Bridging the nHz gravitational wave gap via Moon's physical librations

Erik Giménez & Eric Lizalde under the supervision of Dr. Diego Blas

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Moon's movement

- Tidally locked. It shows some oscillations: libration motion.
- Different causes: Optical, parallax and **physical librations**.
- · Different modes: longitude, latitude, wobbling.
- Physical libration's amplitude (1 arcsec) is not fully understood¹ and precisely measured due to $LLR²$.

K ロ ▶ K 何 ▶

ヨメ メヨメ

¹Rambaux and Williams [2011.](#page-37-0)

²See for example Slava G. Turyshev and Hahn [2023.](#page-38-1)

Libration motion basics

• Due to the interaction of the Earth's gravitational potential with Lunar Quadrupole Moment \longrightarrow Correction to the potential $\propto 1/r^3$.

造

メロメメ 御 メメ きょくきょう

Libration motion basics

• Due to the interaction of the Earth's gravitational potential with Lunar Quadrupole Moment \longrightarrow Correction to the potential $\propto 1/r^3$.

• By averaging [\(1\)](#page-2-0) over the orbital period:

$$
\ddot{\tau} + \omega_0^2 \sin \tau = 0 \tag{2}
$$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

Libration motion basics: Damping mechanisms

- Anelastic damping (Eckhardt [1993\)](#page-37-2). Complex Love number $k(1 i\kappa)$
- Viscous fluid model (Yoder and Hutchinson [1981;](#page-38-2) Poisson and Will [2014\)](#page-37-3).
- **This modifies our FoM**

$$
\ddot{\tau} = -\omega_0^2 (1 + i\kappa)\tau \simeq -\omega_0^2 \left(1 + i\frac{\kappa}{2}\right)^2 \tau
$$

- Estimates give a $\tau_{\rm damp}$ of 10^4 yr (anelastic) or 10^5 yr (viscous).
- For simplicity we can write the EoM as:

$$
\ddot{\tau} + 2b\dot{\tau} + \omega_0^2 \tau = 0 \tag{3}
$$

イロト イ押ト イヨト イヨト

.

Key question and hypothesis

- Previous concerns account only for *maintaining* the Moon's libration motion for a (relatively) short time. What has initiated this movement?
- Several explanations have been proposed: asteroid impact, orbital resonances...
- Our study explores the possibility of new physics:

イロト イ部 トイ ヨ トイ ヨ トー

Key question and hypothesis

- Previous concerns account only for *maintaining* the Moon's libration motion for a (relatively) short time. What has initiated this movement?
- Several explanations have been proposed: asteroid impact, orbital resonances...
- Our study explores the possibility of new physics:

Gravitational Wave Resonance

メロメメ 倒 メメ きょくきょう

Cartoon Figure (I)

Figure: Cartoon picture representing the situation for ⊥ direction and × polarization.

イロト 不優 トメ 差 トメ 差 トー 差

GWs as a direct perturbation force

In Fermi normal coordinates, the perturbative term (Force/unit mass) can be calculated from linearised GR, obtaining

$$
\delta \ddot{r}^i = \frac{1}{2} \ddot{h}_{ij}^{\rm TT} r^j \tag{4}
$$

イロト イ何 トイヨ トイヨト

The perturbation is sinusoidal with amplitude:

$$
A_F = \frac{h_0 m_s a^2 \omega_g^2}{2C}
$$

or $A_F e^2$ (depending on the source) as we will see later.

Other effects of GW

• Modifying the principal moments of inertia and specifically $(B - A)/C$. The calculated amplitude A_I (Rosat and Majstorović [2021\)](#page-37-4) is:

$$
\frac{A_I}{A_F} = \left(\frac{B-A}{C}\right)^{-1} \frac{4k_2 R_s^5 \omega_0^2}{3Gm_s a^2} \sim 10^{-11}
$$
\n(5)

• Modifying the orbital parameters: a, e, i... (Blas and Jenkins [2022\)](#page-37-5) which affect eq. [\(1\)](#page-2-0). Second-order perturbation.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Obtaining the Equations of Motion

