The Linear Collider Facility for CERN

CEPC-Europe Workshop Barcelona June 16, 2025

<u>Jenny List</u> on behalf of the LCVision Team

Outline:

- Introduction
- LCF@CERN
- Conclusions & Invitation

Introduction

Particle Physics in 2025

Towards the Update of the European Strategy for Particle Physics (EPPSU)

- the discovery of a Higgs boson at the LHC in 2012 was a huge triumph
- so far, the Standard Model of particle physics gives an excellent description of all particles and interactions probed at the LHC
- yet, the SM is manifestly incomplete:
 - dark matter, dark energy, gravity, ...
 - fermion masses and pattern, stabilisation of the Higgs mass, the origin of electroweak symmetry breaking ...
- actual dynamical explanations for these features must come from new interactions and particles that couple to the Higgs boson
- we must continue beyond HL-LHC to scrutinize the place where new physics is most likely to be found: in precision measurements of the Higgs boson!

Particle Physics in 2025

Towards the Update of the European Strategy for Particle Physics (EPPSU)

- the discovery of a Higgs boson at the LHC in 2012 was a huge triumph
- so far, the Standard Model of particle physics gives an excellent description of all particles and interactions probed at the LHC
- yet, the SM is manifestly incomplete:
 - dark matter, dark energy, gravity, …
 - fermion masses and pattern, stabilisation of the Higgs mass, the origin of electroweak symmetry breaking ...
- actual dynamical explanations for these features must come from new interactions and particles that couple to the Higgs boson
- we must continue beyond HL-LHC to scrutinize the place where new physics is most likely to be found:

in precision measurements of the Higgs boson!

an e+e- collider is the ideal place to do this: collides elementary, electroweak particles => clean experiments & precise predictions

Linear Collider Vision

The Linear Collider Facility @ CERN | J.List | June 16, 2025 | CEPC Europe Workshop | Barcelona

 $e^+e^- \rightarrow \mu^+\mu^-H \rightarrow \mu^+\mu^-$ bb in ILD

A Linear Collider re-doubles these advantages

Beam polarisation & high energy: let's get it straight!

- electroweak physics is intrinsically chiral:
 - left- and right-handed e.g. electrons give different information
 - Linear Colliders offer polarised beams => new observables or: "four colliders in one"
- like at LHC, Higgs bosons are produced in e+e- in different reactions complementing each other:
 - ee->HZ, ee->WWvv->Hvv, ee->ZZee->Hee, ee->HHZ, ee->WWvv->HHvv, ee->ttH, ...
 - to explore them all, a large span in E_{CM} is needed
- likewise for the closest relatives of the Higgs
 - top quark, multi-gauge boson processes, ...

A Linear Collider re-doubles these advantages

Beam polarisation & high energy: let's get it straight!

- electroweak physics is intrinsically chiral:
 - left- and right-handed e.g. electrons give different information
 - Linear Colliders offer polarised beams => new observables or: "four colliders in one"
- like at LHC, Higgs bosons are produced in e+e- in different reactions complementing each other:
 - ee->HZ, ee->WWvv->Hvv, ee->ZZee->Hee, ee->HHZ, ee->WWvv->HHvv, ee->ttH, ...
 - to explore them all, a large span in E_{CM} is needed
- likewise for the closest relatives of the Higgs
 - top quark, multi-gauge boson processes, ...

the full Higgs / top / electroweak program requires polarised beams & E_{CM} up to at least 1 TeV

from construction-ready to advanced accelerator R&D

- the most mature proposal: the ILC
 - superconducting RF 31-35 MV/m
 - proven technology: Eu.XFEL, LCLS-II, SHINE, ...
 - up to 1 TeV, both beams polarised
 - since 2012 considered for construction in Japan
- Compact Linear Collider (CLIC):
 - beam-driven warm copper RF, 70-100 MV/m
 - up to 3 TeV, electrons polarised

a vast number of other ideas / R&D programs

- C3: cool copper collider up 150 MV/m
- HELEN: advanced SCRF up to 70 MV/m
- ReLiC / ERLC: energy & particle recovery
- HALHF: hybrid asymmetric linear Higgs factory
- ALEGRO: 10 TeV PWA ee / $\gamma\gamma$
- XCC: XFEL-driven $\gamma\gamma$ collider

from construction-ready to advanced accelerator R&D

- the most mature proposal: the ILC
 - superconducting RF 31-35 MV/m
 - proven technology: Eu.XFEL, LCLS-II, SHINE, ...
 - up to 1 TeV, both beams polarised
 - since 2012 considered for construction in Japan
- Compact Linear Collider (CLIC):
 - beam-driven warm copper RF, 70-100 MV/m
 - up to 3 TeV, electrons polarised
- a vast number of other ideas / R&D programs
 - C3: cool copper collider up 150 MV/m
 - HELEN: advanced SCRF up to 70 MV/m
 - ReLiC / ERLC: energy & particle recovery
 - HALHF: hybrid asymmetric linear Higgs factory
 - ALEGRO: 10 TeV PWA ee / $\gamma\gamma$
 - XCC: XFEL-driven $\gamma\gamma$ collider

