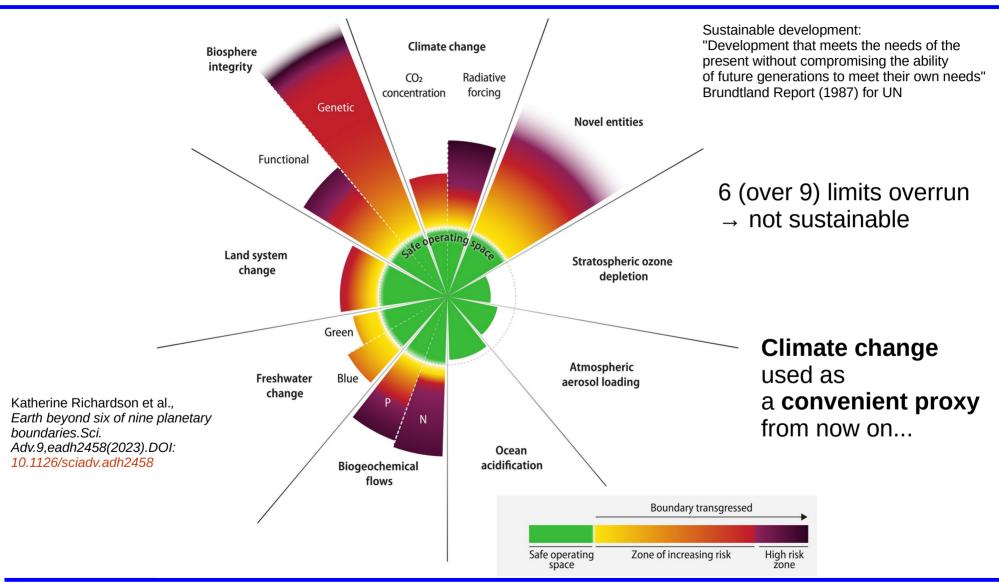


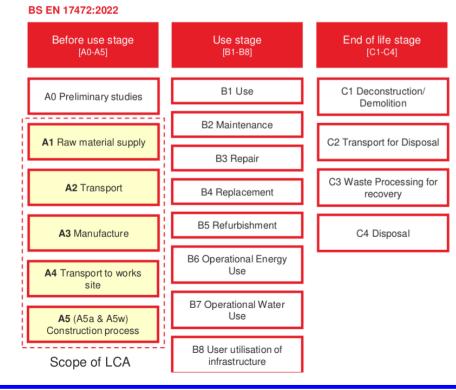
2025 European Edition of the International Workshop on the Circular Electron-Positron Collider (CEPC), Barcelona, Spain


# Samuel Calvet








### Sustainability = be within planetary boundaries



Sustainability for future colliders

### Life Cycle Assessment/Analysis

- LCA very useful to reduce env. footprint of project during R&D
  - Estimate impacts in terms of C, water consumption, ozone, ...
  - For the different stages of a project



| Midpoint Impact Categories              | Abbr. | Unit                     |
|-----------------------------------------|-------|--------------------------|
| Global warming                          | GWP   | kg CO <sub>2</sub> eq    |
| Stratospheric ozone depletion           | ODP   | kg CFC-11 eq             |
| Ionizing radiation                      | IRP   | kBq Co-60 eq             |
| Fine particulate matter formation       | PMFP  | kg PM2.5 eq              |
| Ozone formation, Human health           | HOFP  | kg NOx eq                |
| Ozone formation, Terrestrial ecosystems | EOFP  | kg NOx eq                |
| Terrestrial acidification               | TAP   | kg SO <sub>2</sub> eq    |
| Freshwater eutrophication               | FEP   | kg P eq                  |
| Marine eutrophication                   | MEP   | kg N eq                  |
| Terrestrial ecotoxicity                 | TETP  | kg 1,4-DCB               |
| Freshwater ecotoxicity                  | FETP  | kg 1,4-DCB               |
| Marine ecotoxicity                      | METP  | kg 1,4-DCB               |
| Human carcinogenic toxicity             | HTPc  | kg 1,4-DCB               |
| Human non-carcinogenic<br>toxicity      | HTPnc | kg 1,4-DCB               |
| Land use                                | LOP   | m <sup>2</sup> a crop eq |
| Mineral resource scarcity               | SOP   | kg Cu eq                 |
| Fossil resource scarcity                | FFP   | kg oil eq                |
| Water consumption                       | WCP   | m <sup>3</sup>           |

### Life Cycle Assessment/Analysis

#### Identified as a key component of future R&D Examples:

CERN course:

https://lms.cern.ch/ekp/servlet/ekp?PX=N&TEACHREVIEW=N&CID=EKP000044552&TX=FORMAT1&LANGUAGE\_TAG=en&DECORATEPAGE

Introduction to Environmental Life Cycle Assessment (LCA) for Engineers (e-learning)

#### Accéder à la session

This e-learning provides an **introduction to Life Cycle Assessment (LCA)**, a detailed method for evaluating the environmental impacts of products throughout their entire life cycle, from raw material extraction to disposal. The primary objective of this course is to build your knowledge and skills in the Life Cycle Assessment, enrich the theoretical part of LCA, and understand how to use this in your work.

#### IN2P3 one-week training

Action Nationale de Formation "Eco-conception orientée projets"

12-17 oct. 2025

|       | Midpoint Impact Categori                              | es    | Abbr.         |            | Unit                                |  |
|-------|-------------------------------------------------------|-------|---------------|------------|-------------------------------------|--|
|       | Global warming                                        |       | GWP           |            | kg CO <sub>2</sub> eq               |  |
|       | Stratospheric ozone depletio                          | n     | ODP           |            | kg CFC-11 eq                        |  |
|       | Ionizing radiation                                    |       | IRP           |            | kBq Co-60 eq                        |  |
|       | Fine particulate matter forma                         | tion  | PMFP          |            | kg PM2.5 eq                         |  |
|       | Ozone formation, Human hea                            | alth  | HOFP          |            | kg NOx eq                           |  |
|       | Ozone formation, Terrestrial ecosystems               |       | EOFP          |            | kg NOx eq                           |  |
|       | Terrestrial acidification                             |       | TAP           |            | $kg SO_2 eq$                        |  |
|       | Freshwater eutrophication                             |       | FEP           |            | kg P eq                             |  |
|       | Marine eutrophication                                 |       | MEP           |            | kg N eq                             |  |
|       | Terrestrial ecotoxicity                               |       | TETP          |            | kg 1,4-DCB                          |  |
| RATEP | A Ereshwater ecotoxicity                              |       | FETP          |            | kg 1,4-DCB                          |  |
|       | Marine ecotoxicity                                    |       | METP          |            | kg 1,4-DCB                          |  |
|       | Human carcinogenic toxicity<br>Human non-carcinogenic | HTPc  |               | kg 1,4-DCB |                                     |  |
|       | toxicity                                              |       | HTPnc         |            | kg 1,4-DCB                          |  |
|       | Land use                                              |       | LOP           |            | m <sup>2</sup> a crop eq            |  |
|       | Mineral resource scarcity                             |       | SOP           |            | kg Cu eq                            |  |
|       | Fossil resource scarcity                              |       | FFP           |            | kg oil eq                           |  |
|       | Water consumption                                     |       | WCP           |            | m <sup>3</sup>                      |  |
|       | Before use stage<br>[A0-A5]                           |       | stage<br>-B8] |            | End of life stage<br>[C1-C4]        |  |
|       | A0 Preliminary studies                                | B1    | Use           | (          | C1 Deconstruction/<br>Demolition    |  |
|       |                                                       | Main  | itenance      | 00         | Trapapart for Diapart               |  |
|       | A1 Raw material supply                                | B3 R  | epair         | 62         | Transport for Disposal              |  |
|       | A2 Transport B4                                       | Repla | acement       |            | C3 Waste Processing for<br>recovery |  |
|       | A3 Manufacture                                        | Refur | bishment      |            | C4 Disposal                         |  |

