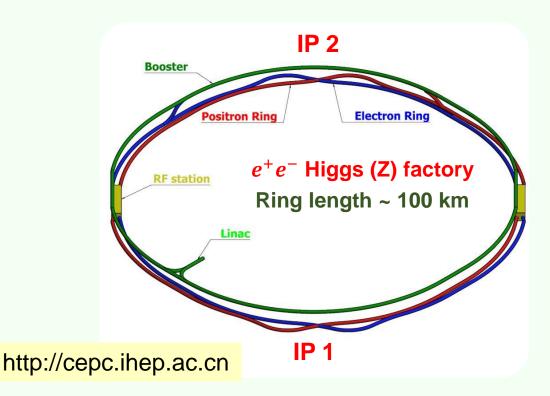


Outline

- Motivation of A Reference CEPC Detector TDR
- Baseline Technology Selections
- Status of R&D Projects
- R&D Team and International Collaborative Efforts
- Timeline of The Ref-TDR

Refer to the presentation at this workshop


CEPC Accelerator EDR Status and Beyond Jie Gao

The Circular Electron Positron Collider

- ☐ The CEPC was proposed in 2012 right after the Higgs discovery. It aims to start operation in 2030s, as an e⁺e⁻ Higgs / Z factory.
- □ To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.
- ☐ It is possible to upgrade to a *pp* collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

CEPC Design Reports

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

The CEPC-SPPC Study Group March 2015

IHEP-CEPC-DR-2015-01 IHEP-TH-2015-01

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

The CEPC-SPPC Study Group March 2015

Accelerator (2023.12)

TDR Released

IHEP-CEPC-DR-2023-01 IHEP-AC-2023-01 CEPC Technical Design Report Accelerator

arXiv:2312.14363

1114 authors 278 institutes (159 foreign) 38 countries

> The CEPC Study Group December 2023

CEPC Technical Design Report

Pre-CDR Released (2015.03)

(2018.11)

IHEP-CEPC-DR-2018-01

CDR Released

CEPC

Conceptual Design Report

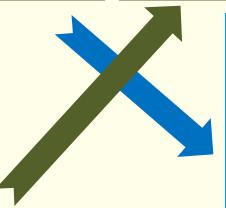
Volume I - Accelerator

arXiv: 1809.00285

IHEP-TH-2018-01

CEPC

Conceptual Design Report


Volume II - Physics & Detector

arXiv: 1811.10545

1143 authours 222 institutes (140 foreign) 24 countries

The CEPC Study Group August 2018

The CEPC Study Group October 2018

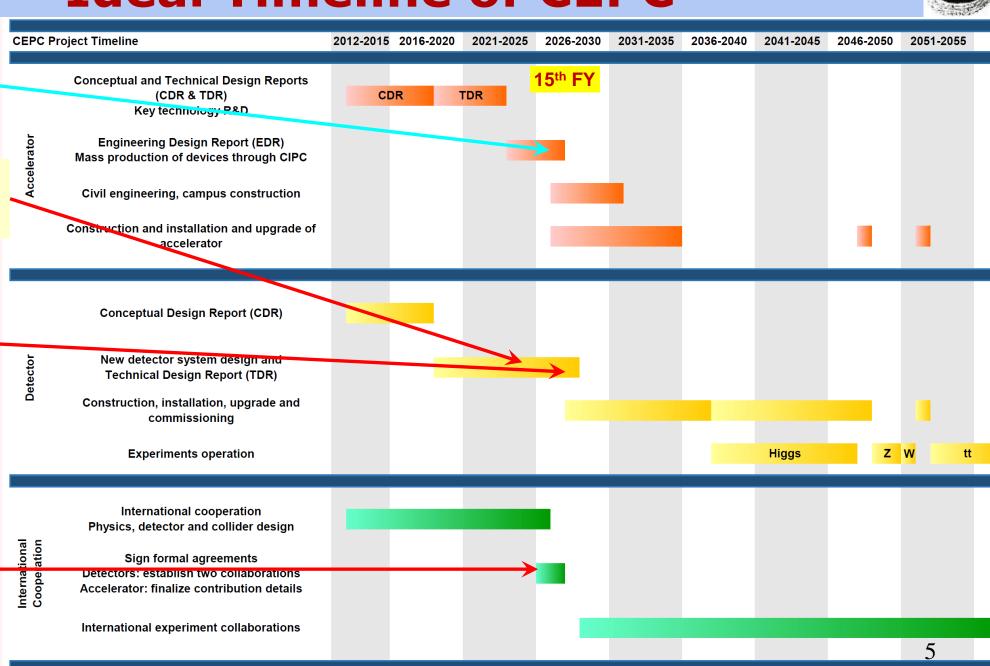
CEPC

Engineering Design Report

EDR of **Accelerator**

2027

Ideal Timeline of CEPC


Completion of Accelerator EDR

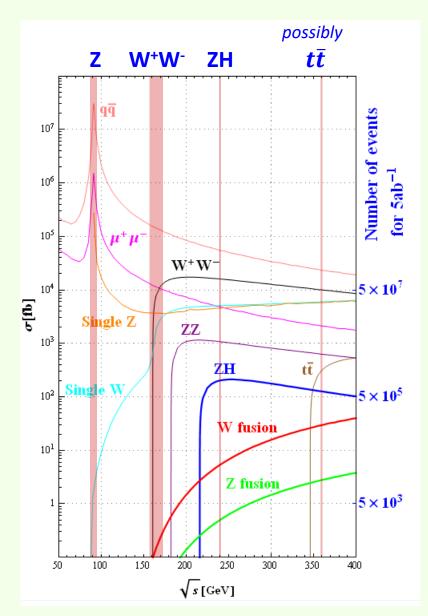
Release TDR of A Reference Detector

Detector TDR × 2

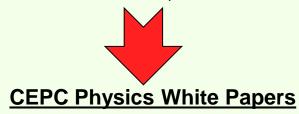
Most Higgs factory detector systems are generic, e.g. ILD, IDEA

International Collaborations

TDR of A Reference CEPC Detector

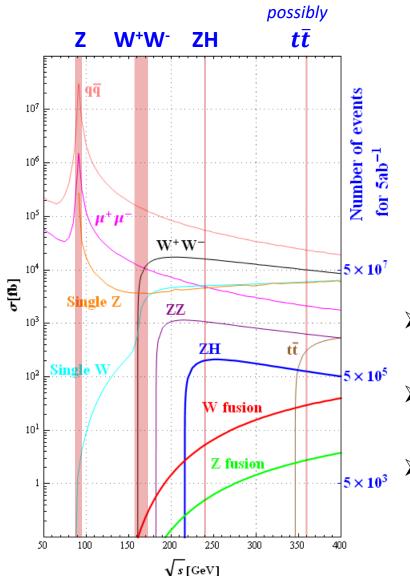


- ☐ The Ref-TDR needs to be released in a timely fashion, to **boost the possibility** of receiving an official endorsement for the 15th FYP
- ☐ The Ref-TDR mainly serves a **special purpose**, and is not to replace the TDRs for the real experiments. When the two international collaborations form, they will converge on the designs and deliver the corresponding detector TDRs.
- We treat it as a TDR of a real detector system to be built soon
 - Demonstrate the readiness and feasibility of detector technologies
 - Provide a realistic detector cost estimation
 - Assess requirements and availabilities of people power
- ☐ The exercise and efforts on the Ref-TDR will be very valuable assets, not only in technology development but also in team building.


