitivities to dcp
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Combined fits and the start of HyperK -- atmospherics

And very similar for 6,3. Example of how a combined fit can provide very valuable input to next-
generation experiments to be optimized and their physics programs accelerated
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Combined fits and the start of HyperK - take out message

» Experiments providing independent measurements is crucial
 Combined fits check for consistency and provide potentially more precise measurements
* Ideally, look for complementarities and sharing/cancellation of systematics

* They guide your next experiment and extract the most out of the current ones. Around
HyperK:
* Global fits (as official/realistic) by the start of HK
* SK+T2K

ND280+IWCD+HK(atm+LBL)

ueld

Not only “high-energy”, HK (solars+reactors?, DSNB)
Not only 3-flavor scenario

v

* Pynu provides a framework to do it, the only remaining thing would be to implement your
experiment(s)
« Same framework for phenomenology studies, single and combined data fits
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