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• As a short overview of the theoretical status, I will focus on: 

- The important physics at CEPC, and why they are important. 

- To understand these physics, what accuracy will be needed and 
the current status. 

- What we know we do not know. 

- Higgs physics.
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Table 3.1: CEPC operation plan (@ 30 MW) 

Particle Ec.m.  
(GeV) 

L per IP 
(1034 cm–2s–1) 

Integrated L  
per year 

(ab–1, 2 IPs) 
Years 

Total  
Integrated L  
(ab–1, 2 IPs) 

Total no. of 
events 

H 240 5 1.3 10 13 2.6 u 106 
Z 91 115* 30 2 60 2.5 u 1012 
W 160 16 4,2 1 4.2 1.3 u 108 
 ҧ** 360 0.5 0.13 5 0.65 0.4 u 106ݐݐ

* Detector solenoid field is 2 Tesla during Z operation. 
 .ҧ operation is optionalݐݐ **

Table 3.2: CEPC operation plan (@ 50 MW) 

Particle Ec.m.  
(GeV) 

L per IP 
(1034 cm–2s–1) 

Integrated L  
per year 

(ab–1, 2 IPs) 
Years 

Total  
Integrated L  
(ab–1, 2 IPs) 

Total no. of 
events 

H 240 8.3 2.2 10 21.6 4.3 u 106 
Z 91 192* 50 2 100 4.1 u 1012 
W 160 26.7 6.9 1 6.9 2.1 u 108 
 ҧ** 360 0.8 0.2 5 1.0 0.6 u 106ݐݐ

* Detector solenoid field is 2 Tesla during Z operation. 
 .ҧ operation is optionalݐݐ **

The 10-year Higgs operation with 30 MW SR power will yield 2.6 million Higgs 
bosons. If the SR power is increased to 50 MW, the CEPC can produce 4.3 million Higgs 
bosons. This will allow for precision measurements of Higgs coupling to the sub-percent 
level, improving the accuracy by an order of magnitude from what is achievable at the 
HL-LHC. The Higgs width can be determined independently of any specific model, and 
exotic Higgs decay branching ratios can be probed down to a level of 10–4, providing 
access to new physics such as Higgs portal dark matter. 

The 2-year Z pole operation with 30 MW SR power will produce 2.5 trillion particles, 
a hundred thousand times more than the total generation produced during the entire LEP 
operation period. This will greatly benefit electroweak precision measurements and 
provide opportunities to explore new physics. 

The 1-year W operation will allow for the measurement of the W width with an 
accuracy of about 3 MeV. 130 million W+W– pairs will be produced, about 3200 times 
more than LEP. 

Following the 13-year operation plan for the H/Z/W experiments, the CEPC has an 
optional proposal to upgrade its center-of-mass energy to 180 GeV and continue data 
collection specifically for ݐݐҧ  (top quark-antiquark) events for an additional 5 years. 
According to Tables 3.1 and 3.2, this upgrade would result in the generation of 0.4 million 
 ҧ�events at 50 MW. With this extension, the CEPC'sݐݐ ҧ�events at 30 MW and 0.6 millionݐݐ
operation would extend until the mid-21st century. At that point, mature high-temperature 
superconducting (HTS) high-field magnet technology is expected to be available, 
enabling the construction of the Superconducting Proton-Proton Collider (SPPC). 

The SPPC will share the same tunnel as the CEPC and will be positioned adjacent to 
the outer wall. The tunnel has sufficient space to accommodate both the SPPC and CEPC 
collider rings. The two SPPC detectors will be situated near the two CEPC RF straight 
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• Precisely Higgs physics is one of the most important job of 
Higgs factory.

Higgs Physics

Chinese Physics C Vol. 43, No. 4 (2019) 043002
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Fig. 7. Feynman diagrams of the Higgs boson production processes at the CEPC: (a) e+e� !ZH, (b) e+e� ! ⌫e⌫̄eH

and (c) e+e� ! e
+
e
�
H.

Fig. 8. Production cross sections of e+e� ! ZH and e
+
e
�
! (e+e�/⌫⌫̄)H as functions of

p
s for a 125 GeV SM

Higgs boson. The vertical indicates
p
s=250 GeV, the energy assumed for most of the studies summarized in this

paper.

tion processes are shown in Fig. 9. Note that many of
these processes can lead to identical final states and thus
can interfere. For example, e+e� ! e+⌫eW�

! e+⌫ee�⌫̄e
and e+e� ! e+e�Z ! e+e�⌫e⌫̄e have the same final state
after the decays of the W or Z bosons. Unless otherwise
noted, these processes are simulated together to take into
account interference e↵ects for the studies presented in
this paper. The breakdowns shown in the table and fig-
ure assume stable W and Z bosons, and thus are, there-
fore, for illustration only.

Along with 1.2⇥ 106 Higgs boson events, 5.8⇥ 106

ZZ, 8.6⇥107 WW and 2.8⇥108 qq̄(�) events will be pro-
duced. Though these events are backgrounds to Higgs
boson events, they are important for the calibration and
characterization of the detector performance and for the

measurements of electroweak parameters.

3.3 Event generation and simulation

The following software tools have been used to gener-
ate events, simulate detector responses and reconstruct
simulated events. A full set of SM samples, includ-
ing both the Higgs boson signal and SM background
events, are generated with Whizard [34]. The gener-
ated events are then processed with MokkaC [13], the
o�cial CEPC simulation software based on the frame-
work used for ILC studies [36]. Limited by computing re-
sources, background samples are often pre-selected with
loose generator-level requirements or processed with fast
simulation tools.

All Higgs boson signal samples and part of the lead-
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Table 11. Estimated precision of Higgs boson property measurements for the CEPC-v1 detector concept operating
at

p
s=250 GeV. All precision are relative except for mH and BRBSM

inv for which �mH and 95% CL upper limit are
quoted respectively. The extrapolated precision for the CEPC-v4 concept operating at

p
s=240 GeV are included

for comparisons, see Section 6.2.

Estimated Precision

Property CEPC-v1 CEPC-v4

mH 5.9 MeV 5.9 MeV

�H 2.7% 2.8%

�(ZH) 0.5% 0.5%

�(⌫⌫̄H) 3.0% 3.2%

Decay mode �⇥BR BR �⇥BR BR

H ! bb̄ 0.26% 0.56% 0.27% 0.56%

H ! cc̄ 3.1% 3.1% 3.3% 3.3%

H ! gg 1.2% 1.3% 1.3% 1.4%

H !WW ⇤ 0.9% 1.1% 1.0% 1.1%

H !ZZ⇤ 4.9% 5.0% 5.1% 5.1%

H ! �� 6.2% 6.2% 6.8% 6.9%

H !Z� 13% 13% 16% 16%

H ! ⌧+⌧� 0.8% 0.9% 0.8% 1.0%

H !µ+µ� 16% 16% 17% 17%

BRBSM
inv � < 0.28% � < 0.30%

the precision of �H is limited by the H ! ZZ⇤ anal-
ysis statistics. It can be improved including the decay
final states with larger branching ratios, e.g. the H ! bb̄
decay:

�H =
�(H ! bb̄)

BR(H ! bb̄)
(6)

where the partial width �(H ! bb̄) can be independently
extracted from the cross section of the W fusion process
e+e� ! ⌫⌫̄H ! ⌫⌫̄ bb̄:

�(⌫⌫̄H ! ⌫⌫̄ bb̄)/�(H !WW ⇤) ·BR(H ! bb̄) (7)

=�(H ! bb̄) ·BR(H !WW ⇤). (8)

Thus, the Higgs boson total width is:

�H =
�(H ! bb̄)

BR(H ! bb̄)
/

�(e+e� ! ⌫e⌫̄eH)

BR(H !WW ⇤)
(9)

where BR(H ! bb̄) and BR(H ! WW ⇤) are measured
from the e+e� ! ZH process. The limitation of this
method is the precision of the �(e+e� ! ⌫⌫̄H ! ⌫⌫̄ bb̄)
measurement.

The expected precision on �H is 5.1% from the mea-
surements of �(ZH) and BR(H ! ZZ⇤) and is 3.5%
from the measurements of �(⌫⌫̄H ! ⌫⌫̄bb̄), BR(H ! bb̄)
and BR(H !WW ⇤). The quoted precision is dominated
by the BR(H ! ZZ⇤) measurement for the former case

and the �(⌫⌫̄H ! ⌫⌫̄bb̄) measurement for the latter case.
The combined �H precision of the two measurements is
2.8%, taking into account the correlations between the
two measurements.

7 Higgs Boson Coupling Measurements

To understand the implications of the estimated
CEPC precision shown in Table 11 on possible new
physics models, the results need to be interpreted in
terms of constraints on the parameters in the La-
grangian. This is often referred to as the “Higgs boson
coupling measurements”, even though the term can be
misleading as discussed below.