CEPC Operation Plan

(Operation mode	ZH	Z	W+W-	$tar{t}$
\sqrt{s} [GeV]		~240	~91	~160	~360
Run Time [years]		10	2	1	5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
30 MW	$\int L dt$ [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	$\int L dt$ [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

CEPC accelerator TDR (Xiv:2312.14363)



- Precision Higgs Physics at CEPC (<u>CPC V43, No. 4 (2019) 043002</u>)
- Flavor Physics at CEPC (<u>arXiv:2412.19743</u>)
- New Physics Search at CEPC (<u>arXiv:2505.24810</u>)

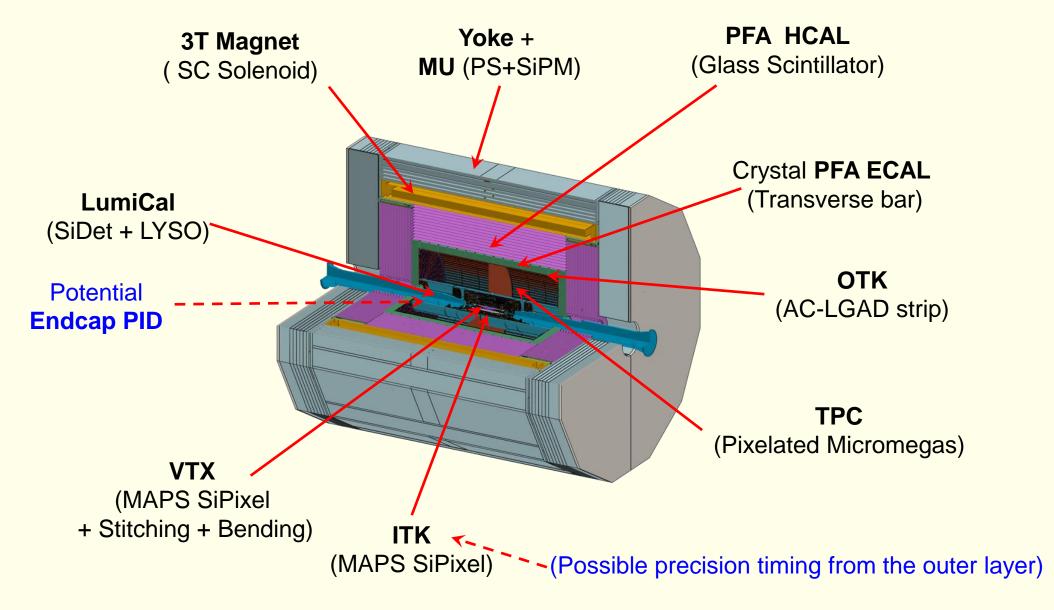
CEPC Operation Plan: First 10 Years

SR Power	Luminosity/IP [×10 ³⁴ cm ⁻² s ⁻¹]			
Per Beam	Н	Z	W+W-	
12.1 MW	-	26	-	
30 MW	5.0	-	16	
50 MW	8.3	-	26.7	

B = 3T all modes

- ➤ The first 10-year operation includes: the Higgs mode, Low-Lumin Z mode, and W+W- mode.
- ➤ The accelerator may be upgraded for High-Lumi Z mode and t̄t mode after 10 years operation, subject to physics needs
- ➤ The reference detector focuses on the first 10 years operation. There may be future upgrade of the detector if the accelerator is to be upgraded

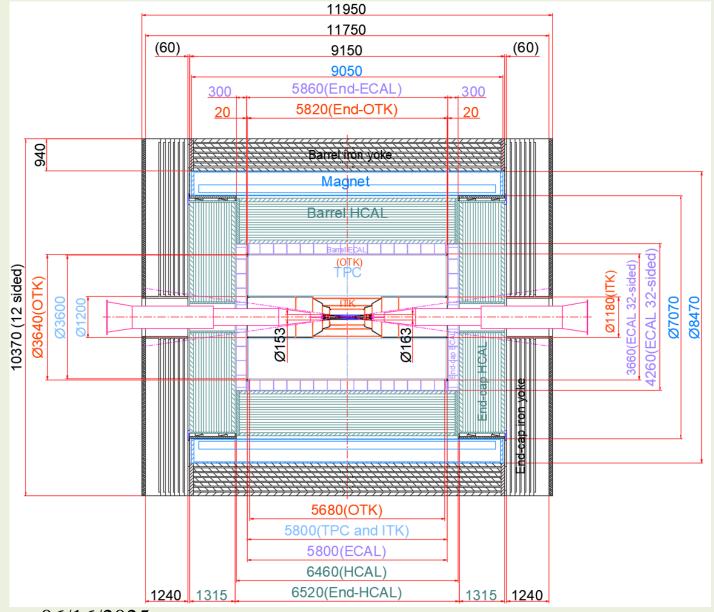
Requirements on Detector Design



- □ The detectors should be able to operate for at least 10 years in Higgs mode, or better ~18 years of HZ, Z, W+W⁻, and tt̄ productions.
- □ The detectors should be optimized to operate at the CEPC base clock frequency of 43.3 MHz (or period = 23.1 ns).
- □ The system needs to select and record interesting physics events.
 - In Higgs mode and L / IP (50 MW) = 8.3×10^{34} cm⁻²s⁻¹: beam-beam crossing rate ~ 1.34 MHz, ZH ~16.6 mHz, $q\bar{q}$ ~ 5.0 Hz
 - In Z mode and L / IP (50 MW) = 1.92×10^{36} cm⁻²s⁻¹: beam-beam crossing ~ 39.3 MHz, visible Z ~ 66 kHz
- Detectors can endure radiation damage and noise hit rates.
 - For example, in the Higgs mode at the Vertex detector:
 max noise hit rate ~ 0.6 MHz / cm², TID ~2.1 Mrad/year
 - The background study is very preliminary. The value can be off by an order of magnitude.
 - It is a relatively relaxed environment comparing to a hadron collider. Radiation resilience and noise hit rate should not be huge problems.

Baseline Detector Design in Ref-TDR

Detector Key Specifications


Sub-system	Key technology	Key Specifications
Vertex 6-layer CMOS SPD		$\sigma_{r\phi}$ ~ 3 μm, X/X ₀ < 0.15% per layer
Tracking	CMOS SPD ITK, AC-LGAD SSD OTK, TPC + Vertex detector	$\sigma\left(\frac{1}{P_T}\right) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{P \times \sin^{3/2}\theta} \left(GeV^{-1}\right)$
Particle ID	dN/dx measurements by TPC Time of flight by AC-LGAD SSD	Relative uncertainty ~ 3% $\sigma(t)$ ~ 30 ps
EM calorimeter	High granularity crystal bar PFA calorimeter	EM resolution ~ $3\%/\sqrt{E(GeV)}$ Granularity ~ $1\times1\times2$ cm ³
Hadron calorimeter	Scintillation glass PFA hadron calorimeter	Support PFA jet reconstruction Single hadron $\sigma_E^{had} \sim 40\%/\sqrt{E(GeV)}$ Jet $\sigma_E^{jet} \sim 30\%/\sqrt{E(GeV)}$

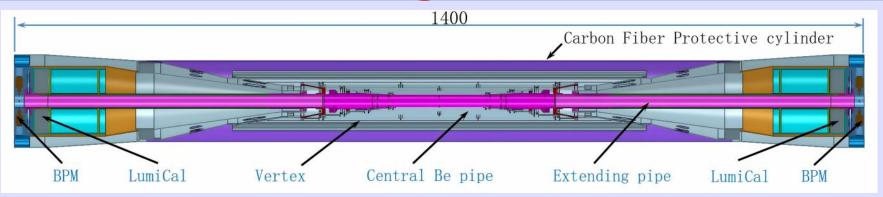
- Design of the CEPC detector evolves with the R&D progressing and our better understanding of the physics reach.
- The key specifications continue to be optimized.

