What can a circular collider in the Z pole add to flavour factories?

Nazila Mahmoudi IP2I / Lyon University (FR)

International Workshop on the Circular Electron-Positron Collider Barcelona, June 16th to 19th, 2025

Why Flavour?

Flavour Physics

Standard Model parameters:

Flavour is at the heart of the Standard Model!

Flavour Physics

Standard Model parameters:

Flavour is at the heart of the Standard Model!

CKM

Still, there is no explanation for the flavour structure of the Standard Model!

→ The Standard Model flavour puzzle

And several other fundamental questions remain unanswered:

- → The New Physics flavour puzzle
- → CP violation (new sources of CP violation are needed for baryogenesis)

Indirect search for NP

Flavour physics offers a range of observables sensitive to physics beyond the SM

- Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

Indirect search for NP

Flavour physics offers a range of observables sensitive to physics beyond the SM

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

Eratosthenes discovered the roundness of Earth...

...about 2300 years before its direct observation!

-

Golden Channels

What Makes One?

- → Theoretical cleanliness: e.g. ratios with reduced hadronic uncertainty → enhanced NP sensitivity
- → Experimentally visible and reconstructible
- → Unique access at CEPC: e.g., modes with neutrinos or photons
- → **Discovery potential**: modes with low SM rates, high NP sensitivity

QCD at work

At the quark level, short-distance physics, described by electroweak part of Lagrangian

 \rightarrow computed in perturbation theory

Most studies rely on QCD, both perturbatively and non-perturbatively

QCD at work

At the guark level, short-distance physics, described by electroweak part of Lagrangian

 \rightarrow computed in perturbation theory

At the hadronic level, convoluted with long-distance physics, described by QCD

 \rightarrow new hadronic quantities

Effective Theory

Basic idea: Fermi-like approach: separation between low and high energies

$$\mathcal{A}(A \to B) = \frac{G_F}{\sqrt{2}} \sum_{i} \lambda_i \frac{C_i}{\langle B | \mathcal{O}_i | A \rangle}$$

Short distances: Wilson coefficients (perturbative) Long distances: local operators (non-perturbative) $egin{aligned} \mathcal{O}_{7} \propto (ar{s}\sigma^{\mu
u}P_{R})F^{a}_{\mu
u}\ \mathcal{O}_{9} \propto (ar{s}\gamma^{\mu}b_{L})(ar{\ell}\gamma_{\mu}\ell)\ \mathcal{O}_{10} \propto (ar{s}\gamma^{\mu}b_{L})(ar{\ell}\gamma_{\mu}\gamma_{5}\ell) \end{aligned}$

Effective Theory

Basic idea: Fermi-like approach: separation between low and high energies

$$\mathcal{A}(A \to B) = \frac{G_F}{\sqrt{2}} \sum_{i} \lambda_i \frac{C_i}{\langle B | \mathcal{O}_i | A \rangle}$$

Short distances: Wilson coefficients (perturbative) Long distances: local operators (non-perturbative) $\mathcal{O}_{7} \propto (\bar{s}\sigma^{\mu\nu}P_{R})F^{a}_{\mu\nu}$ $\mathcal{O}_{9} \propto (\bar{s}\gamma^{\mu}b_{L})(\bar{\ell}\gamma_{\mu}\ell)$ $\mathcal{O}_{10} \propto (\bar{s}\gamma^{\mu}b_{L})(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$

- → Simplification of the problem, keeping only relevant degrees of freedom
- → Can be applied to any process
- \rightarrow Easy implementation of New Physics (change C, new O)

Anomalies

Anomalies

Significant tensions in the semileptonic decays

Anomalies

NP implication

Global fit to all available bsll data

<u>Caveat</u>: given certain assumptions for hadronic uncertainties

T. Hurth, FM, Y. Monceaux, S. Neshatpour, 2025

Barcelona, June 19th, 2025

Flavour at CEPC

CEPC and Flavour Physics

Key advantages:

- High integrated luminosity available at the CEPC Z pole
- **Clean experimental environment** from e⁺e⁻ collisions
- Advanced detector technology and cutting-edge analysis techniques

The CEPC produces highly boosted heavy-flavour quarks and leptons \rightarrow Their relativistic decay products enable precise momentum and lifetime measurements

Compared to hadron colliders, the CEPC offers better capabilities for identifying and reconstructing final states involving neutral or invisible particles

Uniqueness of CEPC flavour physics studies!