from construction-ready to advanced accelerator R&D

- the most mature proposal: the ILC
 - superconducting RF 31-35 MV/m
 - proven technology: Eu.XFEL, LCLS-II, SHINE, ...
 - up to 1 TeV, both beams polarised
 - since 2012 considered for construction in Japan
- Compact Linear Collider (CLIC):
 - beam-driven warm copper RF, 70-100 MV/m
 - up to 3 TeV, electrons polarised
- a vast number of other ideas / R&D programs
 - C3: cool copper collider up 150 MV/m
 - HELEN: advanced SCRF up to 70 MV/m
 - ReLiC / ERLC: energy & particle recovery
 - HALHF: hybrid asymmetric linear Higgs factory
 - ALEGRO: 10 TeV PWA ee / $\gamma\gamma$
 - XCC: XFEL-driven $\gamma\gamma$ collider

from construction-ready to advanced accelerator R&D

- the most mature proposal: the ILC
 - superconducting RF 31-35 MV/m
 - proven technology: Eu.XFEL, LCLS-II, SHINE, ...
 - up to 1 TeV, both beams polarised
 - since 2012 considered for construction in Japan
- Compact Linear Collider (CLIC):
 - beam-driven warm copper RF, 70-100 MV/m
 - up to 3 TeV, electrons polarised
- a vast number of other ideas / R&D programs
 - C3: cool copper collider up 150 MV/m
 - HELEN: advanced SCRF up to 70 MV/m
 - ReLiC / ERLC: energy & particle recovery
 - HALHF: hybrid asymmetric linear Higgs factory
 - ALEGRO: 10 TeV PWA ee / $\gamma\gamma$
 - XCC: XFEL-driven $\gamma\gamma$ collider

from construction-ready to advanced accelerator R&D

- the most mature proposal: the ILC
 - superconducting RF 31-35 MV/m
 - proven technology: Eu.XFEL, LCLS-II, SHINE, …
 - up to 1 TeV, both beams polarised
 - since 2012 considered for construction in Japan
- Compact Linear Collider (CLIC):
 - beam-driven warm copper RF, 70-100 MV/m
 - up to 3 TeV, ele
- a vast number of
 - C3: cool coppel control up too mil
 - HELEN: advanced SCRF up to 70 MV/m
 - ReLiC / ERLC: energy & particle recovery
 - HALHF: hybrid asymmetric linear Higgs factory
 - ALEGRO: 10 TeV PWA ee / $\gamma\gamma$
 - XCC: XFEL-driven $\gamma\gamma$ collider

from construction-ready to advanced accelerator R&D

- the most mature proposal: the ILC
 - superconducting RF 31-35 MV/m
 - proven technology: Eu.XFEL, LCLS-II, SHINE, …
 - up to 1 TeV, both beams polarised
 - since 2012 considered for construction in Japan
- Compact Linear Collider (CLIC):
 - beam-driven warm copper RF, 70-100 MV/m
 - up to 3 TeV, ele
- a vast number of C3: cool coppel compared up rece
 - HELEN: advanced SCRF up to 70 MV/m
 - ReLiC / ERLC: energy & particle recovery
 - HALHF: hy
 - ALEGRO:
 - XCC: XFEL

C³ - 8 km footprint for 250/550 GeV

e- Main Linac

e+ Source

Damping Ring (DR)

=> Linear Collider Facility (LCF) @ CERN proposal arxiv:2503.24049

Linear Collider Vision

Electron

source

RF linac

(5 GeV e-

INTERACTION REGION MAIN REAM IN JECTOR

Turn-around loops

(31 GeV e+/drivers)

Plasma-accelerator linac

(16 stages, ~32 GeV per stage)

Scale: 500 m

INJECTION DESCENT

DRIVE BEAM INJECTO

The LCF@CERN Proposal

General Considerations

for the LCF@CERN

- Philosophy:
 - leverage all the excellent work done for ILC & CLIC in the past
 - reliable costing etc
 - "ready to build"
 - gently modernize to turn into true flagship project for CERN
- Superconducting RF technology (like ILC)
 - successful construction & operation of Eu.XFEL, LCLS-II...
 => no large-scale demonstrator step needed
 - lab experience and production capacities in industry globally
 > opportunity to take burden off CERN's shoulders
 - choice for fastest implementation
- Scope project to be a flagship project for CERN
 - 2 interaction regions
 - 2-4x higher luminosity than ILC (power calc. assumes Q₀=2E10)
 - add-on facilities (Beyond Collider, R&D / irradiation facilities)
 - attaractive upgrade perspectives with advanced technologies
 - but stay affordable (constr. and op.) wrt to CERN budget

Luminosity and Power Consumption

For LCF-SCRF and other e+e- colliders

Luminosity and Power Consumption

For LCF-SCRF and other e+e- colliders

© 2024 CERN - SCE - v.1.1.1

The Linear Collider Facility @ CERN | J.List | June 16, 2025 | CEPC Europe Workshop | Barcelona