Geometry and Mechanical Support

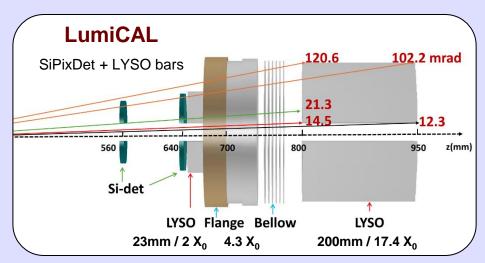
Subsystem	Supported By
Barrel Yoke	Base
Magnet	Barrel Yoke
Barrel HCAL	Barrel Yoke
Barrel ECAL	Barrel HCAL
TPC+ Barrel OTK	Barrel ECAL
ITK	TPC
Beampipe+VTX+LumiCal	ITK
Endcap Yoke	Base
Endcap HCAL	Barrel HCAL
Endcap ECAL+OTK	Barrel HCAL

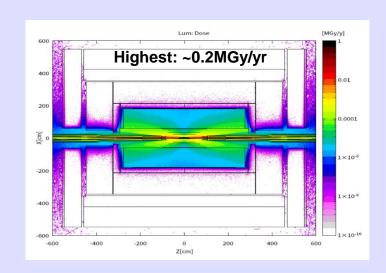
Detector Overall

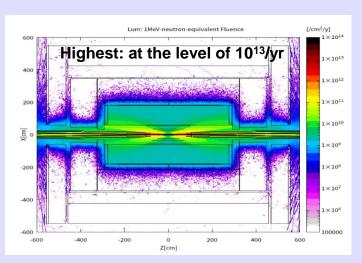
Length: 11,950 mm


Height: 10,370 mm

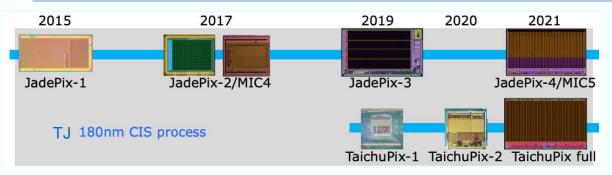
Weight: 5,290 t

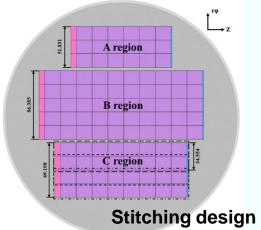


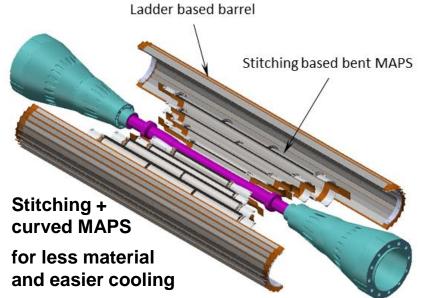

MDI, Beam Background and LumiCal

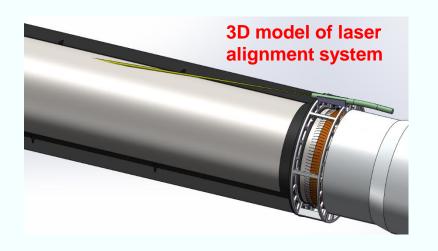


- ☐ Design of the CEPC interaction region, beam pipe and LumiCal
- □ LYSO bar and SPD based LumiCal design for a 10⁻⁴ luminosity precision, yet to be validated.
- Beam-induced background and radiation levels are estimated with updated model and improved design of collimators and shielding



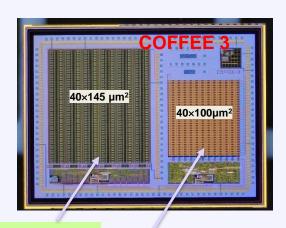

Silicon Pixel Vertex Detector


Strong collaboration from IFAE

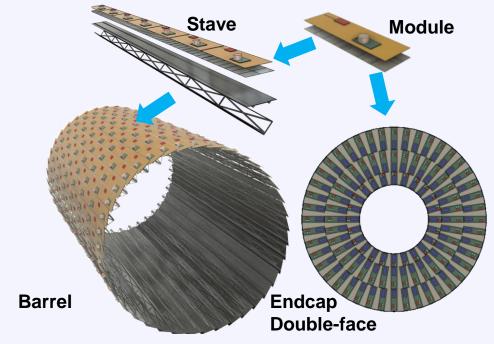

Goal: $\sigma(IP) \sim 5 \mu m$ for high P Key specifications:

- Single point resolution ~ 3 μm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)

A TaichuPix-based prototype detector

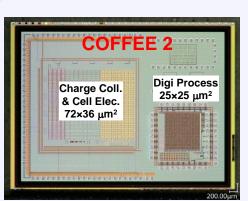


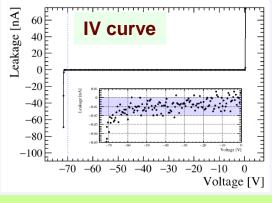
Silicon Pixel Inner Tracker



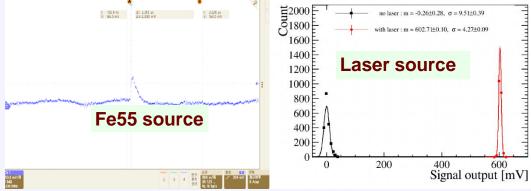
- □ Focus on HV-CMOS pixel detector of ~15-20 m^{2.}
- ☐ Exploring SMIC 55 nm and other processes
 - COFFEE2: 1st prototype as validation of process
 - COFFEE3: just produced, with full digital functions
- ☐ Overall detector design based on typical chip size

<u>Goal</u>


- Cost effective
- Spatial resolution < 10 μm
- Timing 3-5 ns
- Power < 200 mW/cm²



Common module design for barrel & endcap; < 1% X₀ / layer


Architecture with in-pixel TDC for optimal timing

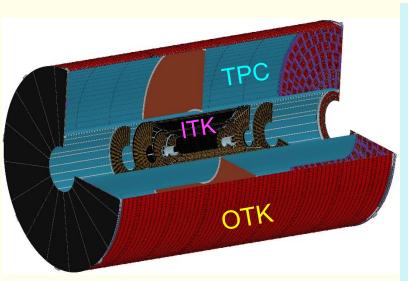
Digital functions in periphery for minimal interference w. signal

Breakdown at -70V, to increase with high-res wafer

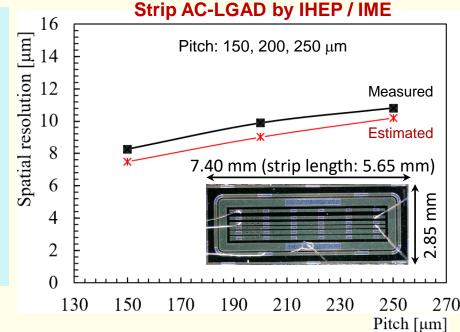


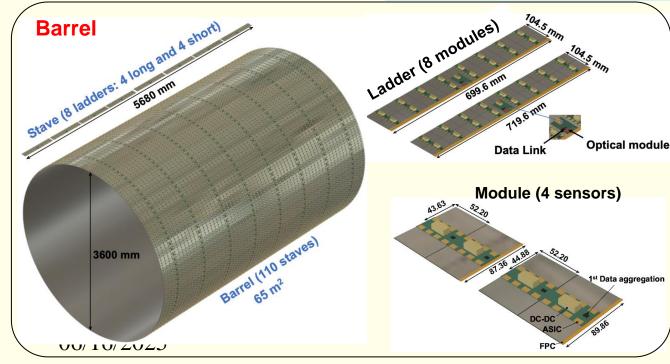
Pixelated Readout TPC

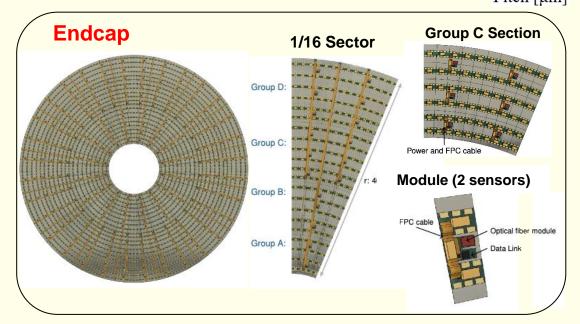
- Pixelated readout TPC can improve PID performance
 - Using the cluster of electrons, the full simulation study shows $3\sigma \text{ K/}\pi$ separation at 20GeV
 - Balanced the total power consumption and readout channels, the pad size is optimized
- * Readout pad size of $(500\mu m)^2$ reduces IBF×Gain ~1@G=2000, achieves $\sigma(r-\Phi)$ ~100 μm .
 - Maximum Δ rφ can be reduced to hundred μ m@Low Z (detailed optimization of MDI)
- Plan for a test beam at DESY in November to assess the performance and validate the design