CEPC as a Z factory

- 4×10¹² Z bosons in 2 years of running
- Clean e⁺e⁻ collisions
 - \rightarrow excellent signal reconstruction

The abundant production of bottom and charm quarks, as well as tau leptons from Z decays, create opportunities for a wide range of key flavour physics measurements

CEPC's Z pole statistics allow precision and rare probes that go beyond what current flavour factories provide!

Tera-Z in Numbers

Particle	BESIII	Belle II (50 ab^{-1} on $\Upsilon(4S)$)	LHCb (300 fb^{-1})	CEPC $(4 \times \text{Tera-}Z)$
B^0, \bar{B}^0	-	5.4×10^{10}	$3 imes 10^{13}$	4.8×10^{11}
B^{\pm}	-	$5.7 imes 10^{10}$	$3 imes 10^{13}$	$4.8 imes 10^{11}$
B^0_s, \bar{B}^0_s	-	$6.0 \times 10^8 (5 \text{ ab}^{-1} \text{ on } \Upsilon(5S))$	1×10^{13}	$1.2 imes 10^{11}$
B_c^{\pm}	-	-	1×10^{11}	$7.2 imes 10^8$
$\Lambda^0_b,\ ar\Lambda^0_b$	-	-	2×10^{13}	1×10^{11}
$D^0,ar{D}^0$	1.2×10^8	$4.8 imes 10^{10}$	1.4×10^{15}	8.3×10^{11}
D^{\pm}	$1.2 imes 10^8$	$4.8 imes 10^{10}$	$6 imes 10^{14}$	$4.9 imes 10^{11}$
D_s^{\pm}	1×10^7	$1.6 imes 10^{10}$	2×10^{14}	$1.8 imes10^{11}$
Λ_c^{\pm}	$0.3 imes 10^7$	$1.6 imes 10^{10}$	2×10^{14}	6.2×10^{10}
$\tau^+\tau^-$	3.6×10^8	$4.5 imes 10^{10}$		$1.2 imes 10^{11}$

CEPC White paper, 2412.19743

- Orders of magnitude more charm, bottom, and tau hadrons than Belle II

- Statistically competitive with LHCb, but with much cleaner environment
 - Both FCC-ee and ILC feature a Z factory phase

FCC-ee Z-pole run proposes an integrated luminosity (~180 ab^{-1}) comparable to that of CEPC \rightarrow Some FCC-ee studies are therefore also relevant for CEPC

CEPC Challenges

- Improve background understanding and control systematic effects to avoid systematic uncertainties becoming dominant
- Multitude of viable channels to be studied
 - \rightarrow identifying the "golden channels"
- Control of theoretical uncertainties, in particular
 - Non-perturbative hadronic quantities
 - Perturbative QCD and electroweak corrections to Wilson coefficients
 - Lattice QCD calculations of heavy-flavour form factors

To rigorously test the SM and search for NP, the theoretical precision must match the accuracy of experimental measurements!

Observables

FCNC Decays

Flavour changing neutral currents are forbidden in the SM at tree level

- SM: loop-suppressed
- suppressed by off-diagonal CKM matrix elements
- \rightarrow excellent NP probes!
- Operators: vector, axial, dipole, scalar

CEPC provides precise rates and angular observables with reduced backgrounds

 $b \rightarrow s\ell^+\ell^-$

- A plethora of observables! Branching ratios Angular observables (e.g., P₅') LFU ratios

- Can test flavour anomalies and fit new Wilson coefficients
- CEPC cleanly reconstructs full event
- Access to electron and muon modes equally

 $\rightarrow S\ell^{+}\ell^{-}$

- A plethora of observables! Branching ratios Angular observables (e.g., P₅') LFU ratios

- Can test flavour anomalies and fit new Wilson coefficients
- CEPC cleanly reconstructs full event
- Access to electron and muon modes equally
- The τ modes can be accessible at the CEPC!