There is no unique way to present the achievable pre-
cision on the couplings. Before going into the discussion
of the CEPC results, we briefly comment on the choices
made here. The goal of the theory interpretation here
is to obtain a broad idea of the CEPC sensitivity to the
Higgs couplings. The interpretation should be simple
with intuitive connections between the models and the
experimental observables. Ideally, it should have as little
model assumptions as possible. Furthermore, it would be
convenient if the results can be interfaced directly with
the higher order theoretical calculations, renormalization
group equation evolutions, etc. Unfortunately, it is im-
possible to achieve all of these goals simultaneously.
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488 J. Fleischer, F. Jegerlehner / Radiative corrections 

only by higher-order effects. Away from the thresholds the change of the Born 
term is of the order of 1%. 

Another improvement achieved by a simple adjustment of the Born term would 
be to take into account the finite width of the Z particle in the Z-propagator pole. 

We have not considered the QCD corrections in this paper. These are expected 
to be small, away from the qcl thresholds, by experience with comparable situations 
when also no real hadronic states are involved. As an example, the order as QCD 
corrections to the vector boson masses Mw,z are about +0.2%, to be compared 
with about +3% electroweak corrections [24]. This situation differs considerably 
from the case of electroweak hadronic processes where large QCD corrections 
(10-40%) are present [25]. 

An important problem remains the treatment of the photon bremsstrahlung. We 
only considered the soft-photon bremsstrahlung in the standard approximation. 
An improved analysis might be necessary which in particular takes into account 
hard-photon processes [26]. This would not change, however, our results qualita- 
tively. 

Our result that the Born approximation is reliable beyond experimentally access- 
ible energies is expected to be .found for other production processes of the Higgs 
particle. Only at energies sufficiently above the characteristic scale of the Higgs 
sector, A =v =(H)---250 GeV for the GWS model, when "knocking on the 
vacuum", might Higgs physics really get exciting. 

We gratefully acknowledge clarifying discussions with O. Steinmann, J. Cleymans 
and R. KSgerler. 

Appendix A 

FEYNMAN DIAGRAMS CONTRIBUTING TO THE PROCESS e+e-~ZH 
IN THE UNITARY GAUGE 

In brackets we have given the number of diagrams in the renormalizable 
't Hooft gauge. 
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Appendix B 

PROPAGATORS AND  FORM FACTORS 

In this appendix we list the covariant decompositions of the irreducible parts of 
the propagators and the form factors as used in the text. The momenta are chosen 
as follows from fig. 5 with P=P~+P4, Q =px-p4  and ps=p~+p2. The external 
legs are indicated by the corresponding particles. Off-shell lines are marked by an 
asterisk, the other lines are on-shell. Amplitudes with the neutral Higgs ghost ~p 
are related to the others by the ST identities given below. 

Irreducible Common Covariant 
amplitude factor decomposition 

Z'Z* M ~  g ~"A l + P 'P"A z 
Z*~* - i M z  -P~'B1 
~p * ~; * 1 C 1 
3' *Z* (ev )Mz  g ~vm 1 + P"P~A2 
~* ~ * - i ( ev )  -P~'B1 
Z*ZH 2 M ~  g "~A 1 - P~'P ~A 2 + P ~'P ~A 3 
~¢*ZH - i M z  -P~'B1 
y*ZH (ev )Mz  g~'~A1 - P ~ p ~ A 2  + P~'P~A3 

e+e-Z * - 2 M z  T~'A 1 + T'~TsA 2 + P~'A3 + Q~'Y5A4 + P~TsA5 + Q g A 6  
e+e-q~ * - i me  Ca + y5C2 

The ST identities used in particular for the elimination of the ghost amplitudes are 
graphically represented in fig. 12. For the bare self-energies and the form factors 



• Mixed NLO EW-QCD correction to .e+e− → Zh

Higgs Physics

Y. Gong, Z. Li, X. Xu, L. L. Yang, Phys. Rev. D 95 (2017) 093003; Q.-F. Sun, F. Feng, Y. Jia, W.-L. Sang, Phys. Rev. D 96 (2017) 051301.

2

Higgs factory.

LO QED corr.

γZ
+

eeH vertex Box

eeZ vertex self→energy V ZH vertex

γ
H

Z

W

W

W

νe

Z

Z

γ, Z Z γ, ZZ

+

+

+νe

W

W

Z

Z

e−

e+
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three types of corrections also include O(ααs) corrections as
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O(ααs) corrections to the eeZ vertex, γ/Z self-energy, and
V ZH vertex. The cross represents the quark mass countert-
erm in QCD, a cap denotes the electroweak counterterm.

Leading-order results. By safely neglecting the electron
mass owing to its exceedingly tiny Yukawa coupling,
there is only a single s-channel Feynman diagram for the
LO Higgsstrahlung process, as depicted in Fig. 1. In the
CM frame, the amplitude for e+(k1,→σ) + e−(k2,σ) →
H(pH) + Z(pZ ,ε) reads:

Mσ,λ
0 = e2gσe

MZ

sW cW

1

s→M2
Z

v̄(k1)/ε
∗
λPσu(k2), (1)

where P± = 1±γ5

2 are chirality projectors, εµλ denotes the
polarization vector of the Z boson, with ε = 0(±1) being
the longitudinal(transverse) polarization. σ = ± 1

2 repre-
sents the helicity of the incoming electron or positron
(often we use the shorthand σ = ± for brevity). To war-
rant a nonvanishing amplitude, the positron must carry
the opposite helicity with respect to the electron. We fol-
low the conventions in [20] to define the Weinberg angle
as cW ≡ MW

MZ
, and sW ≡

√

1→ c2W . The Zff̄ couplings

g±f are defined following [19].
For simplicity, we will consider the unpolarized e+(e−)

beams, which is the case for CEPC and FCC-ee. The LO

differential cross section for polarized Z then reads

dσ(0)
λ

dcos θ
=

πα2β

16c2Ws2W

M2
Z

(s→M2
Z)

2
(2)

×

{

(1± cos θ)2 g−e
2
+ (1∓ cos θ)2 g+e

2
, for ε = ±1,

2 sin2 θ
(

g−e
2
+ g+e

2
)(

1 + β2s
4M2

Z

)

, for ε = 0,

with θ being the angle between pZ and k1 in the CM
frame, β = 2|pZ|√

s
. Upon angular integration, the LO

integrated cross section for polarized Z reads:

σ(0)
λ =

πα2β
(

g−e
2
+ g+e

2
)

6c2W s2W

M2
Z

(s→M2
Z)

2

(

1 + δλ,0
β2s

4M2
Z

)

.

(3)

The total unpolarized cross section σ(0)unpol = σ(0)
L +

σ(0)
T ≡ σ(0)

0 + 2σ(0)
±1 . In the high energy limit, the

cross section for producing longitudinally-polarized Z (∝
1/s) dominates the one associated with the transversely-
polarized Z (∝ 1/s2),

The outline of calculation for radiative corrections. As
far as the O(α) +O(ααs) corrections are concerned, the
higher-order diagrams can be grouped into several dis-
tinct topologies as shown in Fig. 1 and Fig. 2.
It is conventional to separate the O(α) corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:

δMσ,λ = δMσ,λ
eeH + δMσ,λ

Box + δMσ,λ
eeZ + δMσ,λ

S.E.

+δMσ,λ
ZZH + δMσ,λ

γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
eeZ = Mσ,λ

0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-

tions from both ZZ and mixed γZ self-energies:

δMσ,λ
S.E. = →Mσ,λ

0

(

Σ̂ZZ
T (s)

s→M2
Z

+
1

gσe

Σ̂γZ
T (s)

s

)

, (5)

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
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Leading-order results. By safely neglecting the electron
mass owing to its exceedingly tiny Yukawa coupling,
there is only a single s-channel Feynman diagram for the
LO Higgsstrahlung process, as depicted in Fig. 1. In the
CM frame, the amplitude for e+(k1,→σ) + e−(k2,σ) →
H(pH) + Z(pZ ,ε) reads:

Mσ,λ
0 = e2gσe

MZ

sW cW

1

s→M2
Z

v̄(k1)/ε
∗
λPσu(k2), (1)

where P± = 1±γ5

2 are chirality projectors, εµλ denotes the
polarization vector of the Z boson, with ε = 0(±1) being
the longitudinal(transverse) polarization. σ = ± 1

2 repre-
sents the helicity of the incoming electron or positron
(often we use the shorthand σ = ± for brevity). To war-
rant a nonvanishing amplitude, the positron must carry
the opposite helicity with respect to the electron. We fol-
low the conventions in [20] to define the Weinberg angle
as cW ≡ MW

MZ
, and sW ≡

√

1→ c2W . The Zff̄ couplings

g±f are defined following [19].
For simplicity, we will consider the unpolarized e+(e−)

beams, which is the case for CEPC and FCC-ee. The LO

differential cross section for polarized Z then reads

dσ(0)
λ

dcos θ
=

πα2β

16c2Ws2W

M2
Z

(s→M2
Z)

2
(2)

×

{

(1± cos θ)2 g−e
2
+ (1∓ cos θ)2 g+e

2
, for ε = ±1,

2 sin2 θ
(

g−e
2
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2
)(

1 + β2s
4M2
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)

, for ε = 0,

with θ being the angle between pZ and k1 in the CM
frame, β = 2|pZ|√

s
. Upon angular integration, the LO

integrated cross section for polarized Z reads:
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λ =
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(
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)
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(
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(3)

The total unpolarized cross section σ(0)unpol = σ(0)
L +

σ(0)
T ≡ σ(0)

0 + 2σ(0)
±1 . In the high energy limit, the

cross section for producing longitudinally-polarized Z (∝
1/s) dominates the one associated with the transversely-
polarized Z (∝ 1/s2),

The outline of calculation for radiative corrections. As
far as the O(α) +O(ααs) corrections are concerned, the
higher-order diagrams can be grouped into several dis-
tinct topologies as shown in Fig. 1 and Fig. 2.
It is conventional to separate the O(α) corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:

δMσ,λ = δMσ,λ
eeH + δMσ,λ

Box + δMσ,λ
eeZ + δMσ,λ

S.E.