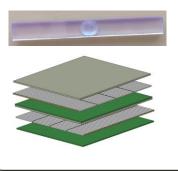
Photos TPC modules assembled for the beam test



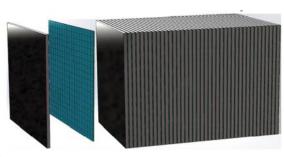

AC-LGAD OTK (Time Tracker)

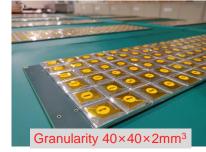


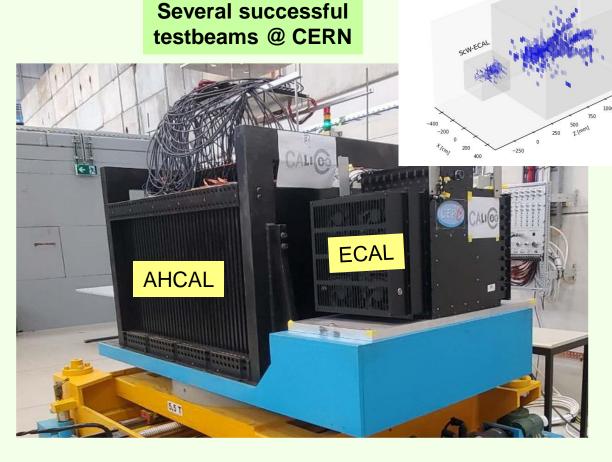
- ☐ The outer silicon tracker ~ 85 m², the Z precision is not crucial
 - ⇒ Cost-effective SSD
- A supplemental PID at low energy
 - \Rightarrow LGAD ToF
- An AC-LGAD Time Tracker combines the two needs in one detector. We expect σ_t ~50 ps, $\sigma_{R\Phi}$ ~10 μm
- Need to validate with full size sensors



Prototype PFA Calorimeters

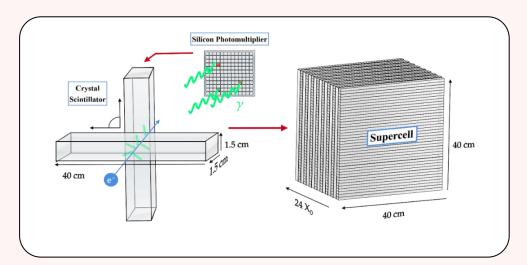

- ☐ ScW-ECAL: transverse 20×20 cm, 32 sampling layers
 - ~6,700 channels, SPIROC2E (192 chips)
- ☐ AHCAL: transverse 72×72 cm, 40 sampling layers
 - ~13k channels, SPIROC2E (360 chips)

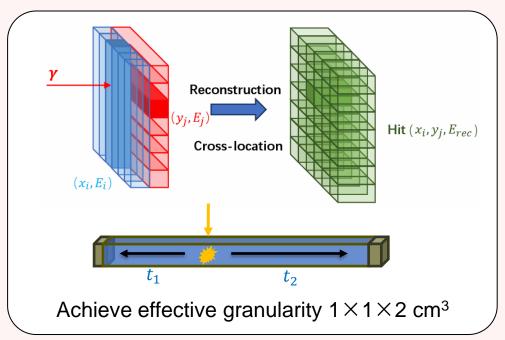

ECAL: scintillator(strip)+SiPM, CuW



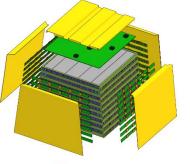
HCAL: scintillator (tile)+SiPM, steel

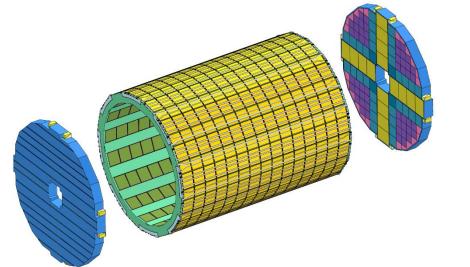
Prototypes developed within **CALICE**


- China: IHEP, SJTU, USTC
- Japan: U. Shinshu, U. Tokyo
- France: CNRS Omega
- Israel: Weizmann Institute


06/16/2025 Tariel. Weizmann institute

Crystal Bar EM Calorimeter

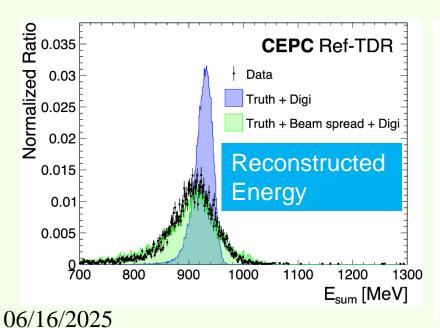


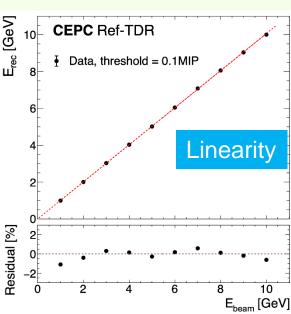


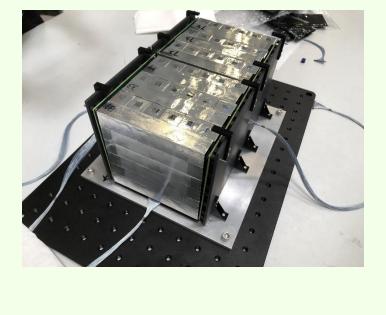
- □ Compatible to PFA: Boson mass resolution BMR(H→jj) < 4%</p>
- Optimal EM performance: $\sigma_E/E < 3\%/\sqrt{E}$, BMR(H $\to \gamma \gamma$) ~0.6 GeV
- ☐ Save readout channels, minimize dead materials
- ☐ Challenging in pattern recognitions with multiple particles

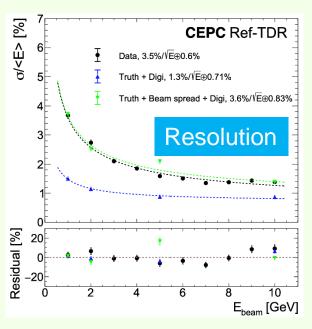
Modular Design

- 18 layers of crystals (24 X₀)
- Barrel: 32 towers per ring, 15 rings
- Endcap: 224 modules
- Total: 24m³ BGO, 571k channels