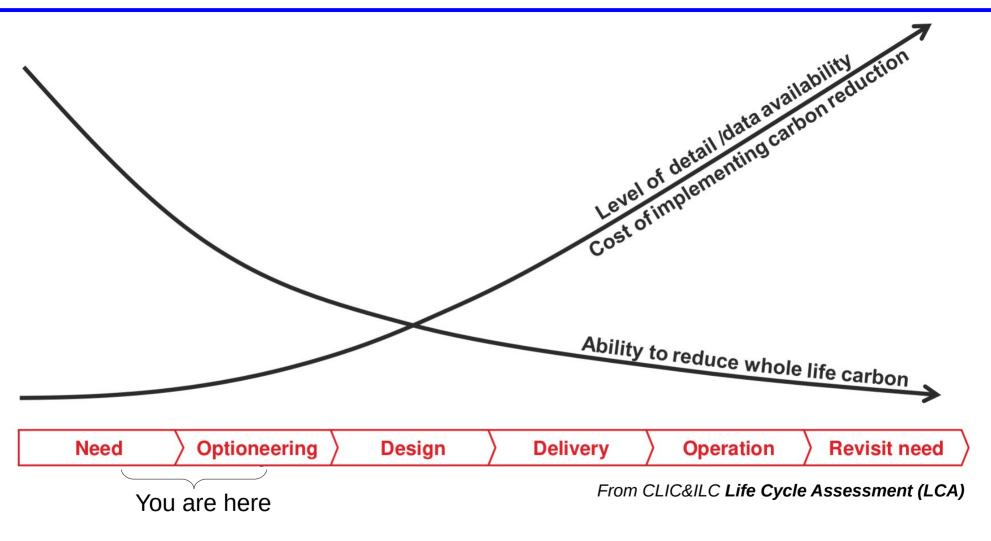
**B6** Operational Energy

B7 Operational Water Use

B8 User utilisation of

infrastructure

C4 Disposal


A3 Manufacture

A4 Transport to works site

A5 (A5a & A5w) Construction process

Scope of LCA

Sustainability for future colliders



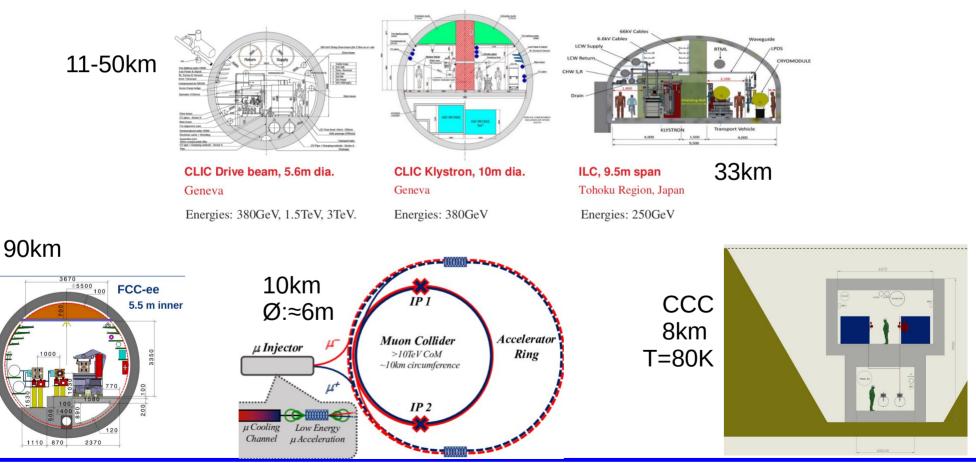
#### Environnemental footprint = tunnel

- + accelerator construction
- + accelerator operation
- + detector construction
- + detector operation
- + computing
- + collaboration life

 $\times N_{experiments}$ 

#### Environnemental footprint = tunnel

- + accelerator construction
- + accelerator operation
- + detector construction
- + detector operation
- + computing
- + collaboration life


 $\times N_{experiments}$ 

Today: 35tCO<sub>2</sub>eq/year/LHC physicist when LHC is running (not accounting for travels, WLCG, ...)

# Tunnel (@LO)

Main parameters:

length, profile : amount of concrete and steel



Sustainability for future colliders

# Tunnel (LO) + everything related to it (NLO)



| Droject | Main tunnal langth (lum) | $GWP$ (kton $CO_2e$ ) |                                                                                         |      |       |  |  |  |  |
|---------|--------------------------|-----------------------|-----------------------------------------------------------------------------------------|------|-------|--|--|--|--|
| Froject | Main tunnel length (km)  | Main tunnel –         | $GWP \text{ (kton CO}_{2}e)$ $Main \text{ tunnel } + \text{ other structures } + A4-A5$ |      |       |  |  |  |  |
| FCC     | 90.6                     | 578                   | 751                                                                                     | 939  | +60%  |  |  |  |  |
| CEPC    | 100                      | 638                   | 829                                                                                     | 1040 | +00%  |  |  |  |  |
| ILC     | 13.3                     | 97.6                  | 227                                                                                     | 266  | +170% |  |  |  |  |
| CLIC    | 11.5                     | 73.4                  | 98                                                                                      | 127  | +70%  |  |  |  |  |
| $C^3$   | 8.0                      | 133                   | 133                                                                                     | 146  | +10%  |  |  |  |  |

From https://arxiv.org/abs/2307.04084 FCC&CEPC: rough estimates from CLIC LCA!

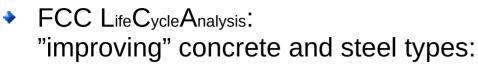
# A4-A5: transport + construction process

| Before use stage<br>[A0-A5]            | Use stage<br>[B1-B8]                     | End of life stage<br>[C1-C4]       |  |  |
|----------------------------------------|------------------------------------------|------------------------------------|--|--|
| A0 Preliminary studies                 | B1 Use                                   | C1 Deconstruction/<br>Demolition   |  |  |
|                                        | B2 Maintenance                           |                                    |  |  |
| A1 Raw material supply                 | B3 Repair                                | C2 Transport for Dispos            |  |  |
| A2 Transport                           | B4 Replacement                           | C3 Waste Processing fo<br>recovery |  |  |
| A3 Manufacture                         | B5 Refurbishment                         | C4 Disposal                        |  |  |
|                                        | B6 Operational Energy                    |                                    |  |  |
| A4 Transport to works<br>site          | Use                                      |                                    |  |  |
|                                        | B7 Operational Water                     |                                    |  |  |
| A5 (A5a & A5w)<br>Construction process | Use                                      |                                    |  |  |
| Scope of LCA                           | B8 User utilisation of<br>infrastructure |                                    |  |  |

### Tunnel @NLO

Main parameters:

length, profile : amount of concrete and steel, technology Klystron isolation, number of shafts, caverns




# Tunnel @NLO

S355

content

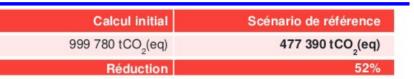
A615

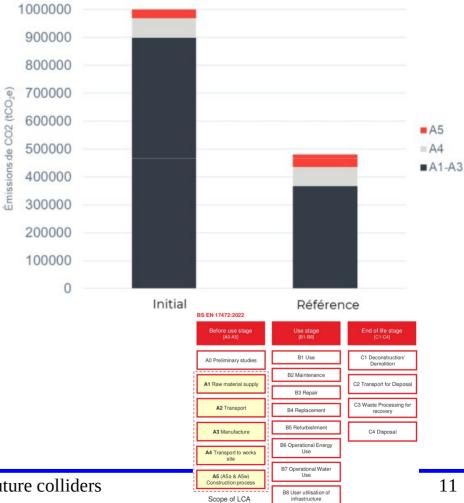


Fournisseurs locaux Réduction par Matériaux de référence dans Émission CO<sub>2</sub> avec une proposition rapport au l'outil OneClickLCA matériau initia équivalente Steel sheets, generic, 100% Sottas 0.87 kgCO<sub>2</sub>e/kg recycled content, S235, S275 and 77% Morand Steel fibre for concrete 0.51 kgCO\_e/kg 75% reinforcement, 100% recycled Sottas CO2 (tCO2e) Reinforcement steel (rebar), Stahl 0.42 kgCO<sub>a</sub>e/kg generic, 100% recycled content, 70% Sottas de ssions 48%

| Ready-mix concrete, normal<br>strength, generic, C35/45<br>(5000/6500 PSI) with CEM III/A<br>(340 kg/m <sup>3</sup> ) | 170.36 kgCO <sub>2</sub> e/m <sup>3</sup> | Probéton<br>Vigier<br>Holcim |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------|--|
| Ready-mix concrete, low-strength,<br>generic, C12/15 (1700/2200 PSI)<br>(220 kg/m <sup>3</sup> )                      | 149.41 kgCO <sub>2</sub> e/m <sup>3</sup> | Probéton<br>Vigier<br>Holcim |  |
| Ready-mix concrete, normal-<br>strength, generic, C40/50<br>(5800/7300 PSI) with CEM III/B,                           | 173.00 kgCO <sub>2</sub> e/m <sup>3</sup> | Probéton<br>Vigier<br>Holcim |  |

Possible k-factor of 0.5


But need to check ...


