X*-Factories and Beyond

* where X = Higgs, Z, W (and maybe top)

X*-Factories and Beyond * where X = Higgs, Z, W (and maybe top) Andrea Wulzer

d'Altes Energies

Disclaimer:

This is not a strategy talk, nor a projects comparison. It is my answer to the question in the assigned title: "Why are these projects interesting?"

The BIG achievements of Particle Physics

We discovered a satisfactory notion of **causality** From Special Relativity

Understood that particles do not have a position: Detectors have \rightarrow Field Observables $\mathcal{O}(t, \vec{x})$

Microcausality Principle and QFT Incorporates and **supersedes** both QM and SR

The BIG achievements of Particle Physics

We worked out **one single theory** that accounts for (almost) **all phenomena** that ever or will ever occur in the Universe!!

This monumental achievement of mankind is:

The Standard Model

It would definitely deserve a better name

The BIG achievements of Particle Physics

We worked out **one single theory** that accounts for (almost) **all phenomena** that ever or will ever occur in the Universe!!

This theory is close to accomplish the Particle Physics dream.

But we are not yet there

The Standard Model is not enough

Built by a **practical implementation** of QFT principles Surely not the final one, as it **fails with Gravity** A new theory breakthrough is waiting for us

Its particle/field content is merely **dictated by experiments** New experiments are needed to tell if there are more particles And we believe there are: for instance dark matter

Creating heavy particle requires energy: $E = m c^2$

"Practical QFT" does not explain why only some type of interactions are observed. The **Wilsonian explanation** is **disproven** if the Higgs boso

The **Wilsonian explanation** is **disproven** if the Higgs boson is a **fundamental particle** as in the SM:

We must check if it truly is fundamental

We need energy

What's **inside**?

We need **precision** as well

We need **precision** as well

We can build a $\lambda \sim 1/(100 \text{ GeV})$ very precise e⁺e⁻ "microscope" This is the first reason for doing that

Two answers:

Two answers:

#1: Why Not?

Two answers:

#1: Why Not?

Hubble Telescope

James Webb Telescope

Two answers:

#1: Why Not?

The Science that goes in getting precise measurements and precise SM predictions is a physics driver.

Two answers:

#1: Why Not?

The Science that goes in getting precise measurements and precise SM predictions is a physics driver.

#2: Discovery Opportunities

Many past breakthroughs from precision.

Example: nucleon compositeness \rightarrow Truly revolutionary, not anticipated → Comparing precise measurements with "SM" point-like nucleon predictions Fully conclusive and direct proof of finite nucleon radius (c) Point charge, point moment 10⁻³⁰ (anomalous) curve (a) nucleon Mott curve 10⁻³¹ Experimental curve (b) Dinac curve 10⁻³² 50 70 90 110 130 30 150 Laboratory angle of scattering (in degrees)

Two answers:

#1: Why Not?

The Science that goes in getting precise measurements and precise SM predictions is a physics driver.

#2: Discovery Opportunities

Many past breakthroughs from precision. Many **future** opportunities.

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT implementation of QFT principles (and indirectly of the principles). The **first manifestation of** a new class of theories: **massive gauge theories**

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT implementation of QFT principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories

Higgs is not a superconductor There is no Higgs "medium"

Spin-one relativistic particles and their high-energy description are as unique of hep as it sounds

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT implementation of QFT principles (and indirectly of the principles). The **first manifestation of** a new class of theories: **massive gauge theories** A special m.g.t.: perturbatively **extends to high, untested, energies**

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT implementation of QFT principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories

A special m.g.t.: perturbatively extends to high, untested, energies

Testing new SM predictions is a prime target

The Higgs is revolutionary!

- One more direct experimental confirmation of the Practical QFT implementation of QFT principles (and indirectly of the principles).
- The first manifestation of a new class of theories: massive gauge theories
- A special m.g.t.: perturbatively extends to high, untested, energies
- Could be the first elementary scalar.
- Disproves Wilsonian explanation of QFT emergent as EFT.

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT implementation of QFT principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories

A special m.g.t.: perturbatively **extends to high, untested, energies** Could be the first **elementary scalar**.

Disproves Wilsonian explanation of QFT emergent as EFT.

We must check!!

BSM coupled to Higgs

- → Extended H sector is **possible** in general, **expected** in CH, **needed** in SUSY
- \rightarrow New Higgses could be DM, could make EWPT be first order
- → Generic expectation is modified Higgs couplings:

BSM coupled to Higgs

- → Extended H sector is **possible** in general, **expected** in CH, **needed** in SUSY
- \rightarrow New Higgses could be DM, could make EWPT be first order
- → Generic expectation is modified Higgs couplings:

$$H - -BSM - - \underbrace{SM}_{SM} = \frac{SM}{g_{H}^{SM}} \sim \frac{m_{H}^{2}}{m_{BSM}^{2}} = 0.1\% \cdot \left(\frac{3 \text{ TeV}}{m_{BSM}}\right)^{2}$$

HL-LHC cannot probe this physics, not even at 1 TeV

Composite Nambu-Goldstone Higgs

- \rightarrow A structured framework where H is pNGB of new strong sector
- \rightarrow Explains why H is light. Accounts for SM-like H provided ξ is small: Electroweak symmetry breaking scale $\longrightarrow v^2$

Goldstone symmetry breaking scale $f^2 = \xi \ll 1$

→ Modified Higgs couplings:

$$\frac{\delta g_H}{g_H^{SM}} \sim \xi$$

Composite Nambu-Goldstone Higgs

- \rightarrow A structured framework where H is pNGB of new strong sector
- \rightarrow Explains why H is light. Accounts for SM-like H provided ξ is small: Electroweak symmetry breaking scale $\rightarrow v^2$

Goldstone symmetry breaking scale $f^2 = \xi \ll 1$

→ Modified Higgs couplings:

$$\frac{\delta g_H}{g_H^{SM}} \sim \xi$$

 $\xi \sim 10^{-1}$, 10^{-2} could be coincidence: Wilson Smaller ξ is hard to believe: Wilson \times

EW physics opportunities

 10^{12} Z bosons enable, statistically, 10^{-6} precision on couplings

- \rightarrow Unlikely to get to 10⁻⁶, but current is 10⁻³: we will surely improve
- → Experimental and Theoretical accuracy will be limiting factor. Great challenge is great opportunity!