+δMσ,λ
ZZH + δMσ,λ

γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
eeZ = Mσ,λ

0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-

tions from both ZZ and mixed γZ self-energies:

δMσ,λ
S.E. = →Mσ,λ

0

(

Σ̂ZZ
T (s)

s→M2
Z

+
1

gσe

Σ̂γZ
T (s)

s

)

, (5)

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
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Leading-order results. By safely neglecting the electron
mass owing to its exceedingly tiny Yukawa coupling,
there is only a single s-channel Feynman diagram for the
LO Higgsstrahlung process, as depicted in Fig. 1. In the
CM frame, the amplitude for e+(k1,→σ) + e−(k2,σ) →
H(pH) + Z(pZ ,ε) reads:

Mσ,λ
0 = e2gσe

MZ

sW cW

1

s→M2
Z

v̄(k1)/ε
∗
λPσu(k2), (1)

where P± = 1±γ5

2 are chirality projectors, εµλ denotes the
polarization vector of the Z boson, with ε = 0(±1) being
the longitudinal(transverse) polarization. σ = ± 1

2 repre-
sents the helicity of the incoming electron or positron
(often we use the shorthand σ = ± for brevity). To war-
rant a nonvanishing amplitude, the positron must carry
the opposite helicity with respect to the electron. We fol-
low the conventions in [20] to define the Weinberg angle
as cW ≡ MW

MZ
, and sW ≡

√

1→ c2W . The Zff̄ couplings

g±f are defined following [19].
For simplicity, we will consider the unpolarized e+(e−)

beams, which is the case for CEPC and FCC-ee. The LO

differential cross section for polarized Z then reads

dσ(0)
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=
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×
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, for ε = 0,

with θ being the angle between pZ and k1 in the CM
frame, β = 2|pZ|√

s
. Upon angular integration, the LO

integrated cross section for polarized Z reads:
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The total unpolarized cross section σ(0)unpol = σ(0)
L +

σ(0)
T ≡ σ(0)

0 + 2σ(0)
±1 . In the high energy limit, the

cross section for producing longitudinally-polarized Z (∝
1/s) dominates the one associated with the transversely-
polarized Z (∝ 1/s2),

The outline of calculation for radiative corrections. As
far as the O(α) +O(ααs) corrections are concerned, the
higher-order diagrams can be grouped into several dis-
tinct topologies as shown in Fig. 1 and Fig. 2.
It is conventional to separate the O(α) corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:

δMσ,λ = δMσ,λ
eeH + δMσ,λ

Box + δMσ,λ
eeZ + δMσ,λ

S.E.

+δMσ,λ
ZZH + δMσ,λ

γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
eeZ = Mσ,λ

0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-

tions from both ZZ and mixed γZ self-energies:

δMσ,λ
S.E. = →Mσ,λ

0

(

Σ̂ZZ
T (s)
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Z

+
1

gσe

Σ̂γZ
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, (5)

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.

2

Higgs factory.

LO QED corr.

γZ
+

eeH vertex Box

eeZ vertex self→energy V ZH vertex

γ
H

Z

W

W

W

νe

Z

Z

γ, Z Z γ, ZZ

+

+

+νe

W

W

Z

Z

e−

e+

FIG. 1: LO diagram for e+e− → HZ and examples of QED
O(α) corrections and weak one-loop corrections, consisting of
eeH vertex corrections, box diagrams, and corrections to the
eeZ vertex, the γ/Z self-energy and V ZH vertex. The latter
three types of corrections also include O(ααs) corrections as
shown in Fig. 2.

=

=

=

γ, Z Z

W l, q q δmq

tW t δmt

νe

W

W

W

νe

νe

Z

γ, Z

Z

Z

H

e−

e+

+ + +

+ + + +

+ + + +

FIG. 2: Representative diagrams for the weak O(α) and
O(ααs) corrections to the eeZ vertex, γ/Z self-energy, and
V ZH vertex. The cross represents the quark mass countert-
erm in QCD, a cap denotes the electroweak counterterm.

Leading-order results. By safely neglecting the electron
mass owing to its exceedingly tiny Yukawa coupling,
there is only a single s-channel Feynman diagram for the
LO Higgsstrahlung process, as depicted in Fig. 1. In the
CM frame, the amplitude for e+(k1,→σ) + e−(k2,σ) →
H(pH) + Z(pZ ,ε) reads:
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0 = e2gσe
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v̄(k1)/ε
∗
λPσu(k2), (1)

where P± = 1±γ5

2 are chirality projectors, εµλ denotes the
polarization vector of the Z boson, with ε = 0(±1) being
the longitudinal(transverse) polarization. σ = ± 1

2 repre-
sents the helicity of the incoming electron or positron
(often we use the shorthand σ = ± for brevity). To war-
rant a nonvanishing amplitude, the positron must carry
the opposite helicity with respect to the electron. We fol-
low the conventions in [20] to define the Weinberg angle
as cW ≡ MW

MZ
, and sW ≡

√

1→ c2W . The Zff̄ couplings

g±f are defined following [19].
For simplicity, we will consider the unpolarized e+(e−)

beams, which is the case for CEPC and FCC-ee. The LO

differential cross section for polarized Z then reads

dσ(0)
λ

dcos θ
=
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with θ being the angle between pZ and k1 in the CM
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. Upon angular integration, the LO

integrated cross section for polarized Z reads:
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The total unpolarized cross section σ(0)unpol = σ(0)
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σ(0)
T ≡ σ(0)

0 + 2σ(0)
±1 . In the high energy limit, the

cross section for producing longitudinally-polarized Z (∝
1/s) dominates the one associated with the transversely-
polarized Z (∝ 1/s2),

The outline of calculation for radiative corrections. As
far as the O(α) +O(ααs) corrections are concerned, the
higher-order diagrams can be grouped into several dis-
tinct topologies as shown in Fig. 1 and Fig. 2.
It is conventional to separate the O(α) corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:

δMσ,λ = δMσ,λ
eeH + δMσ,λ

Box + δMσ,λ
eeZ + δMσ,λ

S.E.

+δMσ,λ
ZZH + δMσ,λ

γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
eeZ = Mσ,λ

0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-

tions from both ZZ and mixed γZ self-energies:

δMσ,λ
S.E. = →Mσ,λ

0

(

Σ̂ZZ
T (s)

s→M2
Z

+
1

gσe

Σ̂γZ
T (s)

s

)

, (5)

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
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√
s (GeV)

LO (fb) NLO Weak (fb) NNLO mixed electroweak-QCD (fb)

σ(0) σ(α) σ(0) + σ(α) σ(ααs)
Z σ(ααs)

γ σ(ααs) σ(0) + σ(α) + σ(ααs)

Total 223.14 6.64 229.78 2.42 0.008 2.43 232.21
240 L 88.67 3.18 91.86 0.96 0.003 0.97 92.82

T 134.46 3.46 137.92 1.46 0.005 1.46 139.39
Total 223.12 6.08 229.20 2.42 0.009 2.42 231.63

250 L 94.30 3.31 97.61 1.02 0.004 1.02 98.64
T 128.82 2.77 131.59 1.40 0.005 1.40 132.99

TABLE I: The (un)polarized Higgsstrahlung cross sections at
√
s = 240 GeV and 250 GeV in the α(0) scheme. Provided are

the LO, NLO weak and NNLO O(ααs) predictions as well as individual contributions for the O(α) corrections σ(α), and for
the O(ααs) corrections in (13).

√
s schemes σLO (fb) σNLO (fb) σNNLO (fb)

α(0) 223.14 ± 0.47 229.78 ± 0.77 232.21+0.75+0.10
−0.75−0.21

240 α(MZ) 252.03 ± 0.60 228.36+0.82
−0.81 231.28+0.80+0.12

−0.79−0.25

Gµ 239.64 ± 0.06 232.46+0.07
−0.07 233.29+0.07+0.03

−0.06−0.07

α(0) 223.12 ± 0.47 229.20 ± 0.77 231.63+0.75+0.12
−0.75−0.21

250 α(MZ) 252.01 ± 0.60 227.67+0.82
−0.81 230.58+0.80+0.14

−0.79−0.25

Gµ 239.62 ± 0.06 231.82±0.07 232.65+0.07+0.04
−0.07−0.07

TABLE II: The unpolarized Higgsstrahlung cross sections at√
s = 240(250) GeV in three different input schemes. To

estimate the uncertainties caused by the input parameters
(first entry), we take MW = 80.385±0.015 GeV, mt = 174.2±
1.4GeV and∆α(5)

had(MZ) = 0.02764±0.00013. We also change
the strong coupling constant from αs(MZ) to αs(

√
s) (second

entry) with its central value taken as αs = αs(
√
s/2). For

the conversion from the α(0) scheme to the α(MZ) and Gµ

schemes, we use ∆α(MZ)|NLO = ∆α(MZ)|NNLO = 0.059 and
∆r|NLO = 0.0293,∆r|NNLO = 0.0331, respectively.