- the scaling up with industry
- the cost
- the timescale



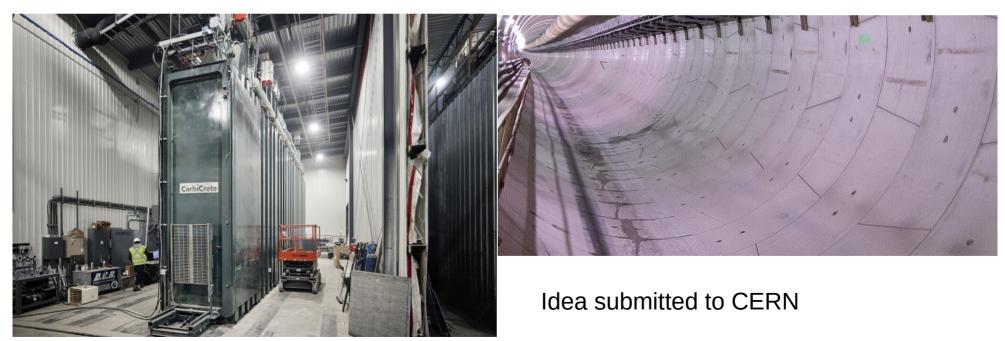
31%

399





### Toward a 0-net CO<sub>2</sub> emission tunnel ?




Industry is elaborating cement free concrete

- Cement fully replaced by steel slag
- $CO_2$  captured from a plant
- CO2 injected into the slag+gravel to produce concrete
- → negative CO<sub>2</sub>eq concrete ! (but only prefab)

#### https://carbicrete.com/specify-carbicrete/

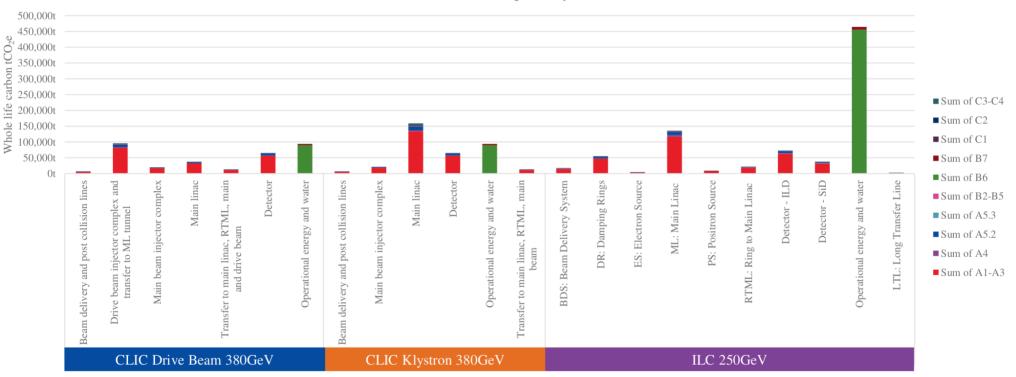
Needs to certify the concrete for tunnel usage **Usual scaling-up issue, but would help the civil society** 



#### Accelerator construction

Interesting one: muon collider

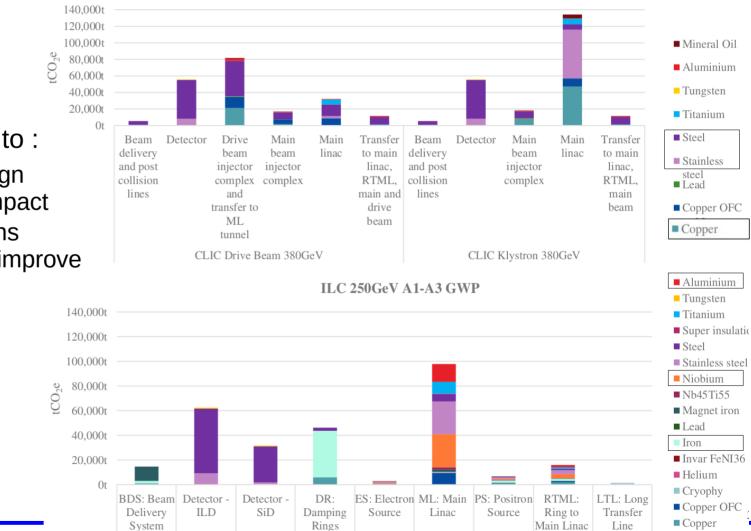
#### Future accelerator technologies? High Temperature Superconductors


**Target & Capture Solenoids for the Muon Collider** 





Sustainability for future colliders


#### Construction of accelerator can have impact as large as the operations



Machine componentry

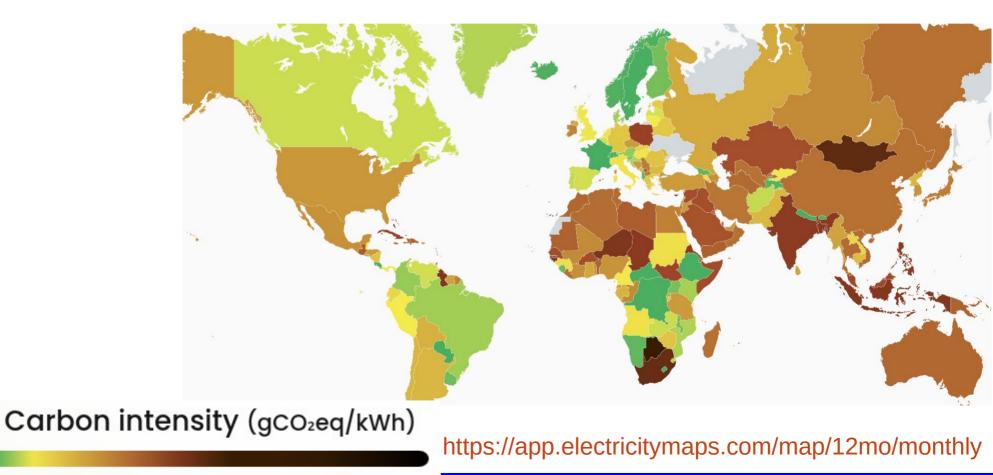
https://edms.cern.ch/ui/#!master/navigator/document?D:101764365:101764365:subDocs

#### Accelerator construction

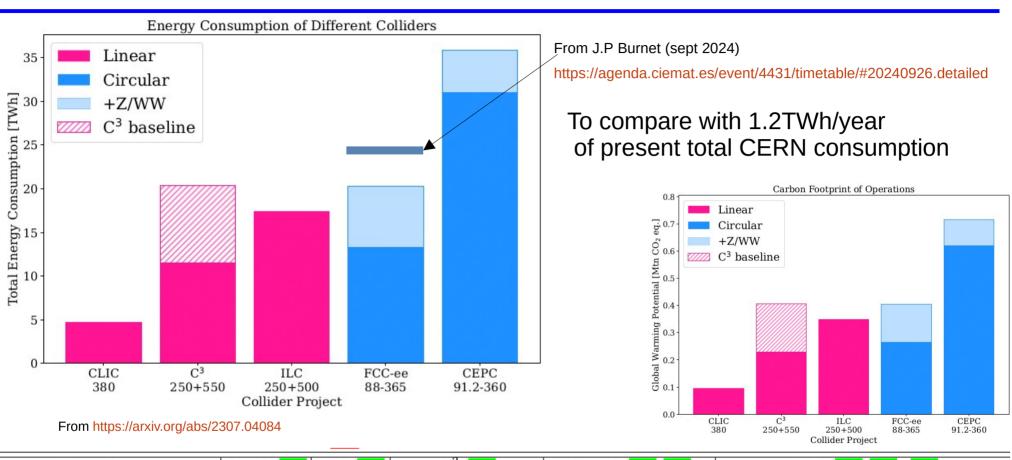


ILC 250GeV

■ Concrete


CLIC 380GeV A1-A3 GWP

- Identifying the key contributors allows to :
  - Work on the design to reduce their impact
  - Initiate discussions with suppliers to improve their processes


### Accelerator operations @LO

- Will depend accelerator energy/luminosity AND on the electricity mix (at the time of running the accelerator)
- Presently, very country dependent:

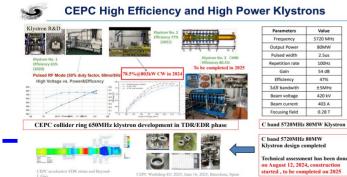
300

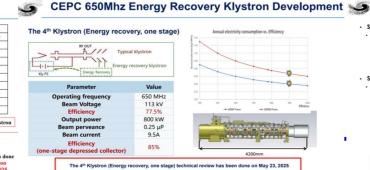


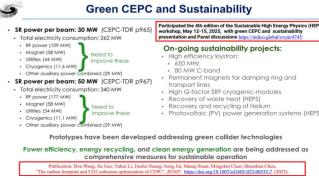
#### Accelerator operations



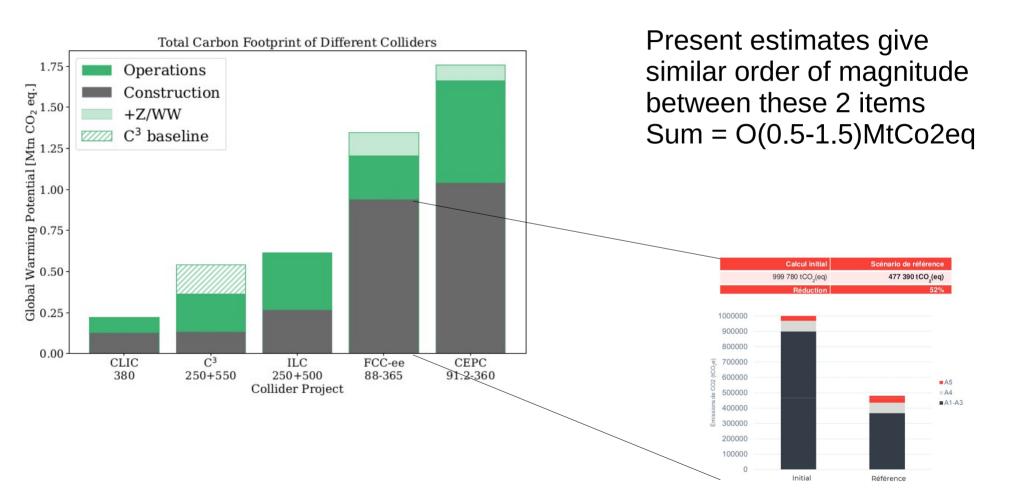
| Higgs factory                                                                | CLIC $40$ | ILC  | 12  | $C^3$   | 11       | CE    | PC 🚦 | 53, 5 | <u>54</u> |      | ]        | FCC 20  | ], 55 | , 56      |      |
|------------------------------------------------------------------------------|-----------|------|-----|---------|----------|-------|------|-------|-----------|------|----------|---------|-------|-----------|------|
| $\sqrt{s} \; (\text{GeV})$                                                   | 380       | 250  | 500 | 250     | 550      | 91.2  | 160  | 240   | 360       | 88,9 | $1,\!94$ | 157,163 | 240   | 340 - 350 | 365  |
| P (MW)                                                                       | 110       | 111  | 173 | 150(87) | 175 (96) | 283   | 300  | 340   | 430       | 22   | 22       | 247     | 273   | 357       |      |
| $T_{\rm collisions} \ (10^7 \ {\rm s/year})$                                 | 1.20      | 1.6  | 60  | 1.      | 60       |       | 1.3  | 0     |           |      |          | 1.      | .08   |           |      |
| $T_{\rm run}$ (years)                                                        | 8         | 11   | 9   | 10      | 10       | 2     | 1    | 10    | 5         | 2    | 2        | 2       | 3     | 1         | 4    |
| $\mathcal{L}_{\rm inst}/{\rm IP}~(\cdot 10^{34}~{\rm cm}^{-2}~{\rm s}^{-1})$ | 2.3       | 1.35 | 1.8 | 1.3     | 2.4      | 191.7 | 26.6 | 8.3   | 0.83      | 115  | 230      | 28      | 8.5   | 0.95      | 1.55 |
| $\mathcal{L}_{\mathrm{int}}~(\mathrm{ab}^{-1})$                              | 1.5       | 2    | 4   | 2       | 4        | 100   | 6    | 20    | 1         | 50   | 100      | 10      | 5     | 0.2       | 1.5  |


### Accelerator operation (details)

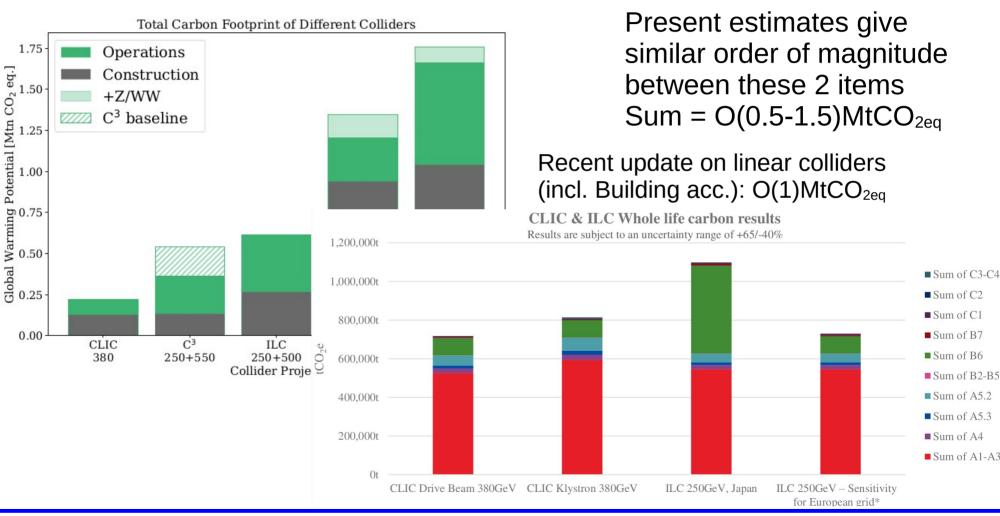

CEPC-TDR p. 965


|    | Table A3.13: Total facility power consumption in Z mode (30 MW/beam) |                                           |         |       |       | W/beam)                             | Total facility power consumption in $t\bar{t}$ mode (30 MW/beam) |        |      |          |         |       |      |      |                     |        |
|----|----------------------------------------------------------------------|-------------------------------------------|---------|-------|-------|-------------------------------------|------------------------------------------------------------------|--------|------|----------|---------|-------|------|------|---------------------|--------|
|    | System for W                                                         | For W Location and power Requirement (MW) |         |       | Total | Location and power Requirement (MW) |                                                                  |        |      | /)       | Total   |       |      |      |                     |        |
|    | (30 MW /beam)                                                        | Collider                                  | Booster | Linac | BTL   | IR                                  | Surface building                                                 | (MW)   | (MW) | Collider | Booster | Linac | BTL  | IR   | Surface<br>building | (MW)   |
| 1  | RF Power Source                                                      | 96.90                                     | 0.15    | 12.26 |       |                                     |                                                                  | 109.31 |      | 96.90    | 0.15    | 12.26 |      |      |                     | 109.31 |
| 2  | Cryogenic System                                                     | 3.32                                      | 0.77    |       |       | 0.16                                |                                                                  | 4.25   |      | 27.53    | 2.32    |       |      | 0.16 |                     | 30.01  |
| 3  | Vacuum System                                                        | 9.60                                      | 3.80    | 0.65  |       |                                     |                                                                  | 14.05  |      | 9.90     | 4.20    | 0.65  |      |      |                     | 14.75  |
| 4  | Magnet System                                                        | 6.71                                      | 1.28    | 2.15  | 4.89  | 0.05                                |                                                                  | 15.08  |      | 93.03    | 18.94   | 2.15  | 4.89 | 0.30 |                     | 119.31 |
| 5  | Instrumentation                                                      | 1.30                                      | 0.70    | 0.20  |       |                                     |                                                                  | 2.20   |      | 1.30     | 0.70    | 0.20  |      |      |                     | 2.20   |
| 6  | Radiation<br>Protection                                              | 0.25                                      |         | 0.10  |       |                                     |                                                                  | 0.35   |      | 0.30     |         | 0.10  |      |      |                     | 0.40   |
| 7  | Control System                                                       | 1.00                                      | 0.60    | 0.20  | 0.005 | 0.005                               |                                                                  | 1.81   |      | 1.00     | 0.60    | 0.20  |      |      |                     | 1.80   |
| 8  | Experimental Devices                                                 |                                           |         |       |       | 4.00                                |                                                                  | 4.00   |      |          |         |       |      | 4.00 |                     | 4.00   |
| 9  | Utilities                                                            | 25.80                                     | 2.80    | 2.00  | 0.60  | 1.20                                |                                                                  | 32.40  |      | 47.20    | 4.80    | 2.50  | 0.60 | 1.20 |                     | 56.30  |
| 10 | General Services                                                     | 7.20                                      |         | 0.30  | 0.20  | 0.20                                | 12.00                                                            | 19.90  |      | 7.20     |         | 0.30  | 0.20 | 0.20 | 12.00               | 19.90  |
|    | Total                                                                | 152.08                                    | 10.10   | 17.86 | 5.70  | 5.62                                | 12.00                                                            | 203.35 |      | 284.36   | 31.71   | 18.36 | 5.69 | 5.86 | 12.00               | 357.98 |

#### At CEPC the main contributors are RF power and magnet


Nice to see the ongoing work to improve the efficiencies (see talk by Jie Gao)








### Tunnel + accelerator operation (wo/ building accelerator!)



### Tunnel + accelerator operation (w/ building accelerator!)



Sustainability for future colliders

#### Detector construction

No data yet !

