4D LGAD Technologies and their Potential Applications in Future Lepton Colliders

M. Centis Vignali¹ Fondazione Bruno Kessler

16.06.2025 2025 European Edition of the International Workshop on the Circular Electron-Positron Collider (CEPC) Barcelona, Spain

¹mcentisvignali@fbk.eu

Fondazione Bruno Kessler

6 inch (150 mm) Custom CMOS-like process

LGAD technologies:

- Standard
- Double sided (inverted)
- Trench isolated
- AC coupled (RSD)
- DC-RSD

M. Centis Vignali

4D LGAD Technologies

4D Tracking

Tracking with a resolution of O(10) μm and O(10) ps

• Applications:

- Time of flight
- Particle ID
- Improve rate capabilities
- High energy physics
- Astroparticle physics
- Medical
- … and more!
- Implementations:
 - Timing detector + tracker
 - Combine timing and tracking in one sensor

HL-LHC Application

[H. Sadrozinski et al. Rept. Prog. Phys. 81 (2018) 026101]

Use time coordinate to mitigate pile-up

- Track time resolution pprox 30 ps
- Radiation resistance to few 10¹⁵ n_{eq}/cm²
- $\bullet\,$ Hit time resolution at end of life $\approx 50\ \text{ps}$

Lepton collider \Rightarrow material budget \leftrightarrow power consumption

(Standard) Low Gain Avalanche Diodes

- Silicon detectors with charge multiplication
- Gain \approx 10
- Gain layer provides high-field region
- No-gain region \sim 30 80 μ m
- Time resolution \sim 30 ps \leftrightarrow thin \sim 50 μ m sensor

- Improve SNR of the system (When the sensor shot noise is not dominating)
- Noise and power consumption ⇒ low gain

STD-LGAD Performance

FONDAZIONE BRUNO KESSLER

- $1.3 \times 1.3 \text{ mm}^2$ channels
- Spatial resolution = pitch/ $\sqrt{12}$ \sim 375 μ m
- 4D tracking only in conjunction with a separate system

Improve spatial resolution \Rightarrow smaller channels

Trench Isolated LGADs

- Trenches substitute the isolation structures
- Trench width about 1 $\mu {\rm m} \Rightarrow$ fill factor close to 100%

[G. Paternoster et al. IEEE EDL Vol 41 Issue 6 (2020) 884-887]

Interpad Distance

[A. Bisht Picosecond Workshop 2021]

- Interpad 2-10 μ m with laser
- $\bullet~\sim 10\times$ improvement from STD LGAD
- Some process and layout combination:
 - \rightarrow gain in trench region > gain of pad
 - \rightarrow negative interpad

TI-LGAD Development

- First carbonated TI-LGAD in AIDA Innova batch
- Demonstrated promising yield for \sim 1 \times 1 cm² sensors
- Pitch down to 55 μm
- Beam test of irradiated test structures ($250 \times 375 \,\mu m^2$)
- \sim 60 ps resolution after 2.5 \cdot 10¹⁵ n_{eq}/cm²

Possible 4D tracking using small pitch \rightarrow large power density

AC-LGADs (Resistive Silicon Detectors)

- $\bullet\,$ Continuous gain area in the active region \Rightarrow 100% fill factor
- Readout channels capacitively coupled \Rightarrow resistive layer to limit signal spreading
- No restrictions on channel dimension

E field

p-type contact

Resistive Signal Sharing

- Ionization is amplified and signal induced on resistive layer
- Signal propagates on the resistive layer
- AC-coupling to readout provides lower impedance path than resistive layer
 - \rightarrow signal is read out
- The capacitance of the electrodes discharge

M. Centis Vignali

4D LGAD Technologies

Resistive Signal Sharing

- Signal shared proportionally to the impedance to each surrounding electrode
- Response templates are created using beam test data (space and time)
- Position estimated using space template
- Time estimated starting from hit position (propagation on resistive layer)

Cross electrodes

• 450 μ m pitch

Results

4D tracking

Standard Silicon Detector

Resistive Silicon Detector

- Time resolution \Rightarrow thin sensors with gain
 - \Rightarrow no charge sharing through Lorentz or incidence angle
- 14 μ m resolution without signal sharing \Rightarrow \sim 50 μ m pitch
 - \Rightarrow \sim 80 times channel count reduction with resistive sharing
 - \Rightarrow Power consumption reduction

$\bullet~$ Thin sensors and decreased power consumption $\Rightarrow~$ lighter 4D tracker

AC-LGADs (Resistive Silicon Detectors)