Summary and Outlook. Stimulated by the anticipated
exquisite accuracy of the σ(HZ) measurements in the
next-generation e+e− Higgs factory, for the first time we
calculated the mixed electroweak-QCD O(εεs) correc-
tions for the Higgsstrahlung process. It is found that
this mixed electroweak-QCD corrections are quite siz-
able, about 1.1% of the LO result in ε(0) and ε(MZ)
schemes, well above the projected experimental (sub-
)percent accuracy for the σ(ZH) measurement. In the
Gµ scheme, we find that the NNLO electroweak-QCD
corrections amount to 0.3% of the LO result. A compre-
hensive study of parametric and QCD scale uncertainties
exhibits large uncertainties in the NNLO electroweak-
QCD predictions in the ε(0) and ε(MZ) schemes, which
however are considerably reduced in the Gµ scheme. It
is important to note that to make closer contact with
the actual experimental measurement, it is also useful to
conduct a careful analysis on the ISR effects, as well as
to study the process e+e− → µ+µ−+H by including the
effect of finite Z width.

Note added. After this work was submitted, there
also appeared an independent computation on mixed
electroweak-QCD corrections to Higgsstrahlung pro-
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FIG. 3: Differential unpolarized/polarized cross sections for
Higgsstrahlung at

√
s = 240 GeV at NLO O(α) and NNLO

O(ααs). The green band indicates the uncertainties from
the input parameters as adopted in Table II and the three
different input schemes.

cess [42].
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FIG. 1: LO diagram for e+e− → HZ and examples of QED
O(α) corrections and weak one-loop corrections, consisting of
eeH vertex corrections, box diagrams, and corrections to the
eeZ vertex, the γ/Z self-energy and V ZH vertex. The latter
three types of corrections also include O(ααs) corrections as
shown in Fig. 2.
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FIG. 2: Representative diagrams for the weak O(α) and
O(ααs) corrections to the eeZ vertex, γ/Z self-energy, and
V ZH vertex. The cross represents the quark mass countert-
erm in QCD, a cap denotes the electroweak counterterm.

Leading-order results. By safely neglecting the electron
mass owing to its exceedingly tiny Yukawa coupling,
there is only a single s-channel Feynman diagram for the
LO Higgsstrahlung process, as depicted in Fig. 1. In the
CM frame, the amplitude for e+(k1,→σ) + e−(k2,σ) →
H(pH) + Z(pZ ,ε) reads:

Mσ,λ
0 = e2gσe

MZ

sW cW

1

s→M2
Z

v̄(k1)/ε
∗
λPσu(k2), (1)

where P± = 1±γ5

2 are chirality projectors, εµλ denotes the
polarization vector of the Z boson, with ε = 0(±1) being
the longitudinal(transverse) polarization. σ = ± 1

2 repre-
sents the helicity of the incoming electron or positron
(often we use the shorthand σ = ± for brevity). To war-
rant a nonvanishing amplitude, the positron must carry
the opposite helicity with respect to the electron. We fol-
low the conventions in [20] to define the Weinberg angle
as cW ≡ MW

MZ
, and sW ≡

√

1→ c2W . The Zff̄ couplings

g±f are defined following [19].
For simplicity, we will consider the unpolarized e+(e−)

beams, which is the case for CEPC and FCC-ee. The LO

differential cross section for polarized Z then reads

dσ(0)
λ

dcos θ
=

πα2β

16c2Ws2W

M2
Z

(s→M2
Z)

2
(2)

×

{

(1± cos θ)2 g−e
2
+ (1∓ cos θ)2 g+e

2
, for ε = ±1,

2 sin2 θ
(

g−e
2
+ g+e

2
)(

1 + β2s
4M2

Z

)

, for ε = 0,

with θ being the angle between pZ and k1 in the CM
frame, β = 2|pZ|√

s
. Upon angular integration, the LO

integrated cross section for polarized Z reads:

σ(0)
λ =

πα2β
(

g−e
2
+ g+e

2
)

6c2W s2W

M2
Z

(s→M2
Z)

2

(

1 + δλ,0
β2s

4M2
Z

)

.

(3)

The total unpolarized cross section σ(0)unpol = σ(0)
L +

σ(0)
T ≡ σ(0)

0 + 2σ(0)
±1 . In the high energy limit, the

cross section for producing longitudinally-polarized Z (∝
1/s) dominates the one associated with the transversely-
polarized Z (∝ 1/s2),

The outline of calculation for radiative corrections. As
far as the O(α) +O(ααs) corrections are concerned, the
higher-order diagrams can be grouped into several dis-
tinct topologies as shown in Fig. 1 and Fig. 2.
It is conventional to separate the O(α) corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:

δMσ,λ = δMσ,λ
eeH + δMσ,λ

Box + δMσ,λ
eeZ + δMσ,λ

S.E.

+δMσ,λ
ZZH + δMσ,λ

γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
eeZ = Mσ,λ

0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-

tions from both ZZ and mixed γZ self-energies:

δMσ,λ
S.E. = →Mσ,λ

0

(

Σ̂ZZ
T (s)

s→M2
Z

+
1

gσe

Σ̂γZ
T (s)

s

)

, (5)

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
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Leading-order results. By safely neglecting the electron
mass owing to its exceedingly tiny Yukawa coupling,
there is only a single s-channel Feynman diagram for the
LO Higgsstrahlung process, as depicted in Fig. 1. In the
CM frame, the amplitude for e+(k1,→σ) + e−(k2,σ) →
H(pH) + Z(pZ ,ε) reads:

Mσ,λ
0 = e2gσe

MZ

sW cW

1

s→M2
Z

v̄(k1)/ε
∗
λPσu(k2), (1)

where P± = 1±γ5

2 are chirality projectors, εµλ denotes the
polarization vector of the Z boson, with ε = 0(±1) being
the longitudinal(transverse) polarization. σ = ± 1

2 repre-
sents the helicity of the incoming electron or positron
(often we use the shorthand σ = ± for brevity). To war-
rant a nonvanishing amplitude, the positron must carry
the opposite helicity with respect to the electron. We fol-
low the conventions in [20] to define the Weinberg angle
as cW ≡ MW

MZ
, and sW ≡

√

1→ c2W . The Zff̄ couplings

g±f are defined following [19].
For simplicity, we will consider the unpolarized e+(e−)

beams, which is the case for CEPC and FCC-ee. The LO

differential cross section for polarized Z then reads

dσ(0)
λ

dcos θ
=

πα2β

16c2Ws2W

M2
Z

(s→M2
Z)

2
(2)

×

{

(1± cos θ)2 g−e
2
+ (1∓ cos θ)2 g+e

2
, for ε = ±1,

2 sin2 θ
(

g−e
2
+ g+e

2
)(

1 + β2s
4M2

Z

)

, for ε = 0,

with θ being the angle between pZ and k1 in the CM
frame, β = 2|pZ|√

s
. Upon angular integration, the LO

integrated cross section for polarized Z reads:

σ(0)
λ =

πα2β
(

g−e
2
+ g+e

2
)

6c2W s2W

M2
Z

(s→M2
Z)

2

(

1 + δλ,0
β2s

4M2
Z

)

.

(3)

The total unpolarized cross section σ(0)unpol = σ(0)
L +

σ(0)
T ≡ σ(0)

0 + 2σ(0)
±1 . In the high energy limit, the

cross section for producing longitudinally-polarized Z (∝
1/s) dominates the one associated with the transversely-
polarized Z (∝ 1/s2),

The outline of calculation for radiative corrections. As
far as the O(α) +O(ααs) corrections are concerned, the
higher-order diagrams can be grouped into several dis-
tinct topologies as shown in Fig. 1 and Fig. 2.
It is conventional to separate the O(α) corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:

δMσ,λ = δMσ,λ
eeH + δMσ,λ

Box + δMσ,λ
eeZ + δMσ,λ

S.E.

+δMσ,λ
ZZH + δMσ,λ

γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
eeZ = Mσ,λ

0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-

tions from both ZZ and mixed γZ self-energies:

δMσ,λ
S.E. = →Mσ,λ

0

(

Σ̂ZZ
T (s)

s→M2
Z

+
1

gσe

Σ̂γZ
T (s)

s

)

, (5)

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
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√
s (GeV)

LO (fb) NLO Weak (fb) NNLO mixed electroweak-QCD (fb)

σ(0) σ(α) σ(0) + σ(α) σ(ααs)
Z σ(ααs)

γ σ(ααs) σ(0) + σ(α) + σ(ααs)

Total 223.14 6.64 229.78 2.42 0.008 2.43 232.21
240 L 88.67 3.18 91.86 0.96 0.003 0.97 92.82

T 134.46 3.46 137.92 1.46 0.005 1.46 139.39
Total 223.12 6.08 229.20 2.42 0.009 2.42 231.63

250 L 94.30 3.31 97.61 1.02 0.004 1.02 98.64
T 128.82 2.77 131.59 1.40 0.005 1.40 132.99

TABLE I: The (un)polarized Higgsstrahlung cross sections at
√
s = 240 GeV and 250 GeV in the α(0) scheme. Provided are

the LO, NLO weak and NNLO O(ααs) predictions as well as individual contributions for the O(α) corrections σ(α), and for
the O(ααs) corrections in (13).