EW physics opportunities

Top threshold

The SM Higgs potential seems to have a second minimum

To be sure that this really happens, and to measure the scale, we need more precision in α_S , m_H and m_t .

Top threshold

Fractional uncertainty on M_t, M_h, α_3

To be sure that this really happens, and to measure the scale, we need more precision in α_S , m_H and m_t .

Precise enough top mass requires top threshold scan

Search for heavy particles

WIMP Dark Matter 2σ reach

ono-muon

mono-photon

mono-photon + 2DT

mono-photon + 1DT

mono-W

Soft Track

mono-muon

mono-photon

mono-W

 $(1,3,0)_{\rm MF}$ Wino-like

 $(1, 2, \frac{1}{2})_{\rm DF}$

 $\sqrt{s} = 3 \text{ TeV}$

 $\sqrt{s} = 10 \text{ TeV}$

Needs:

- Broad coverage of > 1 TeV masses.
- Specific targets like WIMP.
- React to SM tensions @X-Factory.

Complete the Higgs measurement program

MuC complementary on 1-H

FCC-hh for rare H decays

	HL-LHC	HL-LHC	HL-LHC	observable	param	stat.	stat. + syst.
		+10 lev	+10 lev + ee	$\mu = \sigma(\mathbf{H}) \times \mathcal{B}(\mathbf{H} \to \gamma\gamma)$ $\mu = \sigma(\mathbf{H}) \times \mathcal{B}(\mathbf{H} \to \mu\mu)$	$\delta \mu \ \delta \mu$	$0.1\% \\ 0.4\%$	1.4% 1.2%
κ_W	1.7	0.1	0.1	$\mu = \sigma(\mathbf{H}) \times \mathcal{B}(\mathbf{H} \to \ell \ell \ell \ell)$	$\delta \mu$	0.2%	1.8%
κ_Z	1.5	0.2	0.1	$\mu = \sigma(\mathbf{H}) \times \mathcal{B}(\mathbf{H} \to \gamma \ell \ell)$	$\delta \mu$	1.1%	1.7%
κ_{a}	2.3	0.5	0.5	$\mu = \sigma(\text{ttH}) \mathcal{B}(\text{H} \to \gamma\gamma)$	δμ	0.4%	2.2%
$\frac{J}{\kappa_{\gamma}}$	1.9	0.7	0.7	$R = \mathcal{B}(H \to \mu\mu) / \mathcal{B}(H \to \mu\mu\mu\mu)$ $R = \mathcal{B}(H \to \gamma\gamma) / \mathcal{B}(H \to ee\mu\mu)$	$\delta R/R \\ \delta R/R$	0.5% 0.5%	1.3% 0.8%
$\kappa_{Z\gamma}$	10	5.2	3.9	$\mathbf{R} = \mathcal{B}(\mathbf{H} \to \gamma\gamma) / \mathcal{B}(\mathbf{H} \to \mu\mu)$	$\delta R/R$	0.5%	1.3%
κ_c	-	1.9	0.9	$\mathbf{R} = \mathcal{B}(\mathbf{H} \to \mu \mu \gamma) / \mathcal{B}(\mathbf{H} \to \mu \mu \mu \mu)$	$\delta R/R$	1.6%	2.0%
$\frac{c}{\kappa_b}$	3.6	0.4	0.4	$R = \sigma(ttH) \mathcal{B}(H \to bb) / \sigma(ttZ) \mathcal{B}(Z \to bb)$ $R = \sigma(VBF - H)) \mathcal{B}(H \to e\mu\nu\nu) / \sigma(VBS - WW)) \mathcal{B}(WW \to e\mu\nu\nu)$	${\delta { m R}/{ m R} \over \delta { m R}/{ m R}}$	1.2% 1.9%	$2.0\% \\ 2.0\%$
κ_{μ}	4.6	2.4	2.2	$\mathcal{B}(H \rightarrow invisible)$	B@95%CL	1.2×10^{-4}	2.6×10^{-4}
$\kappa_{ au}$	1.9	0.5	0.3	$\sigma(\mathrm{HH})$	$\delta \kappa_{\lambda}$	3.5%	5.2%37

Conclusions

X-Factory opens new era of **precision** in EW+H sector

- There are also particle discovery opportunities. From, e.g., 10^{12} Z decays
- For precision, details matter! The degree of success depends on these details.
- Precision is a physics driver as well as a tool. Work now on **Experiment**, **Theory** and **Detector** challenges/opportunity

Beyond X-Factories, we need energy

- Linear colliders can go to higher energy
- A big tunnel can host 100 TeV pp
- Muon collider feasibility would be game-changer
- We cannot decide it, but we can draw a path towards 10 TeV pCM
- We must invest on very high energy collider technologies