From Euler's equation:

$$
N_z = \dot{\omega}_z - (A - B)\overline{\omega_x \omega_y} = yF_x - xF_y \tag{6}
$$

As previously stated, we add the GWs effect as a perturbation force.

$$
\delta \ddot{r}^i = \frac{1}{2} \ddot{h}_{ij}^{\mathrm{TT}} r^j \quad \text{with} \quad (h_{ij} = h_0 \epsilon_{ij} e^{i\omega_g t}) \tag{7}
$$

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Obtaining the Equations of Motion

From Euler's equation:

$$
N_z = \dot{\omega}_z - (A - B)\overline{\omega_x \omega_y} = yF_x - xF_y \tag{6}
$$

As previously stated, we add the GWs effect as a perturbation force.

$$
\delta \ddot{r}^i = \frac{1}{2} \ddot{h}_{ij}^{\mathrm{TT}} r^j \quad \text{with} \quad (h_{ij} = h_0 \epsilon_{ij} e^{i\omega_g t}) \tag{7}
$$

メロメメ 御 メメ きょくきょう

Here we can make the distinction between the different incoming directions of the GWs \parallel , \perp and also between the polarizations ϵ_{ij}^+ , ϵ_{ij}^{\times} .

Cartoon Figure (II)

Figure: Cartoon picture representing the situation for ⊥ direction and × polarization.

K ロ > K 個 > K 경 > K 경 > X 경

EoM for perpendicular direction and cross polarization

Taking into account the Moon's rotation on its own axis (ω_{rev}), the polarisation tensor reads as follows: (similar approach as Amicis et al. [n.d.\)](#page-37-6)

$$
\epsilon_{ij}^{\times} = \begin{pmatrix} -\sin(2\omega_{rev}t) & \cos(2\omega_{rev}t) & 0\\ \cos(2\omega_{rev}t) & \sin(2\omega_{rev}t) & 0\\ 0 & 0 & 0 \end{pmatrix}
$$

イロト イ何 トイヨ トイヨト

EoM for perpendicular direction and cross polarization

Taking into account the Moon's rotation on its own axis (ω_{rev}) , the polarisation tensor reads as follows: (similar approach as Amicis et al. [n.d.\)](#page-37-6)

$$
\epsilon_{ij}^{\times} = \begin{pmatrix} -\sin(2\omega_{rev}t) & \cos(2\omega_{rev}t) & 0\\ \cos(2\omega_{rev}t) & \sin(2\omega_{rev}t) & 0\\ 0 & 0 & 0 \end{pmatrix}
$$

Averaging Euler's EoM over the orbital period, one obtains:

$$
\ddot{\tau} - \frac{1}{2} \omega_0^2 \sin(2\tau) + A_\mathcal{F} e^2 \cos(\omega_g t) \cos(2\tau) = 0 \tag{8}
$$

イロト イ押ト イヨト イヨト

EoM for perpendicular direction and cross polarization

Taking into account the Moon's rotation on its own axis ($\omega_{\sf rev}$), the polarisation tensor reads as follows: (similar approach as Amicis et al. [n.d.\)](#page-37-6)

$$
\epsilon_{ij}^{\times} = \begin{pmatrix} -\sin(2\omega_{rev}t) & \cos(2\omega_{rev}t) & 0\\ \cos(2\omega_{rev}t) & \sin(2\omega_{rev}t) & 0\\ 0 & 0 & 0 \end{pmatrix}
$$

Averaging Euler's EoM over the orbital period, one obtains:

$$
\ddot{\tau} - \frac{1}{2} \omega_0^2 \sin(2\tau) + A_\mathcal{F} e^2 \cos(\omega_g t) \cos(2\tau) = 0 \tag{8}
$$

And, since libration's amplitude \simeq 1 arcsec \ll 1, eq. [\(8\)](#page-13-0) becomes $(+)$ adding the damping term)

$$
\ddot{\tau} + 2b\dot{\tau} + \omega_0^2 \tau + A_F e^2 \cos(\omega_g t) = 0
$$
\n(9)

イロト イ押 トイヨト イヨト

Searching for an astronomical source

Central Mechanism: Incoming GW in the right direction and polarization, with $f_g \simeq f_0 = 11 \text{ nHz}$ resonates with Moon's Libration and induce a high libration amplitude. A first estimate for h_0 is given by

$$
A_{\max} \simeq \frac{A_F}{\kappa \omega_0^2} \qquad \longrightarrow \qquad h_{\text{required}} \simeq \frac{4C}{m_s a^2 \omega_0 e^2} \frac{A_{\max}}{T_{\text{damp}}}
$$

For the Moon and a punctual source, the required h_0 for $A_{\text{max}} \simeq 1$ arcsec is between 2×10^{-12} and 4×10^{-14} .