√
s schemes σLO (fb) σNLO (fb) σNNLO (fb)

α(0) 223.14 ± 0.47 229.78 ± 0.77 232.21+0.75+0.10
−0.75−0.21

240 α(MZ) 252.03 ± 0.60 228.36+0.82
−0.81 231.28+0.80+0.12

−0.79−0.25

Gµ 239.64 ± 0.06 232.46+0.07
−0.07 233.29+0.07+0.03

−0.06−0.07

α(0) 223.12 ± 0.47 229.20 ± 0.77 231.63+0.75+0.12
−0.75−0.21

250 α(MZ) 252.01 ± 0.60 227.67+0.82
−0.81 230.58+0.80+0.14

−0.79−0.25

Gµ 239.62 ± 0.06 231.82±0.07 232.65+0.07+0.04
−0.07−0.07

TABLE II: The unpolarized Higgsstrahlung cross sections at√
s = 240(250) GeV in three different input schemes. To

estimate the uncertainties caused by the input parameters
(first entry), we take MW = 80.385±0.015 GeV, mt = 174.2±
1.4GeV and∆α(5)

had(MZ) = 0.02764±0.00013. We also change
the strong coupling constant from αs(MZ) to αs(

√
s) (second

entry) with its central value taken as αs = αs(
√
s/2). For

the conversion from the α(0) scheme to the α(MZ) and Gµ

schemes, we use ∆α(MZ)|NLO = ∆α(MZ)|NNLO = 0.059 and
∆r|NLO = 0.0293,∆r|NNLO = 0.0331, respectively.

Summary and Outlook. Stimulated by the anticipated
exquisite accuracy of the σ(HZ) measurements in the
next-generation e+e− Higgs factory, for the first time we
calculated the mixed electroweak-QCD O(εεs) correc-
tions for the Higgsstrahlung process. It is found that
this mixed electroweak-QCD corrections are quite siz-
able, about 1.1% of the LO result in ε(0) and ε(MZ)
schemes, well above the projected experimental (sub-
)percent accuracy for the σ(ZH) measurement. In the
Gµ scheme, we find that the NNLO electroweak-QCD
corrections amount to 0.3% of the LO result. A compre-
hensive study of parametric and QCD scale uncertainties
exhibits large uncertainties in the NNLO electroweak-
QCD predictions in the ε(0) and ε(MZ) schemes, which
however are considerably reduced in the Gµ scheme. It
is important to note that to make closer contact with
the actual experimental measurement, it is also useful to
conduct a careful analysis on the ISR effects, as well as
to study the process e+e− → µ+µ−+H by including the
effect of finite Z width.

Note added. After this work was submitted, there
also appeared an independent computation on mixed
electroweak-QCD corrections to Higgsstrahlung pro-
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FIG. 3: Differential unpolarized/polarized cross sections for
Higgsstrahlung at

√
s = 240 GeV at NLO O(α) and NNLO

O(ααs). The green band indicates the uncertainties from
the input parameters as adopted in Table II and the three
different input schemes.

cess [42].
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√
s (GeV)

LO (fb) NLO Weak (fb) NNLO mixed electroweak-QCD (fb)

σ(0) σ(α) σ(0) + σ(α) σ(ααs)
Z σ(ααs)

γ σ(ααs) σ(0) + σ(α) + σ(ααs)

Total 223.14 6.64 229.78 2.42 0.008 2.43 232.21
240 L 88.67 3.18 91.86 0.96 0.003 0.97 92.82

T 134.46 3.46 137.92 1.46 0.005 1.46 139.39
Total 223.12 6.08 229.20 2.42 0.009 2.42 231.63

250 L 94.30 3.31 97.61 1.02 0.004 1.02 98.64
T 128.82 2.77 131.59 1.40 0.005 1.40 132.99

TABLE I: The (un)polarized Higgsstrahlung cross sections at
√
s = 240 GeV and 250 GeV in the α(0) scheme. Provided are

the LO, NLO weak and NNLO O(ααs) predictions as well as individual contributions for the O(α) corrections σ(α), and for
the O(ααs) corrections in (13).

√
s schemes σLO (fb) σNLO (fb) σNNLO (fb)

α(0) 223.14 ± 0.47 229.78 ± 0.77 232.21+0.75+0.10
−0.75−0.21

240 α(MZ) 252.03 ± 0.60 228.36+0.82
−0.81 231.28+0.80+0.12

−0.79−0.25

Gµ 239.64 ± 0.06 232.46+0.07
−0.07 233.29+0.07+0.03

−0.06−0.07

α(0) 223.12 ± 0.47 229.20 ± 0.77 231.63+0.75+0.12
−0.75−0.21

250 α(MZ) 252.01 ± 0.60 227.67+0.82
−0.81 230.58+0.80+0.14

−0.79−0.25

Gµ 239.62 ± 0.06 231.82±0.07 232.65+0.07+0.04
−0.07−0.07

TABLE II: The unpolarized Higgsstrahlung cross sections at√
s = 240(250) GeV in three different input schemes. To

estimate the uncertainties caused by the input parameters
(first entry), we take MW = 80.385±0.015 GeV, mt = 174.2±
1.4GeV and∆α(5)

had(MZ) = 0.02764±0.00013. We also change
the strong coupling constant from αs(MZ) to αs(

√
s) (second

entry) with its central value taken as αs = αs(
√
s/2). For

the conversion from the α(0) scheme to the α(MZ) and Gµ

schemes, we use ∆α(MZ)|NLO = ∆α(MZ)|NNLO = 0.059 and
∆r|NLO = 0.0293,∆r|NNLO = 0.0331, respectively.

Summary and Outlook. Stimulated by the anticipated
exquisite accuracy of the σ(HZ) measurements in the
next-generation e+e− Higgs factory, for the first time we
calculated the mixed electroweak-QCD O(εεs) correc-
tions for the Higgsstrahlung process. It is found that
this mixed electroweak-QCD corrections are quite siz-
able, about 1.1% of the LO result in ε(0) and ε(MZ)
schemes, well above the projected experimental (sub-
)percent accuracy for the σ(ZH) measurement. In the
Gµ scheme, we find that the NNLO electroweak-QCD
corrections amount to 0.3% of the LO result. A compre-
hensive study of parametric and QCD scale uncertainties
exhibits large uncertainties in the NNLO electroweak-
QCD predictions in the ε(0) and ε(MZ) schemes, which
however are considerably reduced in the Gµ scheme. It
is important to note that to make closer contact with
the actual experimental measurement, it is also useful to
conduct a careful analysis on the ISR effects, as well as
to study the process e+e− → µ+µ−+H by including the
effect of finite Z width.

Note added. After this work was submitted, there
also appeared an independent computation on mixed
electroweak-QCD corrections to Higgsstrahlung pro-
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√
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three types of corrections also include O(ααs) corrections as
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O(ααs) corrections to the eeZ vertex, γ/Z self-energy, and
V ZH vertex. The cross represents the quark mass countert-
erm in QCD, a cap denotes the electroweak counterterm.

Leading-order results. By safely neglecting the electron
mass owing to its exceedingly tiny Yukawa coupling,
there is only a single s-channel Feynman diagram for the
LO Higgsstrahlung process, as depicted in Fig. 1. In the
CM frame, the amplitude for e+(k1,→σ) + e−(k2,σ) →
H(pH) + Z(pZ ,ε) reads:

Mσ,λ
0 = e2gσe

MZ

sW cW

1

s→M2
Z

v̄(k1)/ε
∗
λPσu(k2), (1)

where P± = 1±γ5

2 are chirality projectors, εµλ denotes the
polarization vector of the Z boson, with ε = 0(±1) being
the longitudinal(transverse) polarization. σ = ± 1

2 repre-
sents the helicity of the incoming electron or positron
(often we use the shorthand σ = ± for brevity). To war-
rant a nonvanishing amplitude, the positron must carry
the opposite helicity with respect to the electron. We fol-
low the conventions in [20] to define the Weinberg angle
as cW ≡ MW

MZ
, and sW ≡

√

1→ c2W . The Zff̄ couplings

g±f are defined following [19].
For simplicity, we will consider the unpolarized e+(e−)

beams, which is the case for CEPC and FCC-ee. The LO

differential cross section for polarized Z then reads

dσ(0)
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dcos θ
=

πα2β

16c2Ws2W

M2
Z

(s→M2
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2
(2)

×

{

(1± cos θ)2 g−e
2
+ (1∓ cos θ)2 g+e

2
, for ε = ±1,

2 sin2 θ
(

g−e
2
+ g+e

2
)(

1 + β2s
4M2

Z

)

, for ε = 0,

with θ being the angle between pZ and k1 in the CM
frame, β = 2|pZ|√

s
. Upon angular integration, the LO

integrated cross section for polarized Z reads:

σ(0)
λ =

πα2β
(

g−e
2
+ g+e

2
)

6c2W s2W

M2
Z

(s→M2
Z)

2

(

1 + δλ,0
β2s

4M2
Z

)

.