Raw material

production

(extraction)

239649.43

229170.75

146834.08

56667.74

3290049.95

3146177.23

1999582.65

Antenna structure

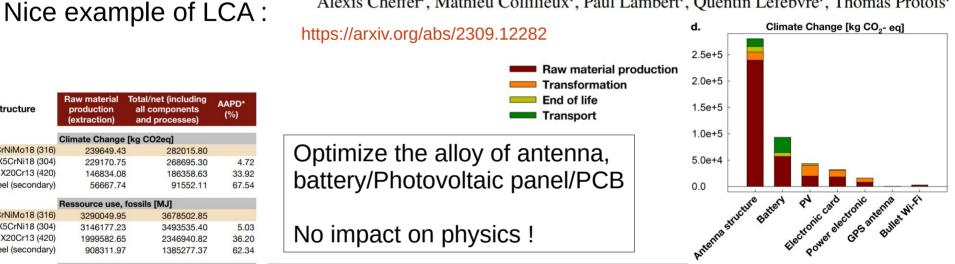
Base case X5CrNiMo18 (316)

Alloy 1 X5CrNi18 (304)

Alloy 2 X20Cr13 (420)

Alloy 1 X5CrNi18 (304)

Allov 2 X20Cr13 (420)


Stainless Steel (secondary)

Base case X5CrNiMo18 (316)

Stainless Steel (secondary)

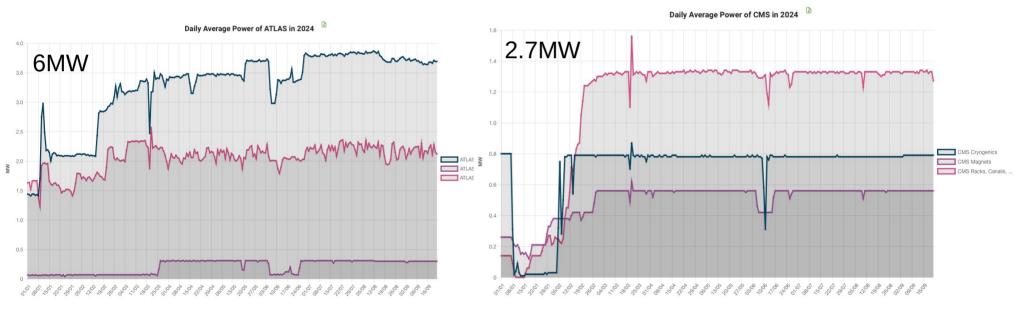
Life Cycle Analysis of the GRAND Experiment

Leidy T. Vargas-Ibáñez<sup>a,b</sup>, Kumiko Kotera<sup>c,d</sup>, Odile Blanchard<sup>e</sup>, Peggy Zwolinski<sup>a</sup>, Alexis Cheffer<sup>f</sup>, Mathieu Collilieux<sup>f</sup>, Paul Lambert<sup>f</sup>, Quentin Lefèbvre<sup>f</sup>, Thomas Protois<sup>f</sup>



| Stainless Steel (secondary) | 908311.97            | 1385277.37 62.34             | 4 |
|-----------------------------|----------------------|------------------------------|---|
|                             | Ressource use, mir   | nerals and metals [kg Sb eq] | 1 |
| Base case X5CrNiMo18 (316)  | 11.60                | 11.60                        |   |
| Alloy 1 X5CrNi18 (304)      | 1.94                 | 1.94 83.3                    | 0 |
| Alloy 2 X20Cr13 (420)       | 3.98                 | 3.97 65.7                    | 8 |
| Stainless Steel (secondary) | 0.01                 | 0.01 99.9                    | 1 |
|                             | Acidification [mol H | + eal                        |   |
| Base case X5CrNiMo18 (316)  | 841.15               | 936.53                       |   |
| Alloy 1 X5CrNi18 (304)      |                      | 763.35 18.4                  | 9 |
| Alloy 2 X20Cr13 (420)       | 642.97               | 731.05 21.94                 | 4 |
| Stainless Steel (secondary) | 98.85                | 210.65 77.5                  | 1 |
|                             | Ionizing radiation   | uman health [kBg U235 eg]    |   |
| Base case X5CrNiMo18 (316)  | •                    | 4019.62                      |   |
| Alloy 1 X5CrNi18 (304)      |                      | 4013.06 0.10                 | 6 |
| Alloy 2 X20Cr13 (420)       | 156.69               | 4060.33 -1.0                 | 1 |

156.73

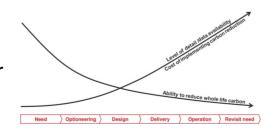

3111.96

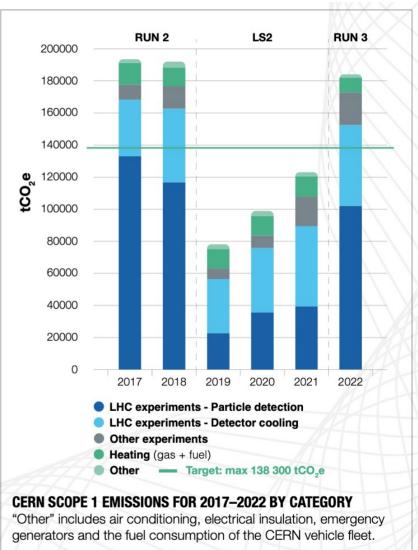
22.58

| Impact categories                              | Base<br>case | Battery<br>weight<br>-10% mass | <b>AAPD</b><br>(%) | <b>PV size</b><br>-10% size | <b>AAPD</b><br>(%) | Printed circuit<br>board weight<br>-10% mass | <b>AAPD</b><br>(%) |
|------------------------------------------------|--------------|--------------------------------|--------------------|-----------------------------|--------------------|----------------------------------------------|--------------------|
| Climate Change [kg CO2eq]                      | 471460       | 461999                         | 2,01               | 467383                      | 0,86               | 468860                                       | 0,55               |
| Ressource use, fossils [MJ]                    | 6220747      | 6099235                        | 1,95               | 6171177                     | 0,80               | 6176872                                      | 0,71               |
| Ressource use, minerals and metals [kg Sb eq]  | 28           | 27                             | 3,48               | 28                          | 0,52               | 28                                           | 1,20               |
| Acidification [mol H+ eq]                      | 1709         | 1682                           | 1,55               | 1687                        | 1,29               | 1697                                         | 0,68               |
| Ionizing radiation, human health [kBq U235 eq] | 15565        | 15512                          | 0,34               | 15343                       | 1,43               | 15074                                        | 3,16               |

#### **Detectors: Power consumption**

- W. Riegler (sept 2024) https://agenda.ciemat.es/event/4431/contributions/5081/
  - For the LHC, ~5% of the PC is from the experiments
  - O(5MW)/experiment, but depend a lot of the deseign !
  - Same consomption is expected for future accelerators
    - Cryogenics is the key !





ATLAS

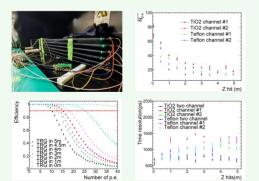
CMS

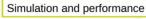
#### **Detectors: Direct emissions**

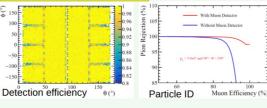
- Presently, the main contributor of CERN GHG
  - Cooling, RPC, RICH
  - HFCs, PFCs and  $SF_6$
  - O(0.2)MtCO2eq/year
  - Future detectors are expected to drastically reduce such usages
- Warning: detector complexity may have strong impact on the cpu/gpu needed for simulation/reconstruction !
- No LCA yet
  - The sooner the better

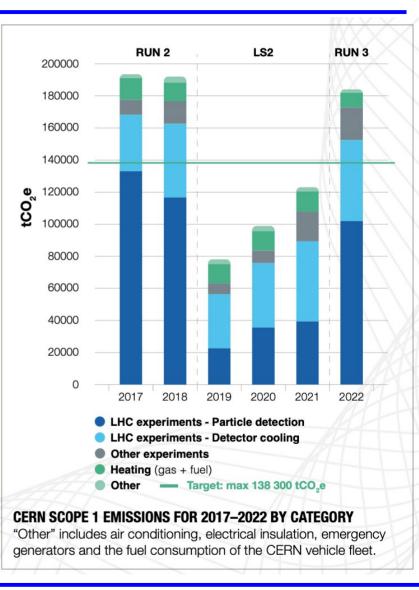





### **Detectors: Direct emissions**


- Presently, the main contributor of CERN GHG
  - Cooling, RPC, RICH
  - HFCs, PFCs and  $SF_6$
  - O(0.2)MtCO2eq/year
  - Future detectors are expected to drastically reduce such usages


# Very nice to see the CEPC ref detector has no RPC!


-

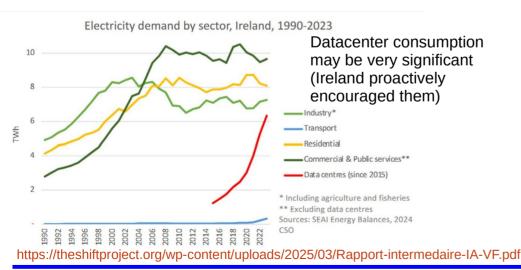
- Use extruded plastic scintillator (PS) technology, provide Muon ID > 95%, and pion fake rate < 1%</li>
- Strip/channel structure: PS bar + WLS fiber + SiPM
- Solid angle coverage: 0.98×4π, total detection area ~ 4,800 m<sup>2</sup>, ~43k channels
- > Prototype of 5m channel:  $\epsilon > 95\%$ ,  $\sigma_T \sim 1ns$