What could be the origin of these GW? How strong does the source have to be? Do they exist? Possible new window in the GW's Astronomy era.

K ロ > K 個 > K 경 > K 경 > X 경

The uAres detection landscape

Figure: GW detection landcape. Figure from Sesana et al. [2021.](#page-38-3)

A candidate: Supermassive black hole binaries (I)

During the inspiral, SMBHB emit GWs with increasing frequency until they merge (chirping).

メロトメ 御 トメ ミトメ ミト

From conservation of energy (without back reactions corrections \rightarrow approximation), we have that (Maggiore [2007\)](#page-37-7)

$$
\omega_{g} = \left(\omega_{g,0}^{-8/3} - \frac{32}{5} 2^{1/3} \left(\frac{GM_c}{c^3}\right)^{5/3} t\right)^{-3/8}
$$
(10)

The strain of the incoming GW also varies with time:

$$
h_c(t_{\rm obs}^{\rm ret}) = \frac{4}{d_L} \left(\frac{G \mathcal{M}_c}{c^2}\right)^{5/3} \left(\frac{\pi f_{\rm gw}^{\rm (obs)}(t_{\rm obs}^{\rm ret})}{c}\right)^{2/3} \tag{11}
$$

A candidate: Supermassive black hole binaries (II)

Figure: Graphic obtained from LIGO measures

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

EoM for GWs from SMBHB

With this source, the EoM is

$$
\ddot{\tau} + 2b\dot{\tau} + \omega_0^2 \tau + A(t) \cos(\omega_g(t) t) = 0 \qquad (12)
$$

where $\omega_g(t)$ is given by eq. (10) and $A(t)=\epsilon\, {\cal M}^{5/3}_c \omega_g^{2/3}$, with ϵ being a constant (fixing distance).

イロト イ部 トイ ヨ トイ ヨ トー

EoM for GWs from SMBHB

With this source, the EoM is

$$
\ddot{\tau} + 2b\dot{\tau} + \omega_0^2 \tau + A(t) \cos(\omega_g(t) t) = 0 \qquad (12)
$$

where $\omega_g(t)$ is given by eq. (10) and $A(t)=\epsilon\, {\cal M}^{5/3}_c \omega_g^{2/3}$, with ϵ being a constant (fixing distance). Two approaches:

- Analytical approximation (for low mass regime). Predicts some characteristics of the simulations: peak amplitude and the respective resonant frequency.
- Numerically for different ranges of masses.

イロト イ押ト イヨト イヨト

A) Analytical approach (low mass regime $M \lesssim 10^8 M_{\odot}$)

• For low masses \longrightarrow Resonance window really large (ω_g varies really slowly) \longrightarrow stationary solution.

メロメメ 御 メメ きょくきょう

A) Analytical approach (low mass regime $M \lesssim 10^8 M_{\odot}$)

- For low masses \longrightarrow Resonance window really large (ω_g varies really slowly) \longrightarrow stationary solution.
- We look for a solution of the style

$$
\tau(t) = \text{Re}\left[\mathcal{A}(t) e^{i\omega_{g}(t)t}\right]
$$
 (13)

イロト 不優 トメ 差 トメ 差 トー 差

where $A(t)$ represents the envelope of the motion.

- Solving for $A(t)$ provides us with useful information for better understanding the numerical simulation:
	- \textbf{D} The time at which the system reaches maximum amplitude is $t_{\textit{max}}\simeq \frac{1}{2}\,t_0.$
	- ? The maximum amplitude is $A_{max}\propto \mathcal{M}_c^{5/3},$ h_c and \simeq 2 $A_0.$

B) Simulations

Figure: Librations for a BHMB of 10^7 M_{\odot} at a distance of 1 Mpc . The plots have been generated with the code in C.