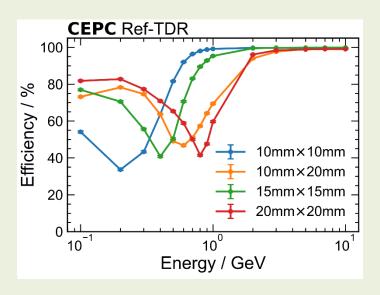


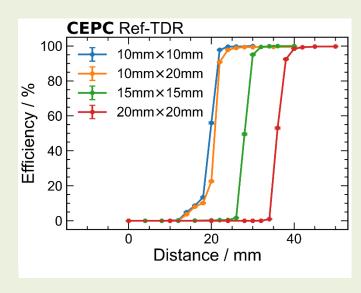


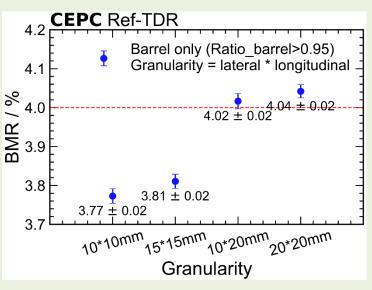

Testbeam of Prototype Crystal ECAL



- EM-scale crystal prototype development
 - **BGO** crystal bars from SIC-CAS, (also considering **BSO**)
 - SiPM: 3×3 mm² sensitve area, 10µm pixel pitch
- Successful testbeam at CERN with 1-10 GeV electron beam
 - EM resolution (preliminary): $1.3\%/\sqrt{E} \oplus 0.7\%$
- To address critical issues at system level, validate design of crystal-SiPM, light-weight mechanical structure
- A full-scale prototype will be constructed



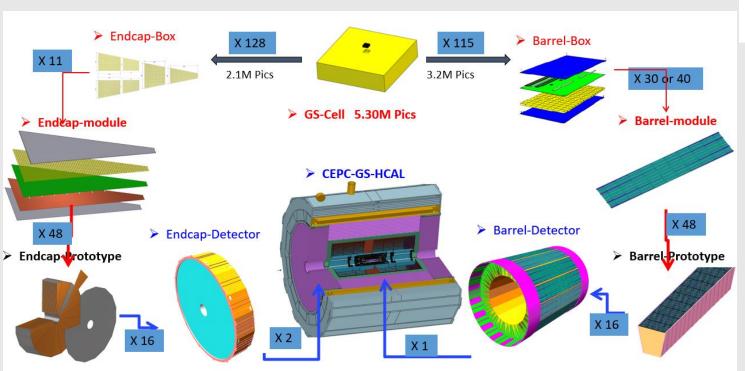

ECAL Granularity Optimization


- ECAL granularity: balance of performance and readout
 - 10×10mm, 10×20mm, 15×15 mm and 20×20mm
- Figures of merit
 - Single photon reconstruction, separation power and jet performance

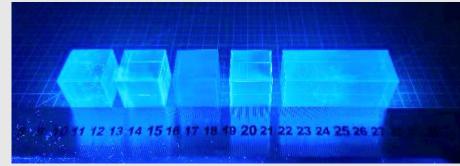
Major impact from ECAL longitudinal segmentation

Separation efficiency dominated by ECAL transverse granularity

10x10mm and 15x15mm can meet physics requirement of BMR <4%


Conclusion: ECAL granularity of 15×15mm² selected for ECAL

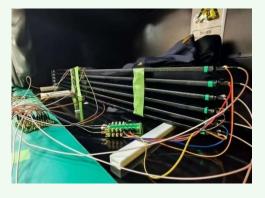
Glass Scintillator HCAL

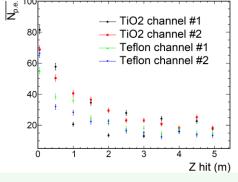


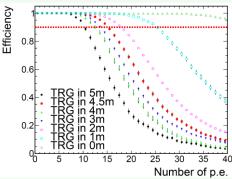
- □ To replace plastic scintillator with **high density**, low cost glass scintillator for better hadronic energy resolution and BMR
- □ The Scintillation Glass collaboration continues to progress on the quest for better GS, and technique for mass production
- To produce a full-scale GS-HCAL prototype with integrated electronics for beam test

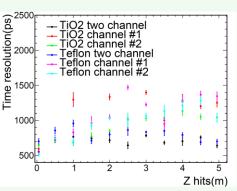
Key parameters	GFO glass	BGO	DSB Glass
Density (g/cm ³)	6.0	7.13	4.2
Melting point (°C)	1250	1050	1550
Radiation Length (cm)	1.59	1.12	2.62
Molière radius (cm)	2.49	2.23	3.33
Nuclear interaction length (cm)	24.2	22.7	31.8
$ m Z_{eff}$	56.6	71.5	49.7
dE/dX (MeV/cm)	8.0	8.99	5.9
Emission peak (nm)	400	480	430
Refractive index	1.74	2.15	
Light yield (ph/MeV)	~ 1500	7500	2500
Energy resolution (% @662keV)	~ 23	9.5	
Scintillation decay time (ns)	~ 60 and 500	60, 300	90, 400

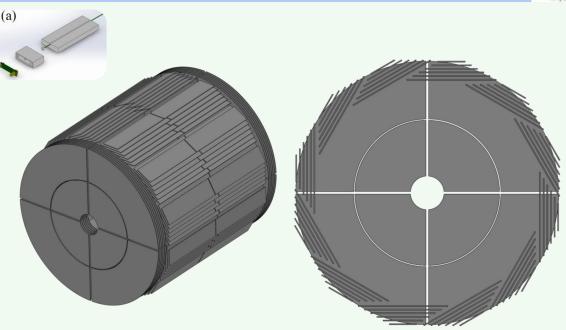
Muon Detector

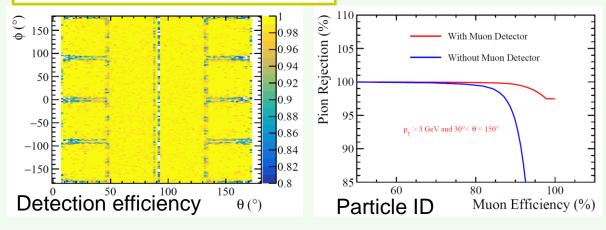


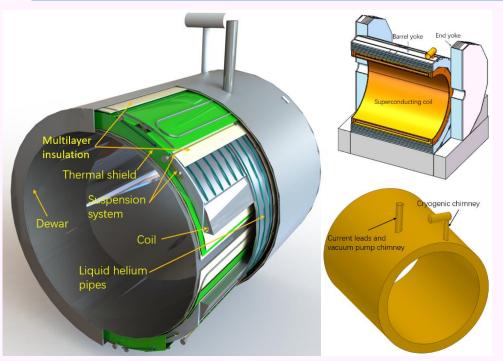

 Use extruded plastic scintillator (PS) technology, provide Muon ID > 95%, and pion fake rate < 1%

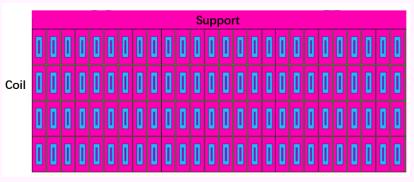

Strip/channel structure: PS bar + WLS fiber + SiPM


Solid angle coverage: $0.98 \times 4\pi$, total detection area ~ 4,800 m², ~43k channels