- Resistive charge division
 - \Rightarrow Larger channel pitch for same resolution
- Bipolar signal with recharge tail
- Biasing only at sensor edge
- Poor signal confinement

 \sim 15 μ m resolution with 450 μ m readout pitch \sim 50 ps time resolution

Resolution about 3-4% of readout pitch

DC Resistive Silicon Detectors

- Continuous gain layer
- Time resolution
- Resistive charge division
 - \Rightarrow Larger channel pitch for same resolution
- Bipolar signal with recharge tail
- Biasing only at sensor edge
- Poor signal confinement

Variations of:

- Resistivity
- Contact fabrication
- Geometry: pixels, strips, square, triangular

Trenches used for signal confinement

Signal Confinement

[N. Cartiglia et al. TREDI2025]

- Square cells 500 μ m
- Signal is contained

Signal Confinement

[N. Cartiglia et al. TREDI2025]

- Square cells 500 μ m
- Signal is contained

Trench Effect

- Hits with reduced amplitude
- Lower gain in trench region
- 500 μ m pitch \Rightarrow fill factor \sim 99%

Resolution

- Square cells 500 μm side
- 20 μ m spatial resolution
- 40 ps time resolution
- $\bullet\,$ Spatial resolution is ${\sim}5\%$ of pitch
- 4D tracking

M. Centis Vignali

4D LGAD Technologies

Summary

- Several mature LGAD technologies
- Thin sensors show good time resolution
- No signal sharing
 - STD-LGADs: poor position resolution
 - TI-LGADs: position resolution improved through segmentation
- Resistive signal sharing
 - AC-LGAD: 4D tracking sensor
 - DC-RSD: 4D tracking sensor
- Resitive signal sharing improves position resolution for a given pitch

AC-LGAD and DC-RSD sensors are promising technologies for lightweight 4D trackers

M. Centis Vignali

4D LGAD Technologies

Backup Material

Interpad Distance

[A. Bisht Picosecond Workshop 2021]

- Interpad 2-10 μ m with laser
- $\bullet~\sim 10\times$ improvement from STD LGAD
- Some process and layout combination:
 - \rightarrow gain in trench region > gain of pad
 - \rightarrow negative interpad

Interpad Distance

[A. Bisht Picosecond Workshop 2021]

- Interpad 2-10 μ m with laser
- $\bullet~\sim 10\times$ improvement from STD LGAD
- Some process and layout combination:
 - \rightarrow gain in trench region > gain of pad
 - \rightarrow negative interpad

Median Gain 200 V

Wafer	NPLUS dose	CONIMP	PGAIN dose	EPI batch
1	0,25		1.02	А
2	0,25	Y	1.02	А
3	0,25	Y	1.06	А
4	0,25	Y	1.06	А
5	0,5		1.02	А
6	0,5		1.06	А
7	0,5	Y	1.06	А
8	0,5	Y	1.02	А
9	1		1.02	А
10	1		1.06	А
11	1	Y	1.02	А
12	1	Y	1.06	А
13	0,25	Y	1.06	В
14	0,5	Y	1.02	В
15	1	Y	1.06	В

- Gain has the right values
- NPLUS affects the gain
- High dispersion due to defects in starting material (wafer 7, 9, 10, 11, 12)

Median Sheet Resistance NPLUS

NPLUS 1 mA

Wafer	NPLUS dose	CONIMP	PGAIN dose	EPI batch
1	0,25		1.02	А
2	0,25	Y	1.02	А
3	0,25	Y	1.06	А
4	0,25	Y	1.06	А
5	0,5		1.02	А
6	0,5		1.06	А
7	0,5	Y	1.06	А
8	0,5	Y	1.02	Α
9	1		1.02	А
10	1		1.06	А
11	1	Y	1.02	Α
12	1	Y	1.06	А
13	0,25	Y	1.06	В
14	0,5	Y	1.02	В
15	1	Y	1.06	В

Resistance values in the correct range

4D LGAD Technologies

FUNDAZIUNE BRUNO KESSI FR

Median Contact Resistance Pad 70 μ m

70SQ 100 µA

TRENCH, CONTACT, METAL 4 point measurement

• 100 µA current

Effects from NPLUS and CONIMP CONIMP reduces contact resistance from 10k to a few Ω

Future DC-RSD: from Trenches to Resistors?

- Charge COG \Rightarrow Pincushion distortion
- Resistors reduce distortion
- Connection to readout pads and resistive layer

Resistors reduce distortion and provide signal confinement

[F. Moscatelli et al. NIMA 1064 (2024) 169380]