Figure: Librations for a BHMB of 10^9 M_{\odot} at a distance of 1 Mpc. The plots have been generated with the code in C.

イロト イ団 トイミト イミト

重

Figure: Curves of constant induced libration amplitude in a redshift z vs total mass M diagram (assuming equal masses). The actual noise on the Moon's libration is of some milliarsceconds. The curve in the range 10^{10} M_O to 10^{11} M_O is subject to numerical uncertainty. The cutoff for the shaded area is due to the restriction that the system does not reach the resonance frequency (actually, the line should be farther away, since maximum amplitude occurs at earlier frequencies). We have also drawn the lines that correspond to a constant characteristic strain h_c , at observed frequency equal to the resonant one. Note that this SNR is generated for two identical SMBHs.

€

 4 ロ) 4 \oplus) 4 \oplus) 4 \oplus)

Do these SMBHB exist?

Distribution of the number of masses capable of generating a certain libration amplitude

Theoretical models and NANOGrav's PTA data. See Sato-Polito,

Zaldarriaga, and Quataert [2024](#page-37-8) and Sato-Polito and Zaldarriaga [2024.](#page-37-9) In this last paper, they estimate $dN/d\log h_{\rm s}^2$, and we can obtain $dN/d\log M$ as a function of M such that they generate a certain amplitude of libration:

Figure: Distribution of the number of sources as a functi[on o](#page-25-0)f [mas](#page-27-0)[s.](#page-25-0) 4 ロ ▶ イ 何

• Sufficiently strong sources of GWs can induce libration motion in the Moon.

重

メロメメ 御 メメ きょくきょう

- **•** Sufficiently strong sources of GWs can induce libration motion in the Moon.
- **2** Though it seems unlikely to explain the whole libration amplitude due to GWs generated in a single SMBHB, it is reasonable to relate $1/10$ or $1/100$ of its movement to some of these events.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

- **•** Sufficiently strong sources of GWs can induce libration motion in the Moon.
- **2** Though it seems unlikely to explain the whole libration amplitude due to GWs generated in a single SMBHB, it is reasonable to relate $1/10$ or $1/100$ of its movement to some of these events.
- **3** From now on, we can use the Moon as a *gravitational wave detector* in the nHz range with a two-fold purpose:
	- Setting up constraints for some events, such as the distribution of SMBHBs.
	- Detecting new powerful events in the upcoming years.

K ロ ト K 伺 ト K ヨ ト K ヨ ト

- **•** Sufficiently strong sources of GWs can induce libration motion in the Moon.
- **2** Though it seems unlikely to explain the whole libration amplitude due to GWs generated in a single SMBHB, it is reasonable to relate $1/10$ or $1/100$ of its movement to some of these events.
- **3** From now on, we can use the Moon as a *gravitational wave detector* in the nHz range with a two-fold purpose:
	- Setting up constraints for some events, such as the distribution of SMBHBs.
	- Detecting new powerful events in the upcoming years.
- ⁴ New experimental devices will replace the current LLR, thus uncertainties in the measure of the librations will improve in the incoming years.

K ロ ト K 伺 ト K ヨ ト K ヨ ト

- **•** Sufficiently strong sources of GWs can induce libration motion in the Moon.
- **2** Though it seems unlikely to explain the whole libration amplitude due to GWs generated in a single SMBHB, it is reasonable to relate $1/10$ or $1/100$ of its movement to some of these events.
- **3** From now on, we can use the Moon as a *gravitational wave detector* in the nHz range with a two-fold purpose:
	- Setting up constraints for some events, such as the distribution of SMBHBs.
	- Detecting new powerful events in the upcoming years.
- ⁴ New experimental devices will replace the current LLR, thus uncertainties in the measure of the librations will improve in the incoming years.
- ⁵ New ideas have appeared and are still to be explored...