The first stage

250 GeV incl Z pole - physics

- Higgs:
 - production via ee->ZH dominant
 - σ_{tot} to ~1% => absolute couplings
 - branching fractions to ~1%
 - mass to 10-4
 - search for invisible / exotic decays to 10-3
- WW:
 - non-linear interactions (10x better than LEP)
 - mass to ~2 MeV (threshold: ~1.4 MeV)
 - CKM matrix elements (e.g. V_{cs}, V_{cb})
- f fbar:
 - precision measurements at 250 GeV
 - and Z pole
 - => polarisation: huge increase EWPO sensitivity
 - (~10-100x improvement over LEP/SLC)

The first stage

250 GeV incl Z pole - physics

- Higgs:
 - production via ee->ZH dominant
 - σ_{tot} to ~1% => absolute couplings
 - branching fractions to ~1%
 - mass to 10-4
 - search for invisible / exotic decays to 10-3
- WW:
 - non-linear interactions (10x better than LEP)
 - mass to ~2 MeV (threshold: ~1.4 MeV)
 - CKM matrix elements (e.g. V_{cs}, V_{cb})
- f fbar:
 - precision measurements at 250 GeV
 - and Z pole

=> polarisation: huge increase EWPO sensitivity (~10-100x improvement over LEP/SLC)

The second stage

550 GeV incl ttbar theshold

- Upgrade
 - equipping the additional tunnel with SCRF
 - + 5.46 BCHF
 - 10 Hz trains of 2625 bunches => 7.7 x 10³⁴ / cm² / s
 - AC power 322 MW
 - target 8 ab-1
- Higgs physics at 550 GeV and beyond:
 - now WW fusion dominant
 - => complementary set of observables
 => independent verification of anomalies
 observed at 250 GeV
 - ttH, ZHH and even vvHH become observable:
 - ttH: tree-level sensitivity to top-Yukawa ~2%
 - di-Higgs production: tree-level sensitivity of ~10% to self-coupling λ
 - for any value of λ !

The second stage

550 GeV incl ttbar theshold

- Upgrade
 - · equipping the additional tunnel with SCRF
 - + 5.46 BCHF
 - 10 Hz trains of 2625 bunches => 7.7 x 10³⁴ / cm² / s
 - AC power 322 MW
 - target 8 ab-1
- Higgs physics at 550 GeV and beyond:
 - now WW fusion dominant
 => complementary set of observables
 => independent verification of anomalies
 observed at 250 GeV
 - ttH, ZHH and even vvHH become observable:
 - **ttH**: tree-level sensitivity to top-Yukawa ~2%
 - di-Higgs production: tree-level sensitivity of ~10% to self-coupling λ
 - for any value of λ !

tree-level access to self-coupling

- 550 GeV
 - ~ peak of ZHH cross-section
 - vvHH becomes just about visible
 - together for SM case:
 Δκ_λ = 11% (15%) for 8ab⁻¹ (4ab⁻¹)
- dependence on λ :
 - ZHH: constructive interference
 - vvHH: destructive interference
 - together: ~const absolute precision as function of λ
- 1-3 TeV: vvHH becoming dominant
 - Δκ_λ = 0.04 (8ab-1) over wide range of κ_λ (except κ_λ ~ 1.5)
- quantitative improvement and qualitatively new information wrt
 - HL-LHC
 - loop corrections at lower ECM stages

Linear Collider Vision

σ [fb]

tree-level access to self-coupling

- 550 GeV
 - ~ peak of ZHH cross-section
 - vvHH becomes just about visible
 - together for SM case:
 Δκ_λ = 11% (15%) for 8ab⁻¹ (4ab⁻¹)
- dependence on λ :
 - ZHH: constructive interference
 - vvHH: destructive interference
 - together: ~const absolute precision as function of λ
- 1-3 TeV: vvHH becoming dominant
 - Δκ_λ = 0.04 (8ab-1) over wide range of κ_λ (except κ_λ ~ 1.5)
- quantitative improvement and qualitatively new information wrt
 - HL-LHC
 - loop corrections at lower ECM stages

tree-level access to self-coupling

- 550 GeV
 - ~ peak of ZHH cross-section
 - vvHH becomes just about visible
 - together for SM case: Δκ_λ = 11% (15%) for 8ab⁻¹ (4ab⁻¹)
- dependence on λ :
 - ZHH: constructive interference
 - vvHH: destructive interference
 - together: ~const absolute precision as function of λ
- 1-3 TeV: vvHH becoming dominant
 - Δκ_λ = 0.04 (8ab-1) over wide range of κ_λ (except κ_λ ~ 1.5)
- quantitative improvement and qualitatively new information wrt
 - HL-LHC
 - loop corrections at lower ECM stages

