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Since last year
● First “stable” release on 

February 23
● Four branches

● main (stable)
● devel (rather reliable new 

things)
● HMC (novel inference 

methods, this talk)
● pheno (random sensitivty 

studies, briefly in this talk)

Goal for next year:
● Tag new version, 1.0.0, 

including everything above 
and
● New oscillator (next talk)
● SK official atm.
● HK official atm.
● Your ideas come here, get 

in touch



  3 / 35

Introduction/reminder

● Neutrino analysis software (in Python) for neutrino oscillations, flux and 
cross-sections

● Focus on flexibility: easy to include any neutrino source, cross-section 
model and detector
Same framework, different analyses and any combination of them. 

● Made to accommodate any number of experiments accounting for their 
correlations implicitly
Joint analyses can be performed out of the box or with very little modifications
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Why python

● Flexible
● Makes it easier to expand – quickly implementing and testing new ideas and developments
● Much easier to install and better/easier handling of dependencies (we are trying to remove most 

of tricky dependencies)
● Lots of developments in many areas, having access to state-of-the-art software
● Easy to include cross-platform tools

… but it’s slow(er)ish
● Overcome the slowest parts using small packages inherited from C++ (numpy, 

boost_histogram, nusquids, etc.) 
● New implementations 



  5 / 35

Summary of Pynu philosophy

● Experiment: detector + source

● Analysis is made of:
● Detectors – including simulations and data
● Neutrino sources
● Cross-sections
● Oscillations

● Types of parameters:
● Fixed: does not change in the analysis but allows 

to reweight the simulations to test different 
models

● Nuisance: systematic paramters
● Physics: free parameters to be fitted with the 

provided data or simulation

Generalized and abstract analysis software focused on performance and flexibility

Pynu is not focused to any particular (neutrino) analysis, but implements a core structure on which 
different analyses can be implemented

→ All items defining an analysis are defined via an xml file
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Summary of Pynu philosophy

Performance, CPU time and handling large datasets are the main concerns towards future 
neutrino analyses.

We aim to open this field to develop novel solutions within HK and adapt others.

In this presentation, after a bit more introduction, we will explain the main recent developments, 
the next steps and also the physics motivation for all of it.
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(The goal of physics data analyses)

Extract the underlying physical parameters explaining a given observed data

For that, we need a theoretical model containing those parameters 

Fit: compare the family of predictions made by the model against the data, and extract the values 
of the physical parameters that better reproduce the data

What is better?
The usual approach is to build a likelihood functional with data and model inputs such that it 
returns how likely it is for a particular prediction to explain the observed data

+ The best fit parameters are thos that maximize the likelihood
+ We want more, we want the precission (error size) of the measurement

To construct this likelihood we need to measure how close data and model are, but taking into 
account the uncertainties of our experiment and model

+ statistics
+ systematics/nuisance
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Physics Tunes

Systematics, physics parameters are treated in the 
same way and generally called Physics Tunes

These are functions for each parameter of the flux, 
cross section, detector or oscillations 

Therefore, each of them can be treated as systematics 
(nuisance), physics or fixed in an analysis; and any 
dependence is allowed (no need for linearization, 
splines or interpolation)

Given a model, physics tunes is the part of pynu that 
applies the different parameter values
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Derivatives of Physics Tunes

Having explicitly defined physics tunes as functions, it is rather straight forward to implement their 
derivatives too

It’s not only love (and mathness) for differentiating, their use will also become handy later.

A word on oscillations as physics tunes
Oscillation probabilities tend to have a rather complicated long forms 
with dependency on several parameters, so they are not easy to 
differentiate in a general way. Especially if some kind of interpolation 
or approximation is used.