(3)

The total unpolarized cross section σ(0)unpol = σ(0)
L +

σ(0)
T ≡ σ(0)

0 + 2σ(0)
±1 . In the high energy limit, the

cross section for producing longitudinally-polarized Z (∝
1/s) dominates the one associated with the transversely-
polarized Z (∝ 1/s2),

The outline of calculation for radiative corrections. As
far as the O(α) +O(ααs) corrections are concerned, the
higher-order diagrams can be grouped into several dis-
tinct topologies as shown in Fig. 1 and Fig. 2.
It is conventional to separate the O(α) corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:

δMσ,λ = δMσ,λ
eeH + δMσ,λ

Box + δMσ,λ
eeZ + δMσ,λ

S.E.

+δMσ,λ
ZZH + δMσ,λ

γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
eeZ = Mσ,λ

0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-

tions from both ZZ and mixed γZ self-energies:

δMσ,λ
S.E. = →Mσ,λ

0

(

Σ̂ZZ
T (s)

s→M2
Z

+
1

gσe

Σ̂γZ
T (s)

s

)

, (5)

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
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the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:
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γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
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0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-
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gauge boson self-energy.
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√
s (GeV)

LO (fb) NLO Weak (fb) NNLO mixed electroweak-QCD (fb)

σ(0) σ(α) σ(0) + σ(α) σ(ααs)
Z σ(ααs)

γ σ(ααs) σ(0) + σ(α) + σ(ααs)

Total 223.14 6.64 229.78 2.42 0.008 2.43 232.21
240 L 88.67 3.18 91.86 0.96 0.003 0.97 92.82

T 134.46 3.46 137.92 1.46 0.005 1.46 139.39
Total 223.12 6.08 229.20 2.42 0.009 2.42 231.63

250 L 94.30 3.31 97.61 1.02 0.004 1.02 98.64
T 128.82 2.77 131.59 1.40 0.005 1.40 132.99

TABLE I: The (un)polarized Higgsstrahlung cross sections at
√
s = 240 GeV and 250 GeV in the α(0) scheme. Provided are

the LO, NLO weak and NNLO O(ααs) predictions as well as individual contributions for the O(α) corrections σ(α), and for
the O(ααs) corrections in (13).

√
s schemes σLO (fb) σNLO (fb) σNNLO (fb)

α(0) 223.14 ± 0.47 229.78 ± 0.77 232.21+0.75+0.10
−0.75−0.21

240 α(MZ) 252.03 ± 0.60 228.36+0.82
−0.81 231.28+0.80+0.12

−0.79−0.25

Gµ 239.64 ± 0.06 232.46+0.07
−0.07 233.29+0.07+0.03

−0.06−0.07

α(0) 223.12 ± 0.47 229.20 ± 0.77 231.63+0.75+0.12
−0.75−0.21

250 α(MZ) 252.01 ± 0.60 227.67+0.82
−0.81 230.58+0.80+0.14

−0.79−0.25

Gµ 239.62 ± 0.06 231.82±0.07 232.65+0.07+0.04
−0.07−0.07

TABLE II: The unpolarized Higgsstrahlung cross sections at√
s = 240(250) GeV in three different input schemes. To

estimate the uncertainties caused by the input parameters
(first entry), we take MW = 80.385±0.015 GeV, mt = 174.2±
1.4GeV and∆α(5)

had(MZ) = 0.02764±0.00013. We also change
the strong coupling constant from αs(MZ) to αs(

√
s) (second

entry) with its central value taken as αs = αs(
√
s/2). For

the conversion from the α(0) scheme to the α(MZ) and Gµ

schemes, we use ∆α(MZ)|NLO = ∆α(MZ)|NNLO = 0.059 and
∆r|NLO = 0.0293,∆r|NNLO = 0.0331, respectively.

Summary and Outlook. Stimulated by the anticipated
exquisite accuracy of the σ(HZ) measurements in the
next-generation e+e− Higgs factory, for the first time we
calculated the mixed electroweak-QCD O(εεs) correc-
tions for the Higgsstrahlung process. It is found that
this mixed electroweak-QCD corrections are quite siz-
able, about 1.1% of the LO result in ε(0) and ε(MZ)
schemes, well above the projected experimental (sub-
)percent accuracy for the σ(ZH) measurement. In the
Gµ scheme, we find that the NNLO electroweak-QCD
corrections amount to 0.3% of the LO result. A compre-
hensive study of parametric and QCD scale uncertainties
exhibits large uncertainties in the NNLO electroweak-
QCD predictions in the ε(0) and ε(MZ) schemes, which
however are considerably reduced in the Gµ scheme. It
is important to note that to make closer contact with
the actual experimental measurement, it is also useful to
conduct a careful analysis on the ISR effects, as well as
to study the process e+e− → µ+µ−+H by including the
effect of finite Z width.

Note added. After this work was submitted, there
also appeared an independent computation on mixed
electroweak-QCD corrections to Higgsstrahlung pro-
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FIG. 3: Differential unpolarized/polarized cross sections for
Higgsstrahlung at

√
s = 240 GeV at NLO O(α) and NNLO

O(ααs). The green band indicates the uncertainties from
the input parameters as adopted in Table II and the three
different input schemes.
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FIG. 2: Some representative higher-order diagrams for e+e− → µ+µ−H, through the order-ααs.

The three solid heavy dots are explained in Fig. 3. Diagrams in the first two rows correspond to the
“resonant” channel e+e− → (Z∗/γ∗ →)µ+µ−+H, while those in the last row exhibit a completely
different “non-resonant” topology.
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FIG. 3: Representative diagrams for the radiative corrections to the renormalized Zee vertex, γ/Z
self-energy, and HV V vertex, through order-ααs. The cross represents the quark mass counterterm

in QCD, cap denotes the electroweak counterterm in on-shell scheme.

consider the ISR and FSR types of diagrams. It is obvious that the NLO diagrams can
be separated into two gauge-invariant subgroups, with either “resonant” or “non-resonant”
structures. For the former subset, the diagrams are very similar to those encountered in the
previous NLO weak correction for e+e− → ZH , so are the corresponding calculations; for
the latter, there emerges no singularity as s12 → M2

Z , so there is no need to include width
effect for any particle routing around the loop.
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different “non-resonant” topology.
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Z
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γ/
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+ + + +

W

W

FIG. 3: Representative diagrams for the radiative corrections to the renormalized Zee vertex, γ/Z
self-energy, and HV V vertex, through order-ααs. The cross represents the quark mass counterterm

in QCD, cap denotes the electroweak counterterm in on-shell scheme.

consider the ISR and FSR types of diagrams. It is obvious that the NLO diagrams can
be separated into two gauge-invariant subgroups, with either “resonant” or “non-resonant”
structures. For the former subset, the diagrams are very similar to those encountered in the
previous NLO weak correction for e+e− → ZH , so are the corresponding calculations; for
the latter, there emerges no singularity as s12 → M2

Z , so there is no need to include width
effect for any particle routing around the loop.

7

and the higher-order radiative corrections by

σ0

∣∣
NWA

= σ0(ZH)Br0(Z → µ+µ−), (22a)

σ(α)
∣∣
NWA

= σ(α)(ZH)Br0(Z → µ+µ−) + σ0(ZH)Br(α)(Z → µ+µ−), (22b)

σ(ααs)
∣∣
NWA

= σ(ααs)(ZH)Br0(Z → µ+µ−) + σ0(ZH)Br(ααs)(Z → µ+µ−), (22c)

where σ(ZH) represents the Higgsstrahlung cross section, with σ0(ZH) given in (13). Br0
is defined in (11), and the radiative corrections Br(αα

n
s ) (n = 0, 1) can be read off from

Br(Z → µ+µ−) = Br0(Z → µ+µ−) + Br(α)(Z → µ+µ−) + Br(ααs)(Z → µ+µ−) + · · · . (23)

Since the width of the Z0 is held fixed, the perturbative expansion for the branching fraction
of Z0 → µ+µ− amounts to the expansion for the corresponding partial width.

LO NLO NNLO

σ (fb) 6.983 7.385 7.488

σ|NWA (fb) 7.241 7.657 7.760

TABLE III: Compare the full and NWA predictions to the cross sections at
√
s = 240 GeV, at

various levels of perturbative accuracy.

In Table III, we compare the predicted e+e− → µ+µ−H cross section from the literal
full calculation with that from NWA. For the sake of concreteness, we take

√
s = 240 GeV,

and employ the α(0) scheme. At LO, the NWA prediction is about 3% higher than the full
prediction, while O(α) and O(ααs) corrections are observed to be only slightly different. As
a consequence, the NWA prediction to the total cross section at NNLO accuracy turns out
to be about 4% higher than the full NNLO prediction.