Linear Collider Vision

κ_λ

tree-level access to self-coupling

- 550 GeV
 - ~ peak of ZHH cross-section
 - vvHH becomes just about visible
 - together for SM case:
 Δκ_λ = 11% (15%) for 8ab⁻¹ (4ab⁻¹)
- dependence on λ :
 - ZHH: constructive interference
 - vvHH: destructive interference
 - together: ~const absolute precision as function of λ
- 1-3 TeV: vvHH becoming dominant
 - Δκ_λ = 0.04 (8ab-1) over wide range of κ_λ (except κ_λ ~ 1.5)
- quantitative improvement and qualitatively new information wrt
 - HL-LHC
 - loop corrections at lower ECM stages

σ [fb]

tree-level access to self-coupling

- 550 GeV
 - ~ peak of ZHH cross-section
 - vvHH becomes just about visible
 - together for SM case: $\Delta \kappa_{\lambda} = 11\%$ (15%) for **8ab**⁻¹ (4ab⁻¹)
- dependence on λ :
 - ZHH: constructive interference
 - vvHH: destructive interference
 - together: ~const absolute precision as function of λ
- 1-3 TeV: vvHH becoming dominant
 - $\Delta \kappa_{\lambda} = 0.04$ (8ab-1) over wide range of κ_{λ} (except $\kappa_{\lambda} \sim 1.5$)
- quantitative improvement and qualitatively new information wrt
 - HL-LHC
 - loop corrections at lower ECM stages

Higher energies offer so much more

Example: top physics

- tt threshold ~350 GeV:
 - threshold mass => exp. stat. uncetainty negligible after ~100fb⁻¹
- electroweak couplings need higher energies and polarised beams
 - polarisation disentangles couplings to Z from couplings to photon
 - sensitivity to "axial-vector"-type of couplings grows with energy
 - dim-6 SMEFT:
 - need measurements at two energies above tt threshold to resolve degeneracies between operators
- with highE and polarisation, Linear Colliders
 - constrain 4-fermion operators to < 0.1%
 - incl. eett operators (entering ZH @ NLO)

•

•

٠

•

•

baseline

start immediately with full power

baseline

start immediately with full power

baseline

start immediately with full power

baseline

start immediately with full power

baseline

start immediately with full power

Running Scenarios up to 550 GeV

baseline

start immediately with full power

Running Scenarios - starting at 550 GeV - e.g. if CEPC goes ahead!

take some polarised data at lower energies

or go more quickly to TeV range

Linear Collider Vision

Running Scenarios - starting at 550 GeV - e.g. if CEPC goes ahead!

take some polarised data at lower energies

or go more quickly to TeV range

Running Scenarios - starting at 550 GeV - e.g. if CEPC goes ahead!

take some polarised data at lower energies

or go more quickly to TeV range

Running Scenarios - shortening 550 GeV in favour of TeV

Tech upgrade after 550 GeV

Tech upgrade after 250 GeV

Linear Collider Vision

Running Scenarios - shortening 550 GeV in favour of TeV

Tech upgrade after 550 GeV

Tech upgrade after 250 GeV

Energy Upgrades beyond 550 GeV

1 TeV and beyond

- Philosophy: prioritize
 - advanced technologies over more civil construction
 - flexibility over a fixed future: choices should be made later depending on scientific and technological developments - or even revolutions
- replacing the linacs, re-using as much as possible from initial machine (DRs, BDS, ...)
- Example options:
 - CLIC technology: 72-100 MV/m warm copper cavities, klystron-driven => 1.5 - 2 TeV
 - C3 technology: up to 150 MV/m cool copper cavities
 => 1.5...3 TeV
 - HELEN technology: traveling-wave SCRF with ~70 MV/m
 at least 1 TeV
 - Nb₃Sn technology: SCRF with ~100 MV/m => 1.5...2 TeV

- Philosophy: prioritize
 - advanced technologies over more civil construction
 - flexibility over a fixed future: choices should be made later depending on scientific and technological developments - or even revolutions
- replacing the linacs, re-using as much as possible from initial machine (DRs, BDS, ...)
- Example options:
 - CLIC technology: 72-100 MV/m warm copper cavities, klystron-driven => 1.5 - 2 TeV
 - C3 technology: up to 150 MV/m cool copper cavities
 => 1.5...3 TeV
 - HELEN technology: traveling-wave SCRF with ~70 MV/m
 at least 1 TeV
 - Nb₃Sn technology: SCRF with ~100 MV/m => 1.5...2 TeV

- Philosophy: prioritize
 - advanced technologies over more civil construction
 - flexibility over a fixed future: choices should be made later depending on scientific and technological developments - or even revolutions
- replacing the linacs, re-using as much as possible from initial machine (DRs, BDS, ...)
- Example options:
 - CLIC technology: 72-100 MV/m warm copper cavities, klystron-driven => 1.5 - 2 TeV
 - C3 technology: up to 150 MV/m cool copper cavities => 1.5...3 TeV
 - HELEN technology: traveling-wave SCRF with ~70 MV/m
 at least 1 TeV
 - Nb₃Sn technology: SCRF with ~100 MV/m => 1.5...2 TeV