Fort computing oscillations, the current version of 
pynu uses nuSQuIDS, but it has been shown to be a 
bottle-neck in the performance of the analysis 
(~11 times slower than the rest of physics tunes)

→ Jeremy to the rescue (next talk)
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Binned negative Log-Likelihood

Poisson statistics Nuisance and priors

The usual covariance matrix (everythin-is-gaussian case) is 
generalized to a block diagonal matrix, emphasizing:

● Parameter correlations (or their absence)
● Different parameters may be described by different 

distributions, i.e. we are no longer restricted to assume 
gaussianity of this term

Negative log-likelihood

Oi: Observed number of events in ith bin (data or simulation with assumed true values)
Ei: Expected number of events in ith bin at a give physics point and with nominal nuisance
E’i: Expected number of events in ith bin modified by the values of nuisance parameters

θj: current value of jth nuisance parameter
P: prior for nuisance
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Negative Log Likelihood

Having implemented the derivatives of physics tunes means that we can compute the gradient of 
the log-likelihood w.r.t. any subset of parameters

and,

Binning happens during runtime. 
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Treatment of systematic uncertainties
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Bottom-up and top-down systematics

P-Theta HK TN

Sample dependence intrinsic 
uncertainties in the physics and 
limited statistics
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Top-down: analysis example

● Σ is the covariance matrix with all systematics and accounting for their correlation (off-diagonal 
terms)

● fij take into account the effect of nuisance parameters in terms of the event rates, s.t.

fij are the linearized (1st order) fractional change of the event rate w.r.t. the nuisance parameter j 
at bin i
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Top-down: analysis example

flux

cross section

detector P-Theta HK TN
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Bottom-up: the physics

By definition, in bottom-up approach, there will be fewer correlations between nuisance parameters; 
correlations are removed by

● Independent calibration sources and detector features
● Redundant calibration to decouple effects

Enables
● More precise implementation of physics analysis
● Better understanding of impact of nuisance parameters, calibration and detector performance

Requires
● Dedicated simulations to compute parametrizations and weight functions
● More work and communication between calibration and physics
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Change of parametrization s.t. it makes 
“more diagonal” the covariance matrix 
and removes most of the correlations

Going from top-down approach 
to bottom-up
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Of course, explicit correlation of nuisance 
parameters can be implemented as well 
simply generalizing the previous, that is 
each diagonal block has its own vector 
multivariate function

Bottom-up: pynu implementation

These functions are exactly the same as those 
obtained from calibration analyses 
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Prior distributions

In addition to the 
physical/philosophical 
motivation of bottom-up 
approach, it also brings some 
computation advantages

Being able to de-correlate most 
of nuisance parameters and 
following a bottom-up approach, 
also enables the capability to 
plug in more meaningful priors, 
beyond Gaussian distributions 
and avoiding nonphysical values

Pynu accomodates any prior 
dsitribution for any parameter
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Fitting strategies

Profiling and marginalizing (inference)

The final result is the same in most cases and their difference relies on how the model parameters 
are treated during the fitting

Both are very time-consuming processes (weeks to months to run on clusters)
+ Part of the reason are oscillations
+ The rest is due to the complexity of the numerical optimization problem of the likelihood
over O(102) parameters/dimensions
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Profiling

In profiling, we assume some parameters are the physics we want to measure and for which we obtain their distribution 
and best fit values; others are considered nuisance or systematics and for which only the best fit value matters (i.e. the 
mode of the distribution)

Therefore, for every point of the physics parameter space the systematics must vanish the gradient of the log-likelihood

→ Being able to compute the gradient
analytically instead of numerically,
makes the minimization much faster.

→ First order estimators and bounds 
improve the performance by reducing 
the volume of the parameter space to
probe.
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Marginalizing

In marginalization, all parameters are treated in the same way in the analysis, we want to obtain their distribution and 
best fit values. Afterwards, some of these parameters are considered nuisance of the analysis and 
marginalized/integrated over.

Therefore, we don’t minimize the log-likelihood but infer the overall distribution.

Metropolis-Hastings Markov Chain Monte Carlo (Mach3) or numerical integration using Choleski decomposition (P-
Theta) is the widely used method for this integration, but there exist methods which scale better with dimensionality 
(validation ongoing).