Since τ decays produce neutrinos, $b \rightarrow s\tau\tau$ events are not fully visible

 \rightarrow The reconstruction of b \rightarrow stt is more involved compared to b \rightarrow see, sµµ

$b \rightarrow st^{+}t^{-}$

Channel	Belle II $[10]$	LHCb $[9]$	$\operatorname{Giga-}Z$	Tera - Z	$10 \times \text{Tera-}Z$
$B^0 \to K^{*0} \tau^+ \tau^-$	-	-	$5.0^{+2.1}_{-1.5}(22,27) \times 10^{-6}$	$1.6^{+0.7}_{-0.5}(6.8, 8.5) \times 10^{-7}$	$5.0^{+2.1}_{-1.5}(22,27) \times 10^{-8}$
$B_s \to \phi \tau^+ \tau^-$	-		$1.5^{+0.6}_{-0.4}(4.9, 5.9) \times 10^{-5}$	$4.8^{+1.9}_{-1.4}(15,19) \times 10^{-7}$	$1.5^{+0.6}_{-0.4}(4.9, 5.9) \times 10^{-7}$
$B^+ \to K^+ \tau^+ \tau^-$	$<2.0\times10^{-5}$	-	$4.4^{+1.6}_{-1.1}(19,25) \times 10^{-6}$	$1.4^{+0.6}_{-0.3}(6.0, 8.0) \times 10^{-7}$	$4.4^{+1.6}_{-1.1}(19,25) \times 10^{-8}$
$B_s \to \tau^+ \tau^-$	$< 8.1 \times 10^{-4}$	$5{\times}10^{-4}$	$4.9^{+0.9}_{-0.7}(5.6, 6.3) \times 10^{-4}$	$1.5^{+0.3}_{-0.2}(1.8, 2.0) \times 10^{-5}$	$4.9^{+0.9}_{-0.7}(5.6, 6.3) \times 10^{-6}$

Li, Liu, JHEP 06 (2021) 064

Because of their boost, signal b-hadrons travel farther before decaying, compared to, e.g., Belle II

A tracker-based reconstruction strategy for $b \rightarrow s \tau \tau$ has been developed

Tera-Z can measure $B^0 \rightarrow K^{*0}\tau\tau$, $B_s^0 \rightarrow \phi\tau\tau$, $B^+ \rightarrow K^+\tau\tau$ with absolute precision of O(10⁻⁷ – 10⁻⁶)

can reach O(10^{-6} – 10^{-5}) precision for $B_s^{\ 0} \to \tau\tau$

Belle II and LHCb are either insensitive to these modes or limited to sensitivities 1-2 orders of magnitude weaker

To cover different possible new physics directions:

- Use of differential observables such as forward-backward asymmetry and τ polarimetry

Kamenik et al., Eur. Phys. J. C 77 (2017) 701

To cover different possible new physics directions:

- Use of differential observables such as forward-backward asymmetry and τ polarimetry

Kamenik et al., Eur. Phys. J. C 77 (2017) 701

- Study b \rightarrow stt transitions of different nature like the **baryonic decay** $\Lambda_{b} \rightarrow \Lambda \tau^{+} \tau^{-}$

To cover different possible new physics directions:

- Use of differential observables such as forward-backward asymmetry and τ polarimetry

Kamenik et al., Eur. Phys. J. C 77 (2017) 701

- Study b \rightarrow stt transitions of different nature like the **baryonic decay** $\Lambda_{h} \rightarrow \Lambda \tau^{+} \tau^{-}$
- LFU tests: Measurements of ratios like $R_{K}^{(*)}$, R_{pK} , R_{ϕ} , $R_{f2'}$ (1525), and R_{Λ} offer additional insight to lepton flavour universality violation
 - -> For some of these, PID-related systematics may dominate; but future detectors' superior e/μ ID capabilities can offer a significant advantage over LHCb

To cover different possible new physics directions:

- Use of differential observables such as forward-backward asymmetry and τ polarimetry

Kamenik et al., Eur. Phys. J. C 77 (2017) 701

- Study b \rightarrow stt transitions of different nature like the **baryonic decay** $\Lambda_{\rm b} \rightarrow \Lambda \tau^+ \tau^-$
- LFU tests: Measurements of ratios like $R_{K}^{(*)}$, R_{pK} , R_{ϕ} , $R_{f2'}$ (1525), and R_{Λ} offer additional insight to lepton flavour universality violation