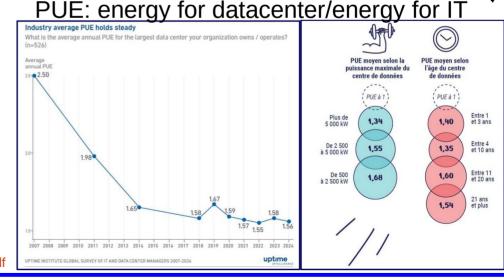









#### e colliders


need

23

### Computing

- Usually done on World wide grid  $\rightarrow$  strongly depends on the electricity mix
  - So will assume a lower C-intensity for electricity production in the future...
    - → Likely more intermittent
- Some ways to save energy:
  - Use the heat from datacenter for heating other buildings
  - Use different chips, with lower consumption (ARM)
  - Vary the cpu frequency
    - Decrease/increase the frequency when little/a lot of low-C electricity is produced





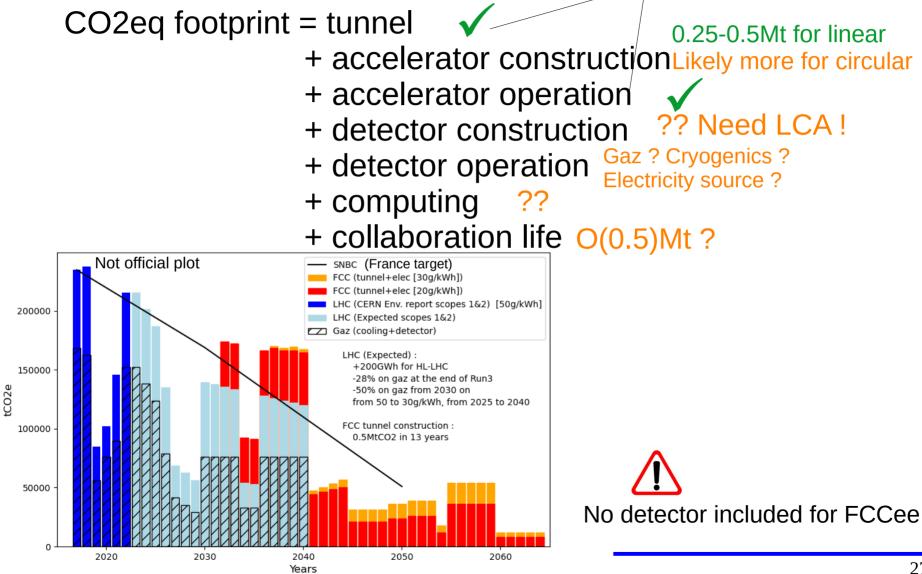
But most of the gains

have already be made

#### Sustainability for future colliders

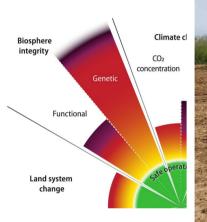
- Assuming a world that is on track for its transition...
- Amount of fly should have been drastically reduced
  - Producing enough C-free fuel is challenging (O(25%) of today electricity to replace kerosene with e-fuel)
  - How can we organize ourself to reduce the distance and the number of flies ?

Example (crazy idea nowadays, but in future...?): organizing the detector-collaborations by continent


- How many collaborations/detectors do we really need ?
- It would be interesting to have an estimate of this item ? Bigger than acc.?

Back to the envelop calculation: 9k physicists x 14years x 2t/fly x 2 flies/year = 0.5MtCO2

Geneva-Beijin: 2.5t


Geneva-NY

Summary



### **Biodiversity**

Reduce the impact during construction example at GANIL in France, with Semi-permeable barriers around the site:







- Plan constructions that are biodiversity friendly
  - Isolated areas for technical building can be biodiversity refuges
  - Avoid barrier, create corridors btw/ sites
  - Can be implemented without large extra-costs

©J. Faivre

#### National communities inputs for ESPPU

#### (Apologies if I missed one!)

French:

#### 5.3 Sustainability

German:

As scientists and as part of our society, the German HEP community is committed to building a sustainable future. Our research activities and research infrastructure must aim to minimize resource consumption and negative impacts on the environment, while exploring how research and development through our international collaborations can further contribute to the UN Sustainable Development Goals. (...)

Sustainability considerations in HEP are pivotal, to respect the planetary boundaries, to comply with the rapidly evolving regulation, and to align with the global effort demanded on society. The HEP community should lead by example by addressing these issues from the earliest stages of future projects, thereby increasing their acceptance by civil society and

strengthening the staff's engagement. (...)

**Sustainability** 

3.4

#### Serbian:

#### Polish:

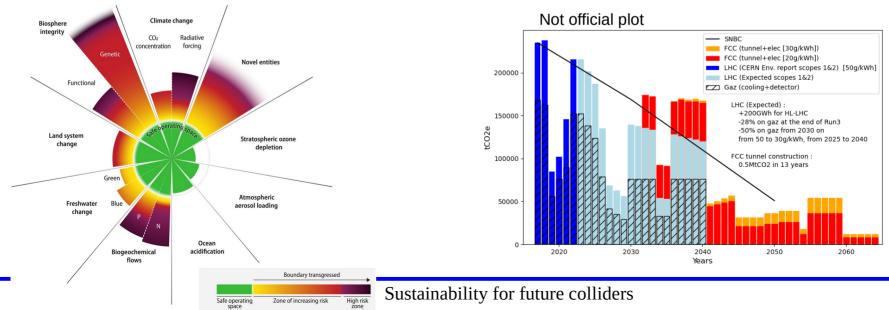
be carried out in a coordinated manner and in line with the adopted strategy. The communication narrative should not be limited to research alone, but cover a wide range of topics including societal benefits, **environmental impact** and demonstrating that international scientific cooperation drives progress and peace, etc. In order to achieve these goals, more effort and resources need to be put into

new GDs, such as RPCs, Micromegas, and GEMs. Environmentally friendly development is a key element of the R&D process, especially in the area of gas mixture studies, where not only detector performance is crucial but also the negative impact on the environment is minimised.

#### Ukrainian:

feasibility study. Ensuring that FCC is constructed in the most environmentally-friendly way requires environmental analysis and sustainability studies and, in particular, Life-Cycle Assessment of engineering infrastructure and accelerator components, studies of soil reconstitution, development of renaturalization projects and new construction techniques, as well as knowledge of landscape integrated architecture. All these topics are of immense interest for Ukraine at the moment and collaboration with CERN on them would be extremely beneficial.

With respect to sustainability, we reserve the right to adapt the text once additiona reports are made public. Based on current information, the Linear Collider appears to have the most developed strategy. However, we expect that any future project will prioritize this issue in the long run.


#### Spanish:

#### 8. Early career researchers

The Spanish HEP ECRs stress the importance of an early decision on the next collider at CERN, as well as of their involvement in the associated R&D developments. This engagement will not only enhance their skills but also ensure their insights and ideas are integrated into the planning process. They are particularly attentive to the economic, environmental, and societal impact of HEP. Concerns about career prospects and job security are widespread among ECRs, significantly influencing their motivation to remain in academia.

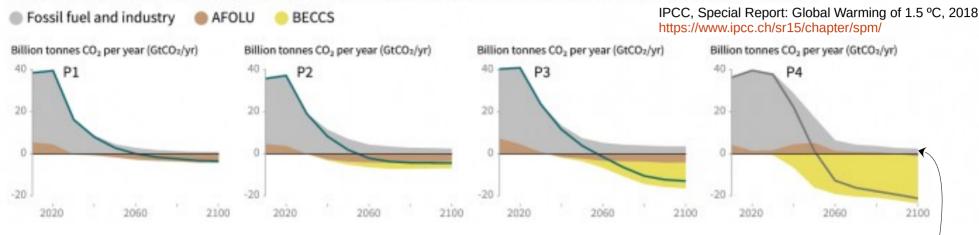
#### Conclusions

- Humanity is facing huge challenges
  - Most of European communities wants the HEP to be exemplary.
- How could HEP be part of the solution ?
  - innovations (tech, but also social ?)
  - biodiversity harvest ?
- LCA is a crucial tool, to evaluate & to plan how to reduce the impacts
  - Research field on its own