メロメメ 御 メメ きょくきょう

 \bullet New hypothesis: Several smaller sources over the last 10^4-10^5 yr, Stochastic Gravitational Wave Background...

э

メロメメ 倒 メメ きょくきょう

- \bullet New hypothesis: Several smaller sources over the last 10^4-10^5 yr, Stochastic Gravitational Wave Background...
- ² Can these events be traced in other tidally locked bounded systems (Mars' Moon Phobos, artificial satellites)?

イロト イ押ト イヨト イヨト

- \bullet New hypothesis: Several smaller sources over the last 10^4-10^5 yr, Stochastic Gravitational Wave Background...
- **2** Can these events be traced in other tidally locked bounded systems (Mars' Moon Phobos, artificial satellites)?
- **3** Can other Moon's libration modes (e.g. latitude) be due to GWs resonance?

メロメメ 御 メメ きょくきょう

- \bullet New hypothesis: Several smaller sources over the last 10^4-10^5 yr, Stochastic Gravitational Wave Background...
- **2** Can these events be traced in other tidally locked bounded systems (Mars' Moon Phobos, artificial satellites)?
- **3** Can other Moon's libration modes (e.g. latitude) be due to GWs resonance?
- ⁴ Other causes of Moon's libration: Dark Matter Transients (PBHs of asteroid size) that interacted with the Moon (Tran et al. [2024;](#page-38-4) Cuadrat-Grzybowski et al. [2024\)](#page-37-10).

メロメメ 御 メメ きょくきょう

Thank you!

É

メロトメ 伊 トメ ミトメ ミト

References I

- Amicis, M. De et al. (n.d.). "On the effect of gravitational wave backgrounds on rotating bodies". Not yet published (Draft).
- Blas, D. and A. C. Jenkins (2022). "Detecting stochastic gravitational waves with binary resonance". In: American Physical Society 105.
- Cuadrat-Grzybowski, Michal et al. (2024). "Probing primordial black holes and dark matter clumps in the Solar System with gravimeter and Global Navigation Satellite Systems networks". In: Physical Review D 110.2.
- Eckhardt, Donald H. (1993). "Passing through resonance: The excitation and disipation of the lunar free libration in longitude". In: Celestial Mechanics & Dynamical Astronomy 57, pp. 307–324.
- Maggiore, Michele (2007). Gravitational Waves. Vol. 1: Theory and Experiments. Oxford University Press.

Murray, D. (2000). Solar System Dynamics. Cambridge University Press.

- Poisson, Eric and Clifford M. Will (2014). Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press.
- Rambaux, N. and J.G Williams (2011). The Moon's physical librations and determination of their free modes. 109. Celestial Mechanics and Dynamical Astronomy, pp. 85–100.
- Rosat, Séverine and Josipa Majstorović (2021). "Perturbation of the Earth's rotation by monochromatic gravitational waves from astrophysical sources". In: $Phys$. Rev . D 103 (10), p. 104052.
- Sato-Polito, Gabriela and Matias Zaldarriaga (2024). "The distribution of the gravitational-wave background from supermassive black holes". In: arXiv e-prints, arXiv:2406.17010.
- Sato-Polito, Gabriela, Matias Zaldarriaga, and Eliot Quataert (2024). "Where are the supermassive black holes measured by PTAs?" In: Phys. Rev. D 110.6, p. 063020. arXiv: [2312.06756 \[astro-ph.CO\]](https://arxiv.org/abs/2312.06756).

∍

メロメ メ御 メメ きょく きょう

References II

- Sesana, Alberto et al. (2021). "Unveiling the gravitational universe at μ -Hz frequencies". In: Experimental Astronomy 51, pp. 1333–1383.
- Slava G. Turyshev, Michael Shao and Inseob Hahn (2023). "Fundamental physics and nuclear science investigations with advanced Lunar Laser Rangig". In.
- Tran, Tung X. et al. (2024). "Close encounters of the primordial kind: a new observable for primordial black holes as dark matter". In: Physical Review D 110.2.
- Yoder, C.F. and R. Hutchinson (1981). "The free librations of a dissipative Moon". In: Philosophical Transactions of the Royal Society of London. 303.1477, pp. 327–338.

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4