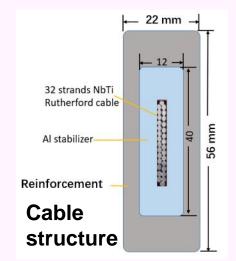

Prototype of 5m channel: $\epsilon > 95\%$, $\sigma_T \sim 1ns$

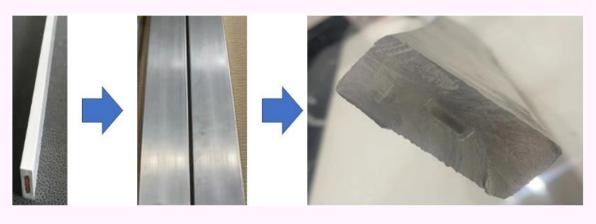



Simulation and performance



SC Solenoid Magnet

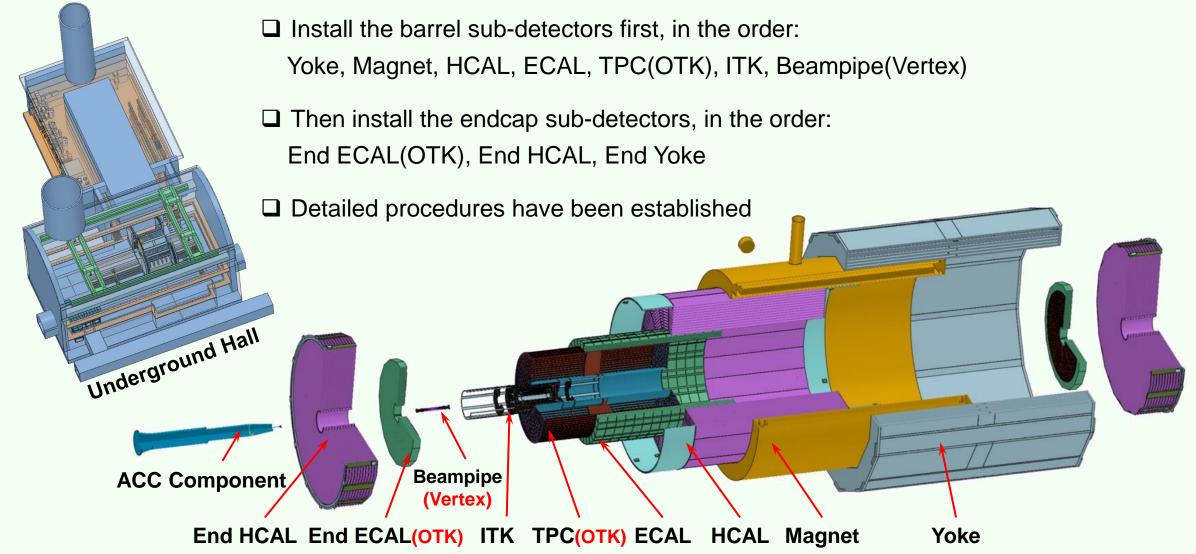

- ☐ Design of the overall structure and the supporting systems
- ☐ Production of short samples (5m) of Al-stabilized NbTi Rutherford cable



Central B field	3 T
Coil inner diameter	7300 mm
Coil outer diameter	7916 mm
Coil length	8150 mm
Operating current	17 kA
Coil module gap	50 mm
Inductance	11 H
Stored energy	1.54 GJ

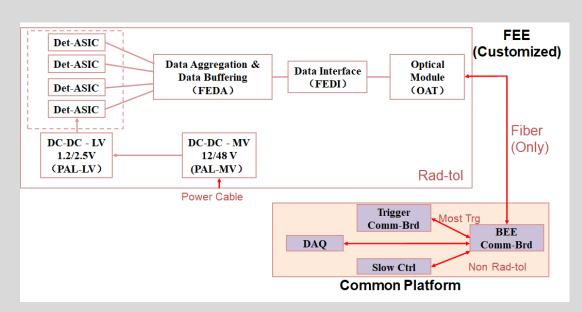
Coil structure

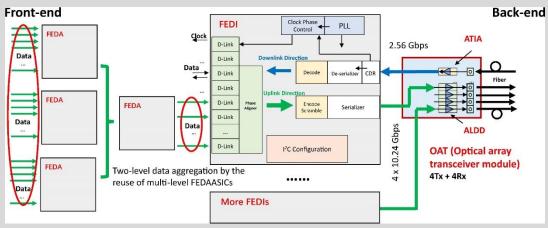
Inner diameter	7070 mm	
Outer diameter	8470 mm	
Thickness	700 mm	
Length	9050 mm	
Cold mass	185 tons	
Yoke weight	2960 tons	
Magnet weight	290 tons	



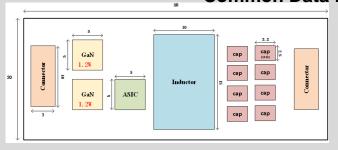
The 2nd co-extrusion process

Detector Installation

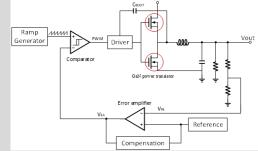




Electronics

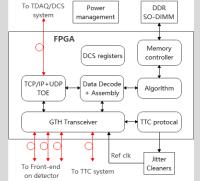


- Baseline: Triggerless FE readout & BE trigger
- Maximizing the common design:
 - Common FEE blocks, including data aggregation, transmission, optical, powering
 - Common BEE & Common Trigger: configurable for individual subsystems.



Common Data Link Structure

FEDI

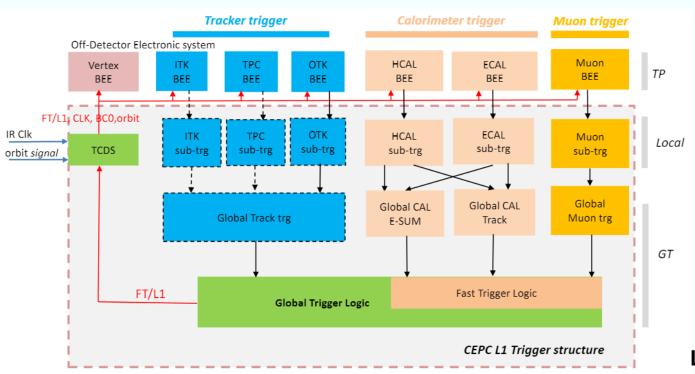


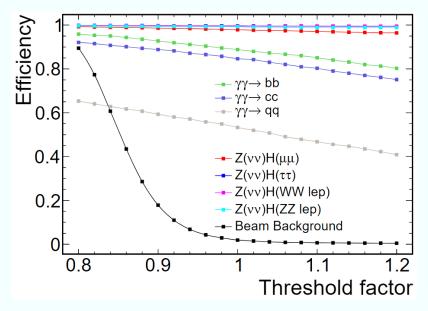
FEDA

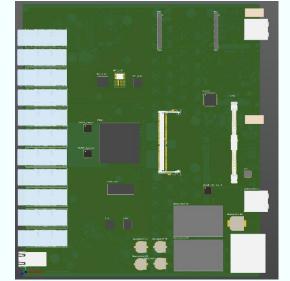
OAT

Common Powering Module (PAL)

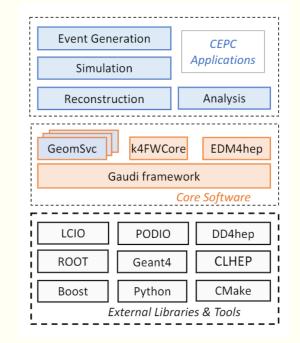
06/16/2025

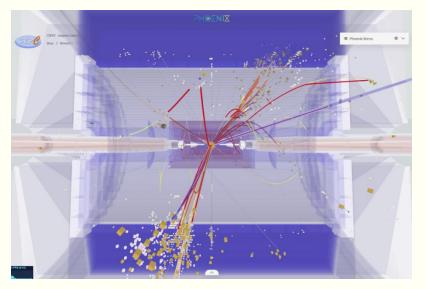

To TIC system Cleaners

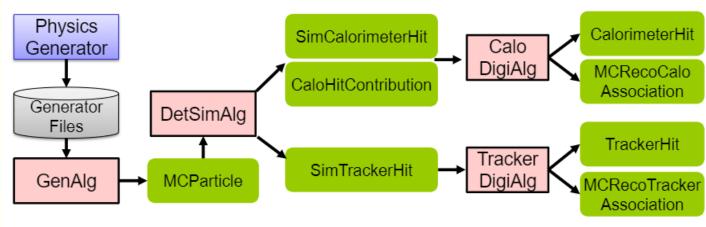

To TIC system


Trigger and Data Acquisition

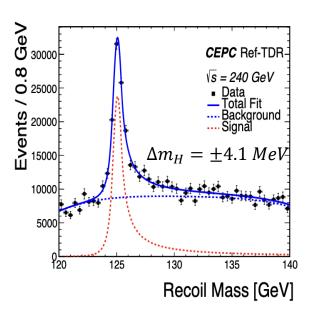
- L1 trigger board
 - 36-48 channels ×10-25Gbps Optical interface
 - Xilinx Virtex FPGA