# Backup

### Bibliography

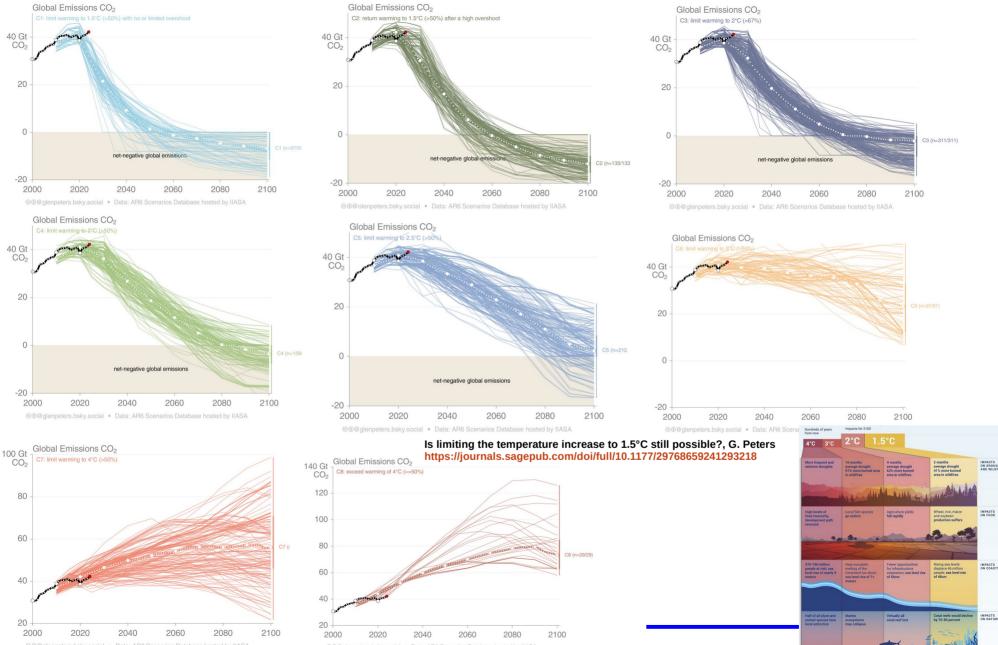

- CERN and the Environment (Nov 2024): https://indico.cern.ch/event/1456577/
- FCC LCA (oct 2024) https://zenodo.org/records/13899160
- Energy for Sust. Sc. At Research Infra (sept 2024) https://agenda.ciemat.es/event/4431/
- Interim report for the International Muon Collider Collaboration (IMCC) (July 2024) https://arxiv.org/abs/2407.12450
- Know your footprint (for HEP physicists) (mar 2024) https://arxiv.org/abs/2403.03308
- Sustainability Strategy for the Cool Copper Collider (nov 2023) https://arxiv.org/abs/2307.04084
- LCA of CLIC&ILC (July 2023)

https://edms.cern.ch/ui/#!master/navigator/document?D:101320218:101320218:subDocs

 The carbon footprint of proposed e+e- Higgs factories (sept 2022) https://arxiv.org/abs/2208.10466

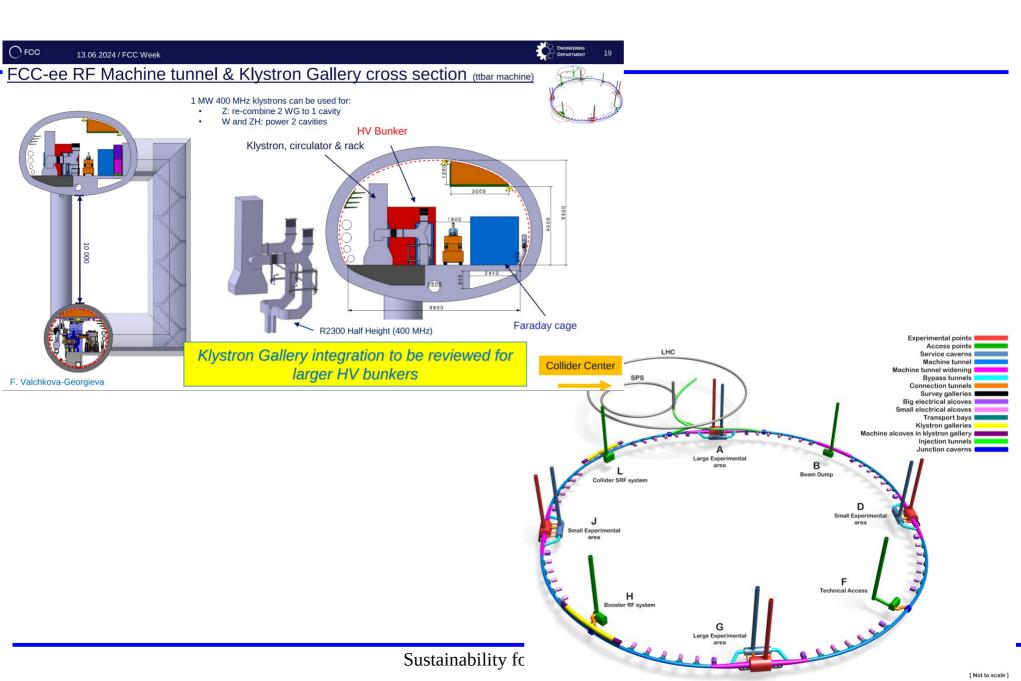
### Climate change & society – in 1 slide

#### Breakdown of contributions to global net CO2 emissions in four illustrative model pathways

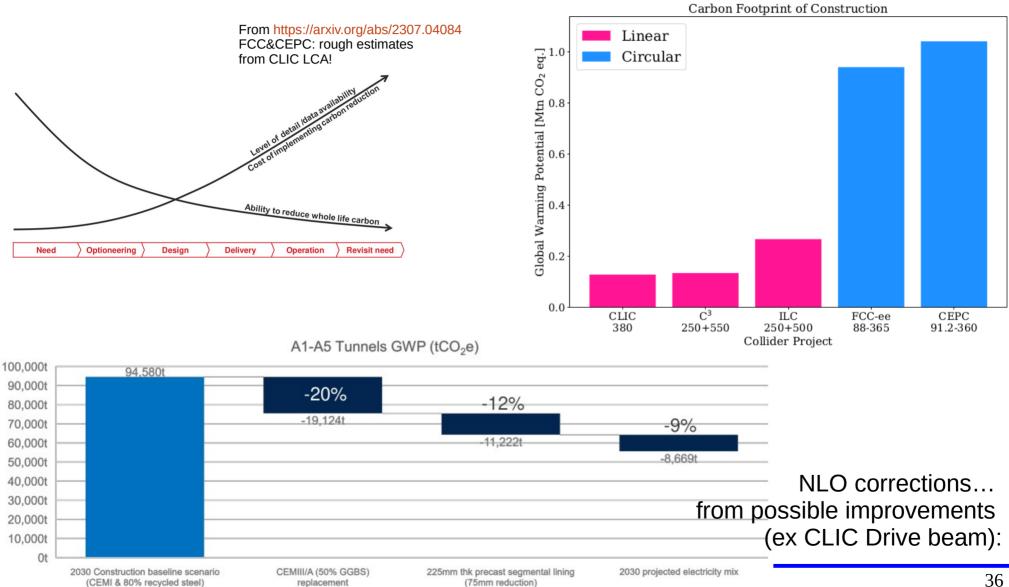



- The longer we wait to reduce our CO2 emissions, the more carbon capture (CC) technology will be needed

=2t/person


- Neutrality needed by ~2050
- CC techs are not yet ready or are expensive

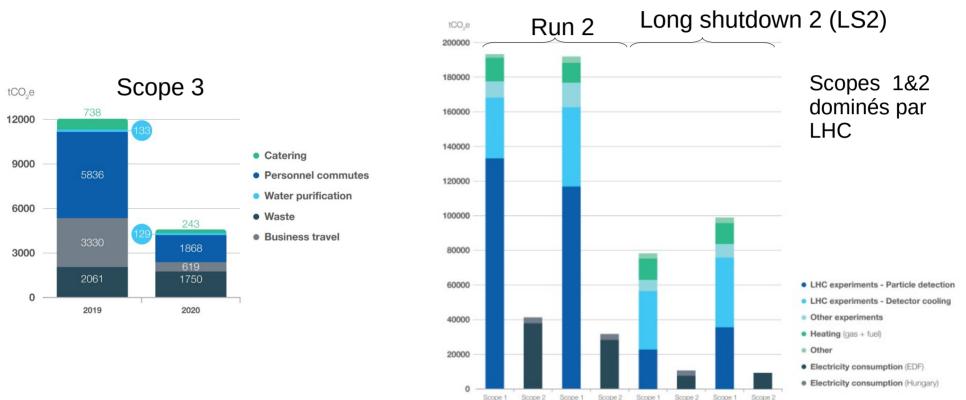
- Carbon budget (to stay <2°C, with 50% chance) : 200GtCO<sub>2</sub>eq (starting from early 2023) Forster et al., 2024, Earth System Science Data