VII. SUMMARY

Higgsstrahlung is the leading Higgs production mechanism at CEPC. The mixed
electroweak-QCD correction to e+e− → ZH has recently become available [14, 15]. This
piece of NNLO correction appears to be surprisingly large, about 1% of the Born-order
result, therefore must be considered when matching the exquisite experimental accuracy.

To make closer contact with the actual experimental measurement, in this work we have
investigated both NLO weak and mixed electroweak-QCD corrections to one of the golden
mode in CEPC, i.e. e+e− → µ+µ−H , with the finite Z0 width properly accounted. At√
s ≈ 240 GeV, the NLO weak correction may reach 6% of the Born order cross section,

while the NNLO mixed electroweak-QCD correction can reach 1.5% of the LO cross section,
greater than the projected experimental accuracy of 0.9%. We also present numerical pre-
dictions to various differential cross sections at NNLO accuracy, in particular we predict the
µ+µ− invariant-mass spectrum of the Breit-Wigner shape. We have also compared our full
predictions with those based on the NWA, and found the agreement within a few percents.
It is interesting to await the future experiment to examine our predictions.

We also carefully address the issue about scheme-dependence of our predictions, at vari-
ous levels of perturbative accuracy. Employing three popular renormalization sub-schemes,

12
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2

The Mandelstam variables are defined as usual

s = (k1 + k2)
2
, t = (k1 � k3)

2
. (4)

We generate the Feynman amplitudes with QGRAF [22,
23] and FeynArts [24], with some sample two-loop Feyn-
man diagrams shown in Fig 1. A detailed classification
of all 25377 two-loop diagrams have been provided in
Ref [21], from which one can reckon the complexity of
the calculation. We use a private Mathematica package
to deal with Lorentz algebras, and express the interfer-
ence of two-loop amplitudes with tree-level amplitudes as
linear combinations of some scalar integrals. The coe�-
cients of these integrals are rational functions of physical
parameters, including the Mandelstam variables s and
t, squared mass of corresponding particles m2

t
, m2

H
, m2

Z

and m
2
W
, dimensional regulator ✏ = (4 � D)/2, and the

electroweak coupling constant ↵.
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FIG. 1: Some sample Feynman diagrams at the
two-loop level.

Totally we get about 3⇥104 Feynman integrals, which
are then clustered into 372 integral families. To illustrate
how to evaluate these integrals, let us take the integral
family defined by the Feynman diagram shown in Fig. 1
(i) as an example, which is one of the most complicated

Feynman integral family. The integrals in this family can
be expressed as

I(⌫1, · · · , ⌫9) =

Z LY

i=1

dD`i

i⇡D/2

D
�⌫8
8 D

�⌫9
9

D
⌫1
1 · · · D

⌫7
7

, (5)

where inverse propagators can be chosen as

D1 = `
2
1, D2 = (`1 + k1)

2
�m

2
W
, D3 = (`1 � k2)

2
�m

2
W
,

D4 = (`1 � `2)
2
�m

2
H
, D5 = (`1 � `2 + k4)

2
�m

2
Z
,

D6 = (`2 � k2)
2
�m

2
W
, D7 = (`2 + k1 � k4)

2
�m

2
W
,

D8 = (`1 � `2 + k1)
2
, D9 = (`1 � `2 + k2)

2
, (6)

with the last two being irreducible scalar products intro-
duced for completeness. For simplicity, during the com-
putation, we fix masses of particles as rational numbers.
Then for any given rational value of s, the integrals only
depend on two variables, t and ✏.
We first decompose our target integrals into linear

combinations of a smaller set of so-called master inte-
grals using integration-by-parts (IBP) [25] reduction1. In
detail, we first use LiteRed [26] and FiniteFlow [27] to
generate and solve the system of IBP identities [25] based
on Laporta’s algorithm [28] over finite field. Around
200 numerical samplings are su�cient to construct the
block-triangular relations for target integrals proposed
in Refs. [29, 30]. We then make full use of the block-
triangular relations to e�ciently generate large amount
of samplings (approximately 104) to eventually recon-
struct the reduction coe�cients. This strategy reduces
the computational time by several times, compared with
the reduction without using block-triangular relations.
Next we compute the master integrals using di↵erential

equations [31] based on power series expansion [32, 33].
The di↵erential equations of master integrals with respect
to t are constructed using aforementioned IBP reduction.
The boundary conditions, say at t/m2

t
= �1/2, are then

fixed by the auxiliary mass flow method [20, 34–36] im-
plemented in AMFlow [37]. More specifically, we employ
the “mass” mode [20], to insert the auxiliary mass pa-
rameter ⌘ to propagators D2,D3,D6 and D7. This is
equivalent to directly treat m2

W
as a dynamical parame-

ter. By doing so, we get the integrals simplified, in the
large mass limit [38, 39], to some factorized one loop
integrals and vacuum integrals. These simplified inte-
grals will be then evaluated again by using the AMFlow.
Finally, a numerical continuation of the auxiliary mass
from the large mass limit to zero would give us high pre-
cision physical results, which serves as the boundary con-
ditions. With these in hand, we are able to construct a
piecewise function for each master integral represented
by some deeply expanded power series expansions, which

1 Integrals needed for constructing di↵erential equations are also
included in the target integrals, see next paragraph.

~ 30,000 Feynman diagrams; 

7675 master integrals after 
reduction; 

only ~104 CPU · h with 
AMFlow; 

More labors and CPU · h are 
needed; 

Full result is still on the way!
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We compute the complete two-loop electroweak corrections to the Higgsstralung process e+e� !

HZ at the future Higgs factory. The Feynman integrals involved in the computation are decomposed
into linear combinations of a minimal set of master integrals taking advantage of the recent devel-
opments of integral reduction techniques. The master integrals are then evaluated by di↵erential
equations with boundary conditions provided by the auxiliary mass flow method. Our final result
for given

p
s is expressed as a piecewise function defined by several deeply expanded power series,

which has high precision and can be further manipulated e�ciently. Our calculation presents the
first complete two-loop electroweak corrections for processes with four external particles.

I. INTRODUCTION

The physics related to the Higgs boson has become
the frontier of the high energy physics since its discov-
ery a decade ago [1, 2]. In the Standard Model (SM) of
particle physics, the Higgs boson is known as the direct
evidence of the electroweak (EW) spontaneous symme-
try breaking based on the Higgs mechanism. However,
the current experiment precision cannot exclude the pos-
sibility of exotic Higgs potential deviated from the SM,
which is the typical structure in most of the new physics
models. Therefore, the Higgs boson could be the most
promising probe to new physics beyond the SM.

The precise measurement on the Higgs boson is the
most important mission for the next generation of high-
energy experiment facility. In the past few years, there
have been several proposals of the Higgs factory, includ-
ing the International Linear Collider (ILC) [3–5], the
Circular Electron Positron Collider (CEPC) [6, 7], and
the Future Circular Collider (FCC-ee) [8–10]. Millions of
Higgs bosons are expected to be produced in these Higgs
factories via the processes including the Higgsstrahlung
e
+
e
�

! ZH, the W boson fusion e
+
e
�

! ⌫e⌫̄eH, and
the Z boson fusion e

+
e
�
! e

+
e
�
H. At a typical center-

of-mass energy 240 GeV, the dominant contribution is
the Higgsstrahlung process.

The preliminary investigations have shown that, with
the expected integrated luminosity of 5.6 ab�1 [11], the
Higgsstrahlung cross section �(e+e� ! ZH) can be mea-
sured with the precision 0.51% [11]. Consequently, the
precision of the relevant theoretical predictions must be
pushed to at least the same level. The next-to-leading or-
der (NLO) EW e↵ect has been investigated in Refs.[12–

⇤ xchenphy@pku.edu.cn
† guanxin0507@pku.edu.cn
‡ legend he@pku.edu.cn
§ zhaoli@ihep.ac.cn
¶ xiao.liu@physics.ox.ac.uk

⇤⇤ yqma@pku.edu.cn

14], and in recent years the mixed EW-QCD correction
e↵ect has been obtained [15–18]. Even though, the cur-
rent theoretical uncertainty is still as large as 1%, which
is not compatible to the experiment accuracy yet. There-
fore, higher order radiative corrections are crucial for the
Higgs physics analysis at the future Higgs factory. Re-
cently some integrals involved in two-loop EW correc-
tions were calculated [19, 20], but complete two-loop cal-
culation is still missing.
The complete two-loop EW calculation for this 2 ! 2

process is always challenging but is indispensable for
the reliable theoretical predictions. On one hand, 25377
Feynman diagrams [21] make all subsequent procedures
very time and resource consuming. And on the other
hand, the Feynman integrals involving six mass scales are
out of the reach of all analytical toolkit. In this paper,
by taking advantage of the recent developments of mul-
tiloop calculation techniques, we eventually achieve the
complete two-loop EW corrections for the Higgsstralung
process e+e� ! HZ at the future Higgs factory.
The rest of the paper is organized as follows. In Section

2, technique details of the calculation of two-loop EW
correction are explained. In Section 3, the �5 scheme and
renormalization are discussed. In Section 4, we present
the numerical results of two-loop EW corrections. The
summary is made in the last section.