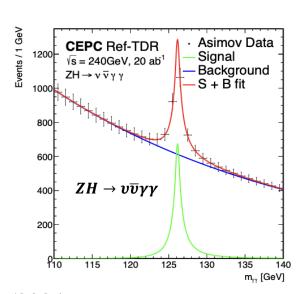

- Hardware trigger at BE + HLT software trigger
- L1 trigger on calorimeter, muon, and trackers
- Will explore a full software trigger with GPUs

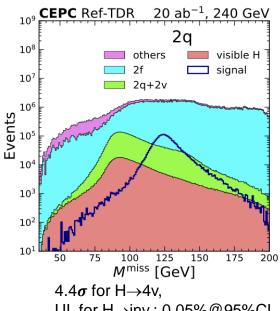


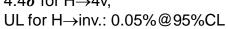

Offline Software and Computing

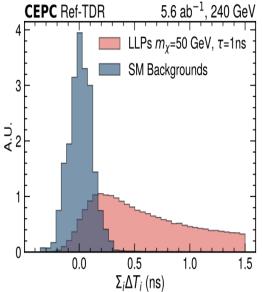
- ☐ CEPCSW bases on the Gaudi framework and Key4hep stack, using well-known HEP tools while creating new solutions to meet the experiment's needs
- ☐ The Geant4-based simulation has been used to generate Monte Carlo data, which has then been reconstructed to validate detector performance and assess the physics potential
- ☐ Continuous **refinement** of the software stack is crucial for ensuring optimal performance and reliability
- ☐ Incorporating emerging technologies such as AI and machine learning will be instrumental in overcoming critical challenges faced by the experiment

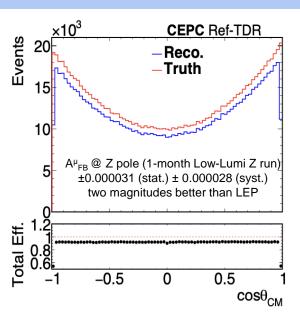


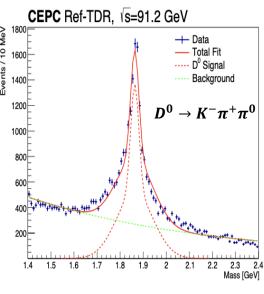


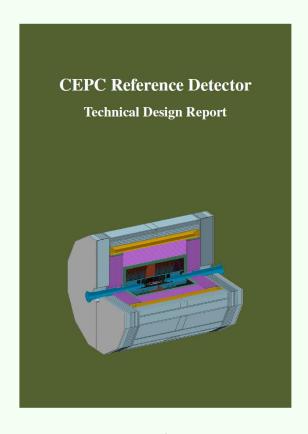



Selected Benchmark Performance









10/26/2024 29

Status of The Ref-TDR

Version 0.4.1 of Jun 14, 2025 ~ 650 pages

- 1) Introduction
- 2) Concept of CEPC Reference Detector
- MDI and Luminosity Measurement
- 4) Vertex Detector
- 5) Silicon Trackers
- 6) Pixelated Time Projection Chamber
- 7) Electromagnetic Calorimeter
- 8) Hadronic Calorimeter
- 9) Muon Detector
- 10) Detector Magnet System
- 11) Readout Electronics
- 12) Trigger and Data Acquisition
- 3) Offline Software and Computing
- 14) Mechanics and Integration
- 15) Detector and Physics Performance
- 16) Timeline and Plans

Reviews By The IDRC

The CEPC International Detector Committee Meeting in 2024

Ivan Villa Alvarez	IFCA	Bob Kowalewski	U. Victoria
Daniela Bortoletto (Chair)	U. Oxford	Roman Poeschl	IJCLab
Jim Brau	U. Oregon	Burkhard Schmidt	CERN
Anna Colaleo	INFN/Bari	Maxim Titov	CEA Saclay
Paul Colas	CEA Saclay	Tommaso Tabarelli de Fatis	INFN/Milano-Bicocca
Cristinel Diaconu	СРРМ	Roberto Tenchini	INFN/Pisa
Frank Gaede	DESY	Christophe De La Taille	OMEGA/CNRS
Colin Gay	UBC	Hitoshi Yamamoto	Tohoku U.
Liang Han	USTC	Akira Yamamoto	KEK
Gregor Kramberger	IJS		

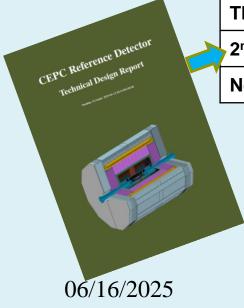
- The IDRC (International Detector Review Committee) had two reviews in October 2024 and April 2025
- The committee provided very helpful and detailed comments and recommendations.
- □ In general there is no showstopper.

R&D Teams and Collaborative Efforts

- ☐ The Ref-TDR preparation process provided a unique opportunity for the CEPC study group to expand collaboration.
 - Domestic research institutes ~ 50, international institutes ~ 40
 - We hope that the number will continue to increase, especially during the Ref-TDR authorship sign-ups. It will help future R&D and lead to formation of the two experiment collaborations.
- □ Active member of the ECFA DRD program

Sub-system	DRD	Sub-system	DRD	Sub-system	DRD
Pixel Vertex Detector	3	Electromagnetic Calorimeter	6	Super Conducting Magnet	
Inner Silicon Tracker	3	Hadron Calorimeter	4, 6	Mechanical and Integration	8
Outer Silicon Tracker	3	Machine Detector Interface	8	General Electronics	(7)
Gas Tracker (TPC / DC)	1	Luminosity Calorimeter		Trigger and DAQ	(7)
Muon Detector	1 (RPC)	Fast Luminosity Monitor	3	Offline Software	

□ Participating in the European Strategy for Particle Physics process (<u>CEPC input</u>).