- Philosophy: prioritize
 - advanced technologies over more civil construction
 - flexibility over a fixed future: choices should be made later depending on scientific and technological developments - or even revolutions
- replacing the linacs, re-using as much as possible from initial machine (DRs, BDS, ...)
- Example options:
 - CLIC technology: 72-100 MV/m warm copper cavities, klystron-driven => 1.5 - 2 TeV
 - C3 technology: up to 150 MV/m cool copper cavities
 => 1.5...3 TeV
 - HELEN technology: traveling-wave SCRF with ~70 MV/m
 at least 1 TeV
 - Nb₃Sn technology: SCRF with ~100 MV/m => 1.5...2 TeV

- Philosophy: prioritize
 - advanced technologies over more civil construction
 - flexibility over a fixed future: choices should be made later depending on scientific and technological developments - or even revolutions
- replacing the linacs, re-using as much as possible from initial machine (DRs, BDS, ...)
- Example options:
 - CLIC technology: 72-100 MV/m warm copper cavities, klystron-driven => 1.5 - 2 TeV
 - C3 technology: up to 150 MV/m cool copper cavities => 1.5...3 TeV
 - HELEN technology: traveling-wave SCRF with ~70 MV/m => at least 1 TeV
 - Nb₃Sn technology: SCRF with ~100 MV/m => 1.5...2 TeV

- Philosophy: prioritize
 - advanced technologies over more civil construction
 - flexibility over a fixed future: choices should be made later depending on scientific and technological developments - or even revolutions
- replacing the linacs, remachine (DRs, BDS, .
- Example options:
 - CLIC technology: klystron-driven =>

LCVision reviewed for each of the options how it could be embedded as upgrade of initial facility

- C3 technology: up to 150 MV/m cool copper cavities
 => 1.5...3 TeV
- HELEN technology: traveling-wave SCRF with ~70 MV/m
 at least 1 TeV
- Nb₃Sn technology: SCRF with ~100 MV/m => 1.5...2 TeV

Additional Upgrade Paths

Photon Collider / higher luminosity / towards 10 TeV

- Photon Collider:
 - complementary physics case, e.g. self-coupling in $\gamma\gamma$ -> HH with different BSM behaviour than e+e- / pp
 - install in one IP
 - either classic way with optical lasers
 - or XCC-like with X-ray lasers
- Energy and particle recovery:
 - boost luminosity up to 10^{36} / cm² / s
 - by re-using particles and energy
 - eg a la ReLiC or ERLC
- Plasma or Structure Wakefield Acceleration:
 - gradients of GV/m
 - either only for e-, asymmetric collisions a la HALHF
 - or e- and e+, paving the way towards 10 TeV $\gamma\gamma$ or e+e-

Positron source

Linac

Electron source

ompress.

Decompress

amping rings

Additional Upgrade Paths

Photon Collider / higher luminosity / towards 10 TeV

- Photon Collider:
 - complementary physics case, e.g. self-coupling in $\gamma\gamma$ -> HH with different BSM behaviour than e+e- / pp
 - install in one IP
 - either classic way with optical lasers
 - or XCC-like with X-ray la
- Energy and particle recovery
 - boost luminosity up to 10
 - by re-using particles and
 - eg a la ReLiC or ERLC
- Plasma or Structure Wakefield Acceleration:
 - gradients of GV/m
 - either only for e-, asymmetric collisions a la HALHF
 - or e- and e+, paving the way towards 10 TeV $\gamma\gamma$ or e+e-

LCVision reviewed for each of the options how it could be embedded as upgrade of initial facility

Linac

Separator

31 GeV e

Separator

Linac

31 GeV /

e⁻

Linear Collider Vision

The Linear Collider Facility @ CERN and beyond

General considerations

- Robust planning:
 - costs (construction and operation), CFS design, environmental impact etc assessed in a consistent way between all projects proposed for CERN
 - accelerator cost well known thanks to the 2024 update of the ILC costing, to a large extent based on new quotes from industry
- Timing is important:
 - current young researchers are key to both the HL-LHC program and the future Higgs factory
 - prolonged uncertainly or delays in decision making discourage ECRs => loss of talent
 - clear and timely transition from HL-LHC to next collider will provide long-term research opportunities
- Higgs factory and intensified R&D:
 - eventually, we need to explore the 10-TeV pCoM energy scale
 - we don't have an affordable technology today
 - all routes (pp = HFM; $\mu\mu$ = cooling; ee/ $\gamma\gamma$ = PWA) need expensive R&D and demonstrators
 - costs need to be shared globally, a staged and flexible Higgs factory aligns best with R&D needs

Next Steps towards a Linear Collider Facility @ CERN

Short-term investment needed

- project implementation: 2-phase preparatory period
 - ideally starting after conclusion of EPPSU in mid-2026
 - prior to construction start in 2034 (to avoid overlap of beam-commissioning with HL-LHC operation)
- Phase 1 (~35 MCHF + 180FTEy over 3 years)
 - in parallel to ILC Technology Network
 - placement study at CERN, review with stakeholders (local region / host states / ..)
 - · design and technical studies to determine and confirm the LCF parameters
 - moderate investment from CERN, could be pursued in even parallel to FCC
- Phase 2 (~120 MCHF + 420 FTEy over 5 years)
 - only after decision to go ahead with LCF
 - pre-series production
 - engineering design
 - more substancial investment by CERN
- world-wide expertise in SCRF-based XFELs and ILC R&D => significant contributions from outside CERN
- in parallel: set-up detector collaborations, build on exiting concepts, but embrace new ideas