-> For some of these, PID-related systematics may dominate; but future detectors' superior e/µ ID capabilities can offer a significant advantage over LHCb

- Rare leptonic decays: With ~1.2× $10^{11} B_s^0$ mesons expected at CEPC, about 360 $B_s^0 \rightarrow \mu^+\mu^-$ events would be produced -> enabling improved precision

To cover different possible new physics directions:

- Use of differential observables such as forward-backward asymmetry and τ polarimetry

Kamenik et al., Eur. Phys. J. C 77 (2017) 701

- Study b \rightarrow stt transitions of different nature like the **baryonic decay** $\Lambda_{\rm b} \rightarrow \Lambda \tau^+ \tau^-$
- LFU tests: Measurements of ratios like $R_{K}^{(*)}$, R_{pK} , R_{ϕ} , $R_{f2'}$ (1525), and R_{Λ} offer additional insight to lepton flavour universality violation

-> For some of these, PID-related systematics may dominate; but future detectors' superior e/µ ID capabilities can offer a significant advantage over LHCb

- Rare leptonic decays: With ~1.2× 10¹¹ B_s^0 mesons expected at CEPC, about 360 $B_s^0 \rightarrow \mu^+\mu^-$ events would be produced -> enabling improved precision
- Exploration of $b \rightarrow d\ell^+\ell^-$ transitions remains an important complementary direction These are extremely hard to access at hadron colliders due to low rates and high backgrounds

Neutrino modes: $b \rightarrow sv\bar{v}$

- SM: very clean theoretically, rare $(~10^{-5})$
- First evidence for $B^{*} \rightarrow K^{*}vv\bar{v}$ by Belle II is 2.7 σ above the SM prediction
- Invisible final states easy at CEPC, hard at LHCb

Neutrino modes: $b \rightarrow sv\bar{v}$

- SM: very clean theoretically, rare $(~10^{-5})$
- First evidence for $B^{_+} \rightarrow K^{_+}vv\bar{v}$ by Belle II is 2.7 σ above the SM prediction
- Invisible final states easy at CEPC, hard at LHCb
- CEPC can measure B^0 and baryon decays, which are not accessible at Belle II:

 $B^{0} \rightarrow K^{*} v \bar{v} \qquad B^{0}_{s} \rightarrow \phi v \bar{v} \qquad B^{0} \rightarrow K^{0}_{s} v \bar{v} \qquad \Lambda^{0}_{b} \rightarrow \Lambda^{0} v \bar{v} \qquad \Xi^{\pm}_{b} \rightarrow \Xi^{\pm} v \bar{v}$

CEPC can reach few-% precision!

Y. Amhis et al., JHEP01, 144 (2024)L. Li et al., Phys.Rev.D 105 (2022) 11, 114036

Unique opportunities at CEPC!

Neutrino Channels: $b \rightarrow sv\bar{v}$

 $B^0_{s} \rightarrow \phi v \bar{v}$

- Large B_s statistics at CEPC
- High signal-to-background ratio (~77%)

L. Li et al., Phys.Rev.D 105 (2022) 11, 114036

A relative precision $\leq 2\%$ can be achieved for measuring the SM $B^0 \rightarrow \phi v v \bar{v}$ signal

The first penguin ever observed! (In 1994 by CLEO experiment)

Contributing loops:

- Dominated by dipole operators

 $O_7 \propto (\bar{s}\sigma^{\mu\nu}P_R)F^a_{\mu\nu}$

- Sensitive to charged Higgs, NP particles in the loops

The first penguin ever observed! (In 1994 by CLEO experiment)

 $O_7 \propto (\bar{s}\sigma^{\mu\nu}P_R)F^a_{\mu\nu}$

Contributing loops:

- Dominated by dipole operators
- Sensitive to charged Higgs, NP particles in the loops
- hoton isolation at CEPC compared to LHCb - Imp

-> reduced uncertainties at CEPC, e.g. for $B_{c} \rightarrow \phi \gamma$

The first penguin ever observed! (In 1994 by CLEO experiment)

Contributing loops:

- Dominated by dipole operators

- $O_7 \propto (\bar{s}\sigma^{\mu\nu}P_R)F^a_{\mu\nu}$
- Sensitive to charged Higgs, NP particles in the loops
- Improved photon isolation at CEPC compared to LHCb

-> reduced uncertainties at CEPC, e.g. for $B_{c} \rightarrow \phi \gamma$

- Better sensitivities also for baryonic radiative decays: $\Lambda_{\rm b} \rightarrow \Lambda_{\gamma}$ and $\Xi_{\rm b} \rightarrow \Xi_{\gamma}$

The first penguin ever observed! (In 1994 by CLEO experiment)

 $O_7 \propto (\bar{s}\sigma^{\mu\nu}P_R)F^a_{\mu\nu}$

Contributing loops:

- Dominated by dipole operators
- Sensitive to charged Higgs, NP particles in the loops
- Improved photon isolation at CEPC compared to LHCb

-> reduced uncertainties at CEPC, e.g. for $B_{c} \rightarrow \phi \gamma$

- Better sensitivities also for baryonic radiative decays: $\Lambda_{\rm b} \rightarrow \Lambda_{\gamma}$ and $\Xi_{\rm b} \rightarrow \Xi_{\gamma}$
- Double-radiative decays of $B_{s,d} \rightarrow \gamma \gamma$ could also be measured

FCCC Decays

Main interests:

- \overline{b} V_{cb}^* W^+ \overline{c} \overline{c} q
- Determining the values of the CKM matrix elements $q \longrightarrow b \rightarrow c\ell v$ and $b \rightarrow u\ell v$ can be used to extract $|V_{cb}|$ and $|V_{ub}|$
- Testing lepton flavour universality
 Particularly interesting: measurements involving τ decays
- Scalar/pseudoscalar operators probed via τ final states
- CEPC access to B_c, A_b new observables not accessible or planned to produce at B-factories
- Strong sensitivity in EFT framework

$B_c \rightarrow tv: A Clean Window$

- Pure leptonic decay: theory clean
- Sensitive to scalar NP (2HDM, leptoquarks)
- Large SM branching ratio of $B_c \rightarrow \tau v \sim 2.3 \times 10-2$
- Current constraint relatively weak: $BR(B_c \rightarrow \tau v) \lesssim 30\%$

CEPC can measure this BR with a precision of $O(10^{-4})$

Zuo et al., Eur. Phys. J. C 84 (2024)

Zheng et al., Chin.Phys.C 45 (2021) 2, 023001

$B_c \rightarrow tv: A Clean Window$

$$\Gamma_{\rm SM}(B_c^+ \to l^+ v_l) = \frac{G_F^2}{8\pi} |V_{cb}|^2 f_{B_c}^2 m_{B_c} m_l^2 \left(1 - \frac{m_l^2}{m_{B_c}^2}\right)^2$$

- CEPC expected precision:
 - ~1% on BR with 4×Tera-Z

Zheng et al., Chin.Phys.C 45 (2021) 2, 023001

Semileptonic LFU: Ratios

- Recent anomalies in R_{κ}/R_{p} prompted focus on LFU
- CEPC adds new channels like $R_{J/\psi}^{},\,R_{\Lambda c}^{}$, $R_{Ds}^{}$ with great precision

- SM predictions known, hadronic uncertainties cancel in ratios

Semileptonic LFU: Ratios

- Recent anomalies in R_{κ}/R_{p} prompted focus on LFU
- CEPC adds new channels like $R_{J/\psi}^{},\,R_{\Lambda c}^{}$, $R_{Ds}^{}$ with great precision

- SM predictions known, hadronic uncertainties cancel in ratios
- CEPC achieves sub-% statistical precision

Physical Quantity	SM Value	Tera-Z	$10 \times \text{Tera-}Z$	Belle II	LHCb
$R_{J/\psi}$	0.289	4.25×10^{-2}	1.35×10^{-2}	-	-
R_{D_s}	0.393	4.09×10^{-3}	1.30×10^{-3}	Ξ.	-
$R_{D_s^*}$	0.303	3.26×10^{-3}	1.03×10^{-3}	-	-
R_{Λ_c}	0.334	$9.77 imes 10^{-4}$	$3.09 imes 10^{-4}$	-	_

Ho et al., PRD 109 (2024) 093004

CP Violation: Targets

Important to address the puzzle of BAU

CEPC advantages:

- high statistics
- low backgrounds
- efficient hadron ID
- excellent displacement resolution

Example: Time-dependent CPV in $B_c \rightarrow J/\psi \phi$

Charm Physics

In the SM: BR($Z \rightarrow c\bar{c}$) = 12% \Rightarrow CEPC can also serve as a charm factory!