We will focus on the implementation of Hamiltonian Monte Carlo. This is an active field mainly in machine learning which 
originated in lattice field theory and is one of the most effective/efficient MC integration algorithms currently.
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Marginalizing

Hamiltonian Monte Carlo

Instead of random walks of MCMC, HMC simulates predictable trajectories (of random but constant energy-
probability) probing the entire probability distribution and following Hamiltonian-like dynamics

with
Potential energy as the 
target negative log likelihood

“Gaussian” kinetic energy 
from which to draw 
momenta to probe the 
distribution

Hamilton eqs. are solved easily and efficiently by having the information of the gradient of the log-likelihood and with 
methods from l-QCD

solutions for thetas follow then the canonical distribution, which is our target distribution

Review introductory paper, https://arxiv.org/pdf/1206.1901.pdf

Thetas are the parameters of the analysis and p are the 
conjugate variables (analog of Hamiltonian formulation momenta)
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Marginalizing

Hamiltonian Monte Carlo in pynu

Several versions of HMC have already been implemented in pynu and are being further developed an adapted to 
this problem (paper in preparation)

Just 20 points
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Marginalizing

Hamiltonian Monte Carlo vs Metropolis-Hastings

● Usual MH-MCMC scales with dimension as d2 whereas HMC goes as d5/4

It converges to the target distribution much faster

● Acceptance rate in MH-MCMC is between 20% to 25%, in HMC is 80% to 95% (only due to 
error in trajectory computation)

● One of the main obstacles in MH-MCMC is that autocorrelation times between points is 
larger and can only be solved with more points. In HMC, correlation between points 
decreases much quicker

● Additionally, we make a first order analytical approximation of the best fit value (mode of the 
distribution). By starting the trajectories near the modes, they can probe efficiently the overall 
distribution
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● Stein Variational gradient descent (partially implemented). A type of variational 
inference method 
(https://papers.nips.cc/paper/2016/file/b3ba8f1bee1238a2f37603d90b58898d-
Paper.pdf)

● Unbinned likelihood fit (roughly implemented)

● Likelihood-free inference

Other approaches for the future
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A word on the motivation of having a flexible framework to make joint fits

Different experiments: independent measurements
Joint fit: Enhanced precission systematics cancellation/reduction

In the end we want both, a precise and reliable measurment

Philosophy of combined data analyses with the atmospherics showcase

Joint analysis of accelerator and atmospherics, the official SK+T2K joint fit will be out soon
T2K+NOvA official joint fit is ongoing

Will ordering will be measured and the octant of θ23 ?

Learn more about low energy uncertainties

Inputs from previous LBL experiments, NovA and T2K (and MINOS)
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Combined fits and the start of HyperK -- atmospherics

For 2030

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.L051101
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.041055

Atmospherics joint fit for 2030: IC-UP (5 years), ORCA (3 years), SK (current+5 years) and HK (2.5 years)
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Combined fits and the start of HyperK -- atmospherics

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.L051101
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.041055

Actually, IceCube-Upgrade (5 years) 
and ORCA (3 years) alone will “easily” 
determine the neutrino mass ordering 
around the relevant time for the first data 
of HK 

Atm. 2030 projection
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Combined fits and the start of HyperK -- atmospherics
Atmospherics have a huge sensitvity to the CP phase, if it weren’t for the systematics…

Atmospherics joint fit for 2030: IC-UP (5 years), ORCA (3 years), SK (current+5 years) and HK (2.5 years)

Main showstopper are the flux uncertainties but it partially benefits from cross section 
measurements and detector control. 
Ancillary measurements for flux much like for the accelerator neutrino beams are much needed
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Nevertheless, in 2030, HK LBL and combined atmospherics will have comparable sensitivities to δCP

Combined fits and the start of HyperK -- atmospherics

Atm. 2030 projection
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And very similar for θ23. Example of how a combined fit can provide very valuable input to next-
generation experiments to be optimized and their physics programs accelerated

Combined fits and the start of HyperK -- atmospherics

Comparison to current LBL data

Atm. 2030 projection
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Combined fits and the start of HyperK – take out message

● Experiments providing independent measurements is crucial
● Combined fits check for consistency and provide potentially more precise measurements

● Ideally, look for complementarities and sharing/cancellation of systematics

● They guide your next experiment and extract the most out of the current ones. Around 
HyperK:
● Global fits (as official/realistic) by the start of HK
● SK+T2K
● ND280+IWCD+HK(atm+LBL)
● …
● Not only “high-energy”, HK (solars+reactors?, DSNB)
● Not only 3-flavor scenario

● Pynu provides a framework to do it, the only remaining thing would be to implement your 
experiment(s)
● Same framework for phenomenology studies, single and combined data fits

P
lan
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