Next Steps towards a Linear Collider Facility @ CERN

Short-term investment needed

- project implementation: 2-phase preparatory period
 - ideally starting after conclusion of EPPSU in mid-2026
 - prior to construction start in 2034 (to avoid overlap of beam-commissioning with HL-LHC operation)
- Phase 1 (~35 MCHF + 180FTEy over 3 years)
 - in parallel to ILC Technology Network
 - placement study at CERN, review with stakeholders (local region / host states / ..)
 - · design and technical studies to determine and confirm the LCF parameters
 - moderate investment from CERN, could be pursued in even parallel to FCC
- Phase 2 (~120 MCHF + 420 FTEy over 5 years)
 - only after decision to go ahead with LCF
 - pre-series production
 - engineering design
 - more substancial investment by CERN

=> ready for construction start in 2034

- world-wide expertise in SCRF-based XFELs and ILC R&D => significant contributions from outside CERN
- in parallel: set-up detector collaborations, build on exiting concepts, but embrace new ideas

Strategic Considerations for Europe

Resources & competition

- with ~8 BCHF, the LCF is affordable for CERN without major external contributions
 - CERN council could decide for this project without a (potentially lengthy) period of international negociations
 - fast & robust way forward
- nevertheless excellent opportunities for additional contributions
 - e.g. lumi-upgrade (2x for ~0.8 BCHF)
 - contributions of more SCRF cryomodules to reach higher energies faster can be incorporated anytime - either "cash" - or in-kind (more attractive for local industry etc)
 - but start of project independent of these under CERN council's control
- scientific flexibility
 - should scientifc developments point to going to higher E_{CM} faster e.g. LHC discovery or competition at low energies - this can be done any time, depending on resources

Conclusions & Invitation

Conclusions

As submitted on March 31

- we need a new e+e- collider to study the Higgs now
- a Linear Collider has decisive physics advantages: polarisation & high-energy reach
 - required to do the full Higgs and Top program
 - with sufficient redundancies and complementarities to truely enable discovery via precision measurements
 - supports flexible upgrades with advanced accelerator technologies
- a well-understood technology and a staged approach allows a fast start
- stays affordable, in parallel to HL-LHC, SuperKEKB, smaller experiments and R&D towards the 10-TeV pCoM scale
- the ESPPU is discussing the preferred flagship collider projects for CERN
- LCVision team
 - contributed the physics and technology case for Linear Colliders in general
 - and proposed a Linear Collider Facility @ CERN as the next flagship project

Invitation to participate in LCVision

What you can do

- sign-up for LCVision mailing list (CERN e-group): <u>http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?</u> groupName=LCVision-General
- sign up on supporter list for the LCVision documents:
 - either following link on https://agenda.linearcollider.org/event/10624/program
 - or directly on <u>https://www.ppe.gla.ac.uk/LC/LCVision/index.php?</u> <u>show=instadmin&skey=etUI1visTy25</u>
- mark your calendars for LCWS2025: October 20-24 in Valencia, Spain

Any Questions?

Recap: Electroweak Symmetry Breaking and Baryogenesis

0

Evolution of the universe

- temperature evolution of Higgs potential ?
- phase diagram of the SM!
- for $M_H > 75$ GeV, there is no phase transition in the SM
- thus in SM no out-of-equilibrium state of the early universe for baryogenesis (requires 1st order phase transition, cf Sacharov conditions)
- in many extended Higgs sectors, 1st order phase transition for λ₃ > λ_{SM}
- need to
 - measure whether self-coupling λ₃ = 0.13 as predicted by SM - with the least possible prejudice! (eg "everything else" SM-like)
 - check whether Higgs field is indeed just one SU(2)_L doublet

The Linear Collider Facility @ CERN | J.List | June 16, 2025 | CEPC Europe Workshop | Barcelona

Higgs potential in extended Higgs Sectors

"Maxican hat" turns into complex landscape

- more Higgs fields => much more complex potential "landscape" (even at zero-temperature)
- extra Higgs bosons
- several triple-Higgs couplings among them
- several minima
- EW vaccuum not necessarily global minimum => vacuum stability?

Higgs potential in extended Higgs Sectors

"Maxican hat" turns into complex landscape

- more Higgs fields => much more complex potential "landscape" (even at zero-temperature)
- extra Higgs bosons
- several triple-Higgs couplings among them
- several minima
- EW vaccuum not necessarily global minimum => vacuum stability?

measure as many physical observables with least model-assumptions to explore this landscape - just assuming everything is like in the SM and extract one value is not sufficient!