osky.social • Data: AR6 Scenarios Database hosted by IIASA

ers.usry.suurar \* Data. And Soenarius Database nosted by IIASA




### Tunnel @NLO



#### Inputs

CERN environment report 2019-2020

https://hse.cern/environment-report-2019-2020

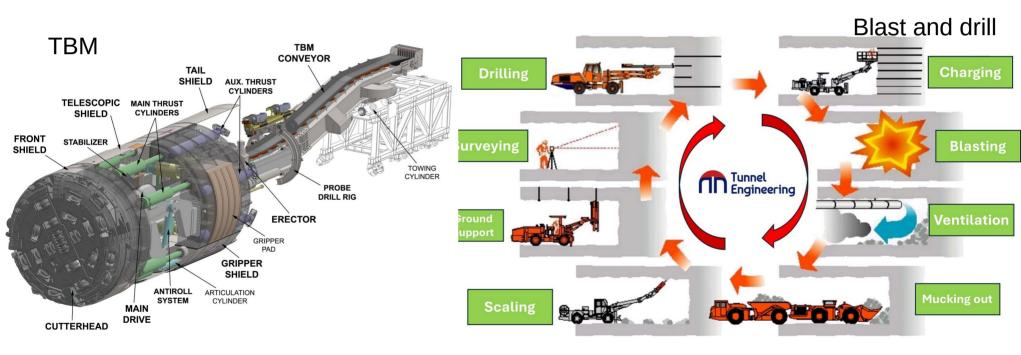


CERN Annual Personnel Statistics

https://cds.cern.ch/collection/CERN%20Annual%20Personnel%20Statistics

2017

2018


2019

2020

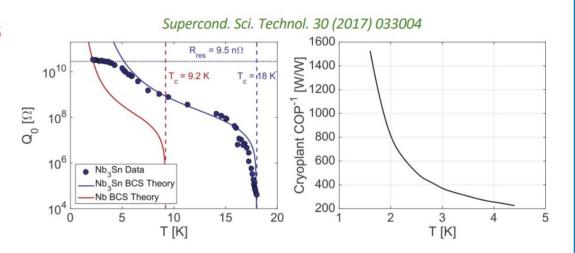
### Tunnel @NLO

Main parameters:

length, profile : amount of concrete and steel, technology



#### Accelerator operations

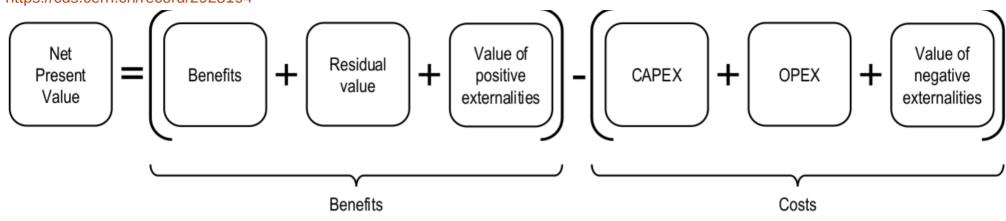

Example of other developments on going, likely for after CEPC/FCCee:

#### iSAS develops, prototypes & validates SRF energy-saving technologies

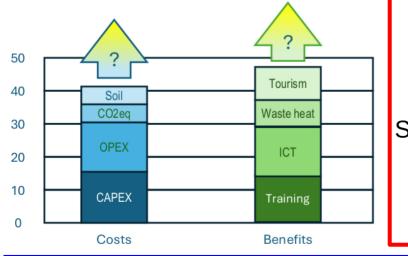
#### TA#2: energy-savings from cryogenics

The objective is focused on the development of thin-film cavities and aims to transform conventional superconducting radio-frequency technology based on off-shelf bulk niobium operating at 2 K, into a technology operating at 4.2 K using a highly functionalized material, where individual functions are addressed by different layers.

iSAS will optimize the coating recipe for Nb<sub>3</sub>Sn on copper to optimize tunability and flux trapping of thin-film superconducting cavities and to validate a prototype beyond the achievements of the ongoing Horizon Europe I.FAST project, and the various US-based achievements (e.g., GARD).




The higher critical temperature (T<sub>c</sub>) of Nb<sub>3</sub>Sn allows for the maximum value of quality factor Q<sub>0</sub> for 1.3 GHz cavities to be achieved at operating temperatures of about 4 K compared to 2 K for Nb (left figure). The graph on the right shows the efficiency of a cryogenic plant (COP) as a function of temperature achieving about 3 times higher COP efficiency when operating at a temperature of 4.2 K than at 2 K. This suggests that operating a cryogenic plant at 4.2 K with Nb<sub>3</sub>Sn SRF cavities, can lead to significant better performances and energy savings.


#### https://agenda.ciemat.es/event/4431/contributions/5058/

### How do we decide whether a collider is "sustainable" ?

FCC Feasibility Study Report Vol 3 : Civil Engineering, Implementation and Sustainability https://cds.cern.ch/record/2928194



Estimations with best estimates and unknowns...



#### **Economic formula to actualize the benefits/costs:**

| $\mathrm{Present}_{\mathrm{Value}} = rac{\mathrm{Future}_{\mathrm{Value}}}{(1 + \mathrm{SDR})^{\mathrm{year}-\mathrm{base}_{-}}}$ | year         |                |
|------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
|                                                                                                                                    | Institution  | SDR for Carbon |
| SDR: Social Discount Rate                                                                                                          | US EPA (old) | 3%             |
| - debate on the right value:<br>(0 means future generations                                                                        | US EPA (new) | 2%             |
| are equally important as present one)                                                                                              | Stern Review | 1.4%           |
| - set it to 2.8%                                                                                                                   | EIB          | ~1-2%          |

#### How do we decide whether a collider is "sustainable" ?

|                                                                                                                                                                                                                                                                                                          | > : E                                                                         | Effect of SDR                                                             |                                                               |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Cost/Benefit                                                                                                                                                                                                                                                                                             | Undiscounted                                                                  | Discounted                                                                | -                                                             |  |  |
| (A) Costs                                                                                                                                                                                                                                                                                                |                                                                               | 19 666 MCHF                                                               | -                                                             |  |  |
| Investment costs (for 4 experiments, injector and $t\bar{t}$ stage)<br>Personnel costs<br>Operation costs (materials, consumables, services)                                                                                                                                                             | 16 215 MCHF<br>16 802 MCHF<br>4410 MCHF                                       | 10 171 MCHF<br>7544 MCHF<br>1879 MCHF                                     | Cost due to C omission for                                    |  |  |
| Dismantling costs (B) Negative externalities                                                                                                                                                                                                                                                             | 228 MCHF                                                                      | 72 MCHF<br>354 MCHF                                                       | tunnel construction                                           |  |  |
| Shadow cost of carbon<br>Loss of agricultural income, biodiversity & habitat<br>Social cost of project-related, induced noise<br>Social cost of project-related, traffic-induced air pollution<br>Social cost of project-related, traffic-induced GHG externalities<br>Social cost of ionising radiation | 634 MCHF<br>7.6 MCHF<br>0.02 MCHF<br>0.9 MCHF<br>9.8 MCHF<br>1.3 MCHF         | 342 MCHF<br>4.1 MCHF<br>0.02 MCHF<br>0.6 MCHF<br>7 MCHF<br>0.6 MCHF       | ( <i>no detector, nor computing, nor collaboration life</i> ) |  |  |
| (C) Core benefits                                                                                                                                                                                                                                                                                        |                                                                               | 23 974 MCHF                                                               | -                                                             |  |  |
| Scientific production<br>Early career researcher training<br>Industrial benefits for suppliers<br>Onsite visitors<br>Online and social media<br>Open software (experiments and detectors)                                                                                                                | 6507 MCHF<br>20 687 MCHF<br>17 577 MCHF<br>4538 MCHF<br>229 MCHF<br>7428 MCHF | 2813 MCHF<br>4986 MCHF<br>9569 MCHF<br>2129 MCHF<br>102 MCHF<br>4375 MCHF |                                                               |  |  |
| Total costs including negative externalities                                                                                                                                                                                                                                                             | ( <b>A</b> + <b>B</b> )                                                       | 20 020 MCHF                                                               | _                                                             |  |  |
| Total core benefits                                                                                                                                                                                                                                                                                      | (C)                                                                           | 23 974 MCHF                                                               | -                                                             |  |  |
| Reference net present value (NPV)                                                                                                                                                                                                                                                                        | (C) - (A + B)                                                                 | 3954 MCHF                                                                 | >0 :FCC feasibility study concludes                           |  |  |
| Reference Benefit Cost Ratio (BCR)                                                                                                                                                                                                                                                                       |                                                                               | 1.20                                                                      | it is worth to make it                                        |  |  |
|                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                           |                                                               |  |  |

### Construction du LHC

- Pas clair comment amortir
  - Tunnel déjà existant (accélérateur LEP)
  - Temps d'amortissement ?
  - Prise en compte des upgrades ?
- Ordre de grandeur

|   | А           | В        | С        | D          | E                    | F |  |  |  |
|---|-------------|----------|----------|------------|----------------------|---|--|--|--|
| 1 | cout:       | 4,50E+09 | euros    | LHC+4 expe | HC+4 experiences (CH |   |  |  |  |
| 2 | annees:     | 2008     | 2040     | 32         | ans                  |   |  |  |  |
| 3 |             |          |          | 1,41E+08   | euros/an             |   |  |  |  |
| 4 | FE:         | 0,3      | kg/euros |            |                      |   |  |  |  |
| 5 | Co2eq:      | 4,22E+04 | tonnes   |            |                      |   |  |  |  |
| 6 | physiciens: | 8600     |          |            |                      |   |  |  |  |
| 7 |             | 4,91     | t/phys   |            |                      |   |  |  |  |

 $\rightarrow$  Pas pris en compte