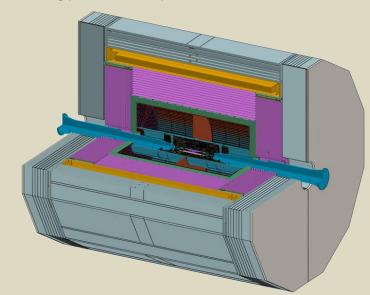

Timeline of Ref-TDR

Date	Actions and/or Expectations
Jan 1, 2024	Start the ref-TDR process by comparing different technologies
Jul 1, 2024	Baseline technologies are chosen; start to write TDR and address key issues
Aug 7, 2024	Report to the IDRC chair Prof Daniela Bortoletto
Oct 21-23, 2024	Review of ref-TDR progress by the IDRC
Oct 23-30, 2024	Discuss ref-TDR at the CEPC workshop, report progresses to the CEPC IAC
January 2025	The first draft of the ref-TDR is ready for internal reviews
Apr 14-16 2025	Review of ref-TDR progress by the IDRC
Jun 16-19, 2025	Discuss at the CEPC Barcelona workshop
TBD	Further iteration and review
2 nd half of 2025	Publication of the ref-TDR
Nov 6-10, 2025	Report at the CEPC Guangzhou workshop

We welcome more teams to join the quest, help editing, sign up authorship to show support

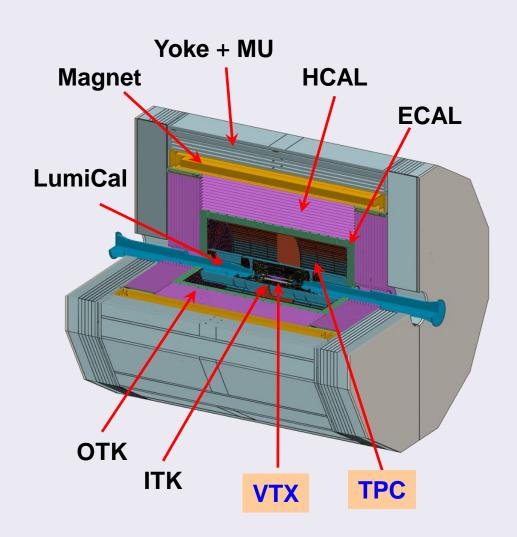
Thank you for supporting CEPC!

Backup Slides


Technologies for Ref-TDR

System	Technologies				
System	Baseline	Backup / Comparison			
Beam pipe	Ф20 mm				
LumiCal	SiTrk + Crystal				
Vertex	CMOS + Stitching	CMOS Si Pixel			
	CMOS Si Pixel ITK	SSD + RO Chip, CMOS SSD			
Tuesday	Pixelated TPC	PID Drift Chamber			
Tracker	AC LCAD OTK	SSD / SPD OTK			
	AC-LGAD OTK	LGAD ToF			
ECAL	4D Crystal Bar	Stereo Crystal Bar, GS+SiPM, PS+SiPM+W, SiDet+W			
HCAL	GS+SiPM+Fe	PS+SiPM+Fe, RPC+Fe			
Magnet	LTS	HTS			
Muon	PS bar+SiPM	RPC			
TDAQ	Conventional	Software Trigger			
BE electr. Common		Independent			

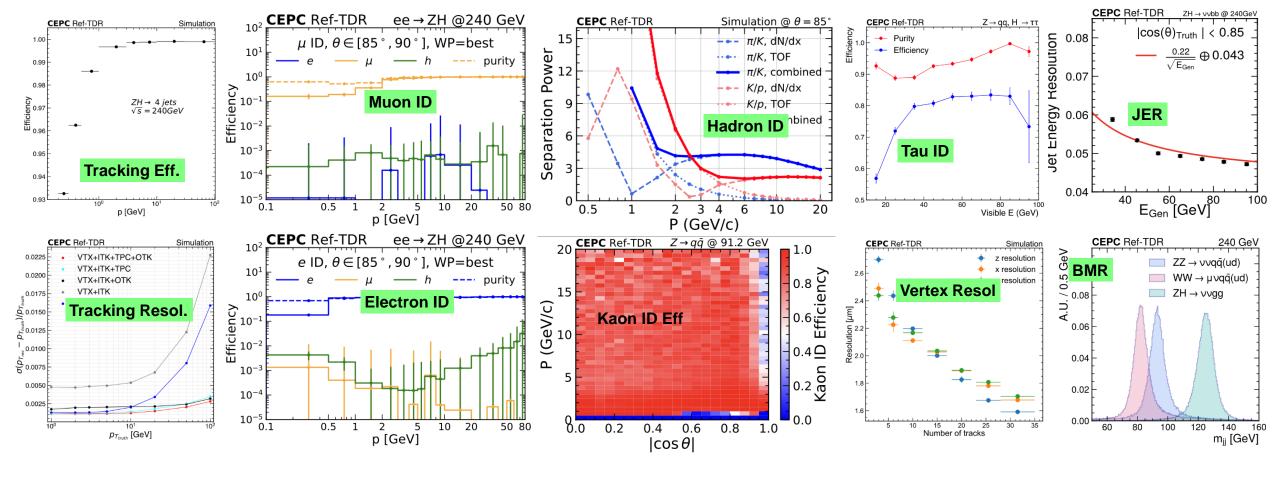
- □ The CEPC study group started to compare different technologies and chose the baseline technologies were chosen in the first half year of 2024
- Multiple factors were considered in the process: performance, cost, R&D efforts, technology maturity, ...



 We will continue pursuing better technologies for the two final detectors at CEPC

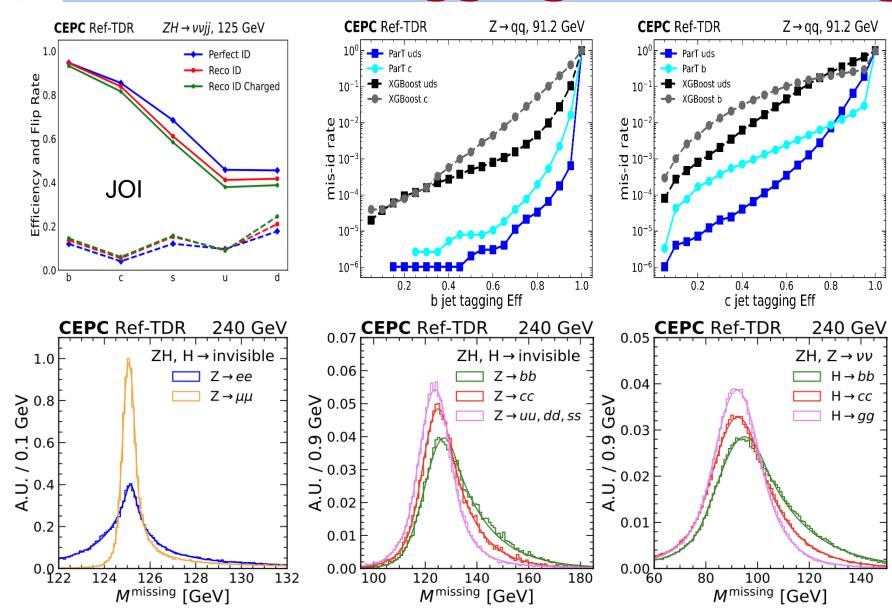
CEPC After The First 10 Years

SR Power Per Beam	Luminosity/IP [×10 ³⁴ cm ⁻² s ⁻¹]						
	Н	Z (2T)	Z(3T)	W+W-	tī		
30 MW	5.0	115	50.3	16	0.5		
50 MW	8.3	192	95.2	26.7	0.8		


2 yrs 1 yr 5 yrs

- ➤ After the first 10-year operation, the accelerator may be upgraded for High-Lumi Z mode and/or tt̄ mode, subject to physics needs
- ➤ While the majority of the detector system remain, some sub-systems may be upgraded.
 - VTX: radiation hardness must likely is not an issue. However, new technology may bring in much better performance
 - TPC: to deal with high luminosity
 - Backend electronics and trigger system: to deal with much increased data rate

Object Performance



Tracking eff	Tracking σ _{pT}	VTX $\sigma_{x,y,z}$	π/K sep.	EM resl.	BMR
>99.7% (for p>1 GeV)	~0.1%	< 3.5 mm	<mark>3σ</mark> (1-20 GeV)	1.5%/√E ⊕ 0.25%	

Flavor Tagging and Missing Mass

JOI performance is about one order of magnitude better compared to the BDT method.

Excellent missing mass reconstruction due to precise energy and momentum measurements, large coverage of the solid angle, and full knowledge of the initial state.