Interplay with Gravitational Wave detection

Need to assume specific extended Higgs sector to quantify effects

The Linear Collider Facility @ CERN | J.List | June 16, 2025 | CEPC Europe Workshop | Barcelona

DESY. Straight to the Future: Physics Opportunities at Linear Colliders | Colloquium, NIKHEF, 19 Apr 2024 | Jenny List

DESY. Straight to the Future: Physics Opportunities at Linear Colliders | Colloquium, NIKHEF, 19 Apr 2024 | Jenny List

DESY. Straight to the Future: Physics Opportunities at Linear Colliders | Colloquium, NIKHEF, 19 Apr 2024 | Jenny List

Interlude: Chirality in Particle Physics

Just a quick reminder...

- Gauge group of weak x electromagnetic interaction: SU(2) x U(1)
- L: left-handed, spin anti-|| momentum*
 R: right-handed, spin || momentum*
- · left-handed particles are fundamentally different from right-handed ones:
 - only left-handed fermions (e⁻) and right-handed anti-fermions (e⁺) take part in the charged weak interaction,
 i.e. couple to the W bosons
 - there are (in the SM) no right-handed neutrinos
 - right-handed quarks and charged leptons are singlets under SU(2)
 - also couplings to the Z boson are different for left- and right-handed fermions
- checking whether the differences between L and R are as predicted in the SM is a very sensitive test for new phenomena!

* for massive particles, there is of course a difference between chirality and helicity, no time for this today, ask at the end in case of doubt!

Physics benefits of polarised beams

Much more than statistics!

General references on polarised e e physics:

- arXiv:1801.02840
- Phys. Rept. 460 (2008) 131-243

A relationship only appreciated a few years ago...

• **THE key process** at a Higgs factory:

Higgsstrahlung e⁺e[−]→Zh

• ALR of Higgsstrahlung: very important to **disentangle** different **SMEFT operators!**

A relationship only appreciated a few years ago...

• **THE key process** at a Higgs factory:

Higgsstrahlung e⁺e[−]→Zh

• ALR of Higgsstrahlung: very important to **disentangle** different **SMEFT operators!**

A relationship only appreciated a few years ago...

- THE key process at a Higgs factory:
 Higgsstrahlung e⁺e⁻→Zh
- ALR of Higgsstrahlung: very important to **disentangle** different **SMEFT operators!**

A relationship only appreciated a few years ago...

- THE key process at a Higgs factory:
 Higgsstrahlung e⁺e⁻→Zh
- ALR of Higgsstrahlung: very important to **disentangle** different **SMEFT operators!**

NLO Contributions to ee->HZ

Correlation C_{0} to tt-Vertices arxiv:2409.11466

- NLO SMEFT introduces sensitivity to and constrains C_a and operators involving top vertices
- Disentangling of constraints using beam polarisation
- Final word would come from higher energy measurements
- Note that C_{Iq} is strongly energy dependent (-> would benefit from higher energies) IRN Terascale Nov. 24

5

let's first recall at the Z pole situation

let's first recall at the Z pole situation

let's first recall at the Z pole situation

let's first recall at the Z pole situation

above Z pole, polarisation essential to disentangle Z / γ exchange in e e \rightarrow ff

Polarisation & Electroweak Physics at the Z pole

LEP, ILC, FCCee

recent detailed studies by ILD@ILC:

- at least factor 10, often ~50 improvement over LEP/SLC
- note in particular:
 - A_c nearly 100 x better thanks to excellent charm / anti-charm tagging:
 - excellent vertex detector
 - tiny beam spot
 - Kaon-ID via dE/dx in ILD's TPC

polarised "GigaZ" typically only factor 2-3
less precise than FCCee's unpolarised TeraZ
=> polarisation buys
a factor of ~100 in luminosity

Note: not true for pure decay quantities!

Polarisation & Electroweak Physics at the Z pole

LEP, ILC, FCCee

recent detailed studies by ILD@ILC:

- at least factor 10, often ~50 improvement over LEP/SLC
- note in particular:
 - A_c nearly 100 x better thanks to excellent charm / anti-charm tagging:
 - excellent vertex detector
 - tiny beam spot
 - Kaon-ID via dE/dx in ILD's TPC

polarised "GigaZ" typically only factor 2-3
less precise than FCCee's unpolarised TeraZ
=> polarisation buys
a factor of ~100 in luminosity

Note: not true for pure decay quantities!

BSM reach of ee \rightarrow cc / bb

arXiv:2403.09144

Forward-backward and left-right asymmetries above the Z pole

Study of ee \rightarrow cc / bb

• full Geant4-based simulation of ILD

BSM example: Gauge-Higgs Unification models

- Higgs field = fluctuation of Aharonov-Bohm phase in warped extra dimension
- Z' as Kaluza-Klein excitations of γ , Z, Z_R
- various model point with $M_{Z'} = 7...20$ TeV

BSM reach of ee \rightarrow cc / bb

arXiv:2403.09144

Forward-backward and left-right asymmetries above the Z pole

TPC

Study of ee \rightarrow cc / bb

• full Geant4-based simulation of ILD

BSM example: Gauge-Higgs Unification models

- Higgs field = fluctuation of Aharonov-Bohm phase in warped extra dimension
- Z' as Kaluza-Klein excitations of γ , Z, Z_R
- various model point with $M_{Z'} = 7...20$ TeV