- Semileptonic c-hadron decays
 - -> stronger GIM suppression than rare B decays
 - -> High sensitivity to NP
- LFU tests in $c \rightarrow u\ell^+\ell^-$ decays
- Search for LFV decays: $D \to \pi e \mu$, $D_{_S} \to K e \mu$
- Angular distributions in $c \to u \boldsymbol{\ell}^{\scriptscriptstyle +} \boldsymbol{\ell}^{\scriptscriptstyle -}$
- Neutrino modes, eg $D \rightarrow \pi v \bar{v}$ and $D_{_{S}} \rightarrow K v \bar{v}$
- Hadronic c-hadron decays, eg $D^0 \rightarrow K^0_{\ S} \pi^0$, $K^0_{\ S} \omega$, $K^0_{\ S} \phi$

More dedicated studies for CEPC are needed!

- ...

Strange Physics

The CEPC offers **promising reconstruction capabilities** for K_s^0 and Λ decays into a pair of charged tracks

with an efficiency \geq 80% and a purity ~95%

Zheng et al., Eur. Phys. J. Plus 135 (2020) 274

With over $10^{12} \text{ K}_{\text{S}}^{0}$ produced in hadronic Z decays, the CEPC will have sensitivity to rare decays like $\text{K}_{\text{S}}^{0} \rightarrow \mu^{+}\mu^{-}$ and probing new physics

In contrast, high-intensity kaon factories focus on longer-lived kaons such as K^{\pm} and K_{μ}

Strange Physics

The CEPC offers **promising reconstruction capabilities** for K_s^0 and Λ decays into a pair of charged tracks

with an efficiency \geq 80% and a purity ~95%

Zheng et al., Eur. Phys. J. Plus 135 (2020) 274

With over $10^{12} \text{ K}_{\text{S}}^{0}$ produced in hadronic Z decays, the CEPC will have sensitivity to rare decays like $\text{K}_{\text{S}}^{0} \rightarrow \mu^{+}\mu^{-}$ and probing new physics

In contrast, high-intensity kaon factories focus on longer-lived kaons such as K^{\pm} and K_{μ}

The CEPC sensitivity could also extend to rare decays involving additional neutral particles, e.g., $K_s^0 \rightarrow \mu^+ \mu^- \gamma$ or $K_s^0 \rightarrow \mu^+ \mu^- \pi^0$

-> Given their low rates, need for careful evaluation of systematic uncertainties

Other probes

τ Physics

- LFV: $\tau \rightarrow \mu \gamma, \; 3 \mu$
- LFU: $\tau \rightarrow evv$ / μvv
- Hadronic τ = probe of QCD and structure
- CEPC: high stats and clean tau reconstruction!

Spectroscopy & Exotics

- Exotic hadrons (tetraquarks, glueballs)
- Displaced decays, ALPs, dark photons
- CEPC = ideal for long-lived searches

Summary

- CEPC Z pole run offers unprecedented flavour physics reach
- Unique opportunities in golden modes
- Complementary to Belle II, LHCb
 - More work needed for:
 - Full study (Simulation) of relevant decays

Attribute	$\Upsilon(4S)$	pp	Ζ
All hadron species		\checkmark	\checkmark
High boost		\checkmark	\checkmark
Enormous production cross-section		\checkmark	
Negligible trigger losses	\checkmark		\checkmark
High geometrical acceptance	\checkmark		\checkmark
Low backgrounds	\checkmark		\checkmark
Flavour-tagging power	\checkmark		\checkmark
Initial-energy constraint	\checkmark		(√)

J. F. Kamenik et al., Contribution to EPSSU 2025

- Identify golden modes at the CEPC that may have been overlooked as they are not suited for the existing experiments
- Theory needs to match precision

CEPC = a discovery machine for flavour

Thank You!