BSM reach of ee \rightarrow **cc / bb**

Forward-backward and left-right asymmetries above the Z pole

Study of ee \rightarrow cc / bb

• full Geant4-based simulation of ILD

BSM example: Gauge-Higgs Unification models

- Higgs field = fluctuation of Aharonov-Bohm phase in warped extra dimension
- Z' as Kaluza-Klein excitations of γ , Z, Z_R
- various model point with $M_{Z'} = 7...20$ TeV

Between-model discrimination power (σ-level)									
B_3^+	5.0	4.7	2.5	2.8	1.4	0.9	0.9		
B_3^{-}	5.4	5.1	2.1	3.1	0.7	1.4		П	
B_2^+	4.3	4.1	2.5	2.1	1.7				
B_2	5.4	5.1	1.6	3.1					
B_1^+	2.7	2.4	3.4			<3σ	4-	5σ	
B_1^{-}	5.3	5.1				3-4 σ	>	5σ	
A_2	0.5						050		
A ₁					(2000 fb ⁻¹)				
	A ₁	A_2	B ₁	B_1^+	B_2^-	B_2^+	B_3^{-}	B_3^+	

entri

TPC

70 |-

60

50

40

30

20

10

ILC5 H20, I

• F

____ ν φ F

H20,

ILC250+500

 B_{1}^{+} B_{2}^{-}

(2000 fb⁻¹+ 4000 fb⁻¹)

 B_2^+ B_3 B⁺₃

Between-model discrimination power (σ-level)

ILD

4-5 σ

>5σ

<3σ

3-4 σ

ILC250⁺ (no pol.)

 B_3^+ 3.9 3.2 1.5 1.3 0.9 0.4 0.5

B₃ 4.1 3.4 1.1 1.4 0.4 0.7

B⁺₂ 3.6 2.9 1.6 1.0 1.0

B₂ 4.1 3.5 0.7 1.6

B⁺₁ 2.7 2.0 1.9

B₁ 4.2 3.7

A₂ 0.8

arXiv:2403.09144

GHU vs SM discrimination power (σ -level)

B₃ 0.3 0.4 0.4 0.5 0.7 0.7 0.9 1.2 1.3 2.1 2.5 2.5

Between-model discrimination power (σ -level) $B_{0}^{+} > 10 > 10 > 10 39 49 13 29$

Between-model discrimination power (σ -level) ıea B^+_{a} >10 >10 >10 54 >10 27 76

ny List

Α,

 $A_1 A_2$

B₁

ILD

Ch. had. PID

Between-model discrimination power (σ -level) B⁺ >10 >10 >10 3 9 4 9 1 3 2 9 1ea Between-model discrimination power (σ-level) B⁺ >10 >10 >10 54 >10 27 76

Between-model discrimination power (σ -level) B⁺ >10 >10 >10 39 49 13 29

Heavy Neutral Leptons

Discovery reach for lepton colliders - complementary to FCC-hh

in Z decays with displaced vertices... ...and at high masses in prompt decays

Top Yukawa coupling

Choosing the right energy

[Phys.Rev. D84 (2011) 014033 & arXiv:1506.07830]

10 GeV σ_{ttH} $|\Delta y_t/y_t|$ 500 6.3% Scaled to value at 2% + 1 TeV: 1.4% **10⁻¹** 480 500 520 540 560 580 600 Energy (GeV)

to-do: real, full sim study @ 600 GeV!

· HL-LHC:

- · $\delta \kappa_t = 3.2\%$ with $|\kappa_V| \le 1$ or 3.4% in SMEFT_{ND}
- · e+e- LC:
 - current full simulation achieved 6.3% at 500 GeV
 - strong dependence on exact choice of E_{CM}, e.g. 2% at 600 GeV
 - not included:
 - experimental improvement with higher energy (boost!)
 - other channels than H->bb

Top Yukawa coupling

Choosing the right energy

[Phys.Rev. D84 (2011) 014033 & arXiv:1506.07830]

to-do: real, full sim study @ 600 GeV!

• absolute size of |yt|:

· HL-LHC:

- · $\delta \kappa_t = 3.2\%$ with $|\kappa_V| \le 1$ or 3.4% in SMEFT_{ND}
- · e+e- LC:
 - current full simulation achieved 6.3% at 500 GeV
 - strong dependence on exact choice of E_{CM}, e.g. 2% at 600 GeV
 - not included:
 - experimental improvement with higher energy (boost!)
 - other channels than H->bb
- full coupling structure of tth vertex, incl. CP:
 - · e⁺e⁻ at E_{CM} ≥ ~600 GeV
 - => few percent sensitivity to CP-odd admixture
 - beam polarisation essential!

[Eur.Phys.J. C71 (2011) 1681]

start with full power

shorten 550 GeV to go to TeV range earlier

start with 550 GeV - cross-check CEPC with polarised data ?

start with 550 GeV - or go to TeV range earlier

Early Technology upgrade