II. TWO-LOOP CALCULATION

We consider the two-loop electroweak correction to the
following process

e
+(k1) + e

�(k2) ! H(k3) + Z(k4), (1)

where the external momenta satisfy the on-shell condi-
tions

k
2
1 = k

2
2 = 0, k

2
3 = m

2
H
, k

2
4 = m

2
Z
, (2)

and momentum conservation

k1 + k2 = k3 + k4. (3)
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We present a complete calculation of the next-to-next-to-leading electroweak corrections involving
closed fermion loops to eþe− → ZH. This has been achieved by using a seminumerical technique for the
two-loop vertex and box diagrams, based on Feynman parameters and dispersion relations for one of
the two subloops. UV divergences are treated with suitable subtraction terms. Numerical results for the
unpolarized differential and integrated cross section at center-of-mass energy 240 GeV are provided. The
new corrections are found to increase the predicted cross section by 0.7%.

DOI: 10.1103/PhysRevLett.130.031801

Introduction.—After the discovery of the Higgs
boson [1,2] at the Large Hadron Collider (LHC) in
2012, it will be crucial to perform precision studies of
its properties, in order to understand the details of the
mechanism of electroweak symmetry breaking and search
for signs of new physics beyond the Standard Model (SM).
Possible deviations of Higgs couplings from the SM
expectations may appear at the percent level in a wide
range of models [3].
For this purpose, several proposals have been made

for so-called eþe− Higgs factories: the International
Linear Collider (ILC) [4,5], the Future Circular Collider
(FCC-ee) [6], and the Circular Electron-Positron Collider
(CEPC) [7]. Those colliders are intended to operate at
center-of-mass energies of 240–250 GeV, in which the
Higgsstrahlung process, eþe− → ZH, becomes the domi-
nant Higgs production channel. As a result of a clean
environment and high luminosity, the cross section for ZH
production is expected to be measured with a precision of
about 1.2% at ILC, 0.4% at FCC-ee, and 0.5% at CEPC.
To extract the coupling between Higgs and Z boson,

theoretical predictions for the process (eþe− → ZH) are
necessary, and the precision should be at least of the same
order as the experimental one. Within the SM, leading order
(LO) [8] and next-to-leading order (NLO) corrections have
been known for a long time for unpolarized beams [9–11],
and more recently for polarized beams [12]. The effects of
multiple collinear photon emission in the initial state,
which are enhanced by powers of logðs=m2

eÞ, can be
taken into account with Monte-Carlo [13] or structure

function [14] methods. Other higher-order corrections are
more challenging to compute. The mixed electroweak-
QCD [OðααsÞ] correction has been calculated by two
groups independently [15,16]. Furthermore, the NLO
and next-to-next-to-leading order(NNLO) OðααsÞ correc-
tions have also been computed for the final state of μμ̄H,
i.e., including Z decays into dimuon pairs [17]. TheOðααsÞ
correction was found to be about 1.5% of the LO result,
which is significantly larger than the expected experimental
accuracy of CEPC and FCC-ee.
The most important missing higher-order corrections are

NNLO electroweak corrections, which are expected to
contribute at the percent level and thus comparable or
larger than the experimental precision of future Higgs
factories. This Letter presents the complete calculation
of NNLO corrections based on two-loop electroweak
diagrams with closed fermion loops. Closed fermion loops
contributions are typically dominant because of the large
top-quark Yukawa coupling and the large number of
fermion flavors in the SM, which is corroborated by
previous calculations [18,19]. With difficulties in finding
analytical solutions, numerical methods allow broader
flexibility. Recent innovative techniques based on series
solutions of differential equations [20–23] seems promis-
ing, but they rely on integration-by-parts reduction, which
is typically the computational bottleneck.
Our calculation is based on a seminumerical method

using a combination of dispersion relations and Feynman
parametrizations, which was first introduced in Ref. [24]
for the evaluation of two-loop double boxes. The method
has been further developed to enable the treatment of UV
divergences, which occur in two-loop vertex integrals and
subloop vertex and self-energy contributions. Integration-
by-parts reduction is not needed. With our approach all
relevant two-loop diagrams are reduced to at most three-
dimensional numerical integrals that can be evaluated with
typically three-to-four digit precision within minutes on a
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Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
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single CPU core [or up to a few hours when using
quadruple-precision numbers for higher accuracy]. To
the best of our knowledge, this is the first computation
of NNLO electroweak corrections to a 2 → 2 scattering
cross section.
Method.—Two-loop electroweak diagrams with fermion

loops can be classified into vertex, self-energy, box, and
reducible two-loop diagrams. Some example diagrams are
shown in Fig. 1. Many of these diagrams are infrared (IR)
and/or ultraviolet (UV) divergent. IR divergences can be
spurious or physical. The former cancel in a subset of
similar diagrams, but they must be regulated in individual
diagrams, which we achieve by introducing a small
fictitious photon mass. The physical IR divergences only
emerge from initial-state QED vertex corrections, and they
cancel against real photon emission contributions.
However, initial-state QED corrections factorize and can
be taken into account through convolution with process-
independent structure functions; see, e.g., Ref. [14].
Therefore we omit these contribution in our calculation.
Dimensional regularization is employed to regulate the UV
divergence. It is worthwhile to briefly discuss the renorm-
alization scheme and the treatment of γ5 in D dimensions.
We employed on-shell renormalization scheme for all

fields, masses, and electromagnetic coupling e. The αð0Þ
scheme is used for the latter, i.e., e is normalized to its value
in the Thomson limit. As a result, the final result depends
on the shift Δα ¼ 1 − αðmZÞ=αð0Þ, where αðμÞ is the
running electromagnetic coupling at the sale μ. More
details on the renormalization parameters can be found
in Ref. [25].
The problem of γ5 appears in the diagrams involving

triangle fermion loops, which require the evaluation of
trðγαγβγμγνγ5Þ. In D dimensions, the anticommutation
relation fγμ; γ5g and the trace identity trðγαγβγμγνγ5Þ ¼
−4iϵαβμν cannot be satisfied simultaneously. However,
contributions originating from the ϵ tensor are UV
finite, so they can be safely evaluated in four dimensions.

This approach has been used for example in Refs. [18,26].
More strategies about the treatment of γ5 in D dimensions
can be found in Ref. [27].
Now let us discuss the evaluation of the two-loop integrals

in the matrix element for eþe− → ZH. The reducible
diagrams, Fig. 1(d), and self-energy diagrams, Fig. 1(a),
can be straightforwardly computed by reducing the expres-
sions to a set of known master integrals (MIs) [28]. The MIs
have been evaluated numerically using LOOPTOOLS 2.16 [29]
for the one-loop cases and TVID 2.2 [30] for the two-loop
self-energies. The two-loop counterterms have been com-
puted with the same approach.
For the two-loop vertex and box diagrams, we adopt the

method of Ref. [24], which has been extended to deal with
UV-divergent diagrams. The approach uses Feynman
parameters to transform one of the two subloops into a
self-energy-type integral, which can be expressed in terms
of a dispersion relation. The second subloop can then be
solved analytically via well-known one-loop Passarino-
Veltman functions. No reduction to MIs is required in this
approach. The integration over the Feynman and dispersion
parameters is performed numerically, resulting in at most
three-dimensional integrals for two-loop vertex and box
diagrams.
UV divergences need to be subtracted before carrying

out the numerical integration. In general, three types of
subtraction terms may be needed, two for subloop
divergences and one more for a global (or nested)
divergence. [The number of subtraction terms varies with
topologies; for simpler topologies, only one term is
needed.] The subtraction terms should be simple enough
to be integrated analytically and then added back to the
total result.
To illustrate how to subtract the UV divergences, let us

take an example from the diagram shown in Fig. 1(f),
namely the tensor function given in Eq. (1) below. By
power counting one can see that this integral has subloop
divergences for both the q1 and q2 loops, as well as a
global two-loop divergence. After introducing a Feynman
parameter and shifting the q2 momentum, one arrives at
the expression in Eq. (2), where px ¼ xp ¼ xðpz þ phÞ
and m2

x ¼ ð1 − xÞm2
V2

þ xm2
V1

þ ðx2 − xÞp2. Here pz and
ph are the momenta of the final-state Z boson and Higgs
boson, respectively, whereas p is the s-channel momen-
tum. Next, the q2 loop is rewritten in terms of dispersion
relations. This produces a number of terms, of which only
the divergent ones are explicitly shown in Eq. (3). The
remaining terms, denoted by I finite

q1;q2, are finite and do
not play any role in the UV subtraction. Here
σ0 ¼ ðmx þmf1Þ

2, and the explicit form of the dispersion
kernels ΔBij can be found in Ref. [24]. For future
reference, we introduce the symbols I ij

q1 for the three
q1 integrals in Eq. (3).

FIG. 1. Examples of two-loop Feynman diagrams with at least
one closed fermion loop.
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comparison to LO and NLO. This distortion mainly
originates from the final-state ZZH=γZH vertex and box
diagrams.
Conclusions.—Motivated by the anticipated high preci-

sion for the measurement of σðe−eþ → ZHÞ, in this Letter
we present the complete calculation of NNLO electroweak
corrections with closed fermion loops. We found that they
change the NLO results by 0.7% in the αð0Þ scheme, which
is comparable with the expected precision of future Higgs
factories. The NNLO results can be further divided accord-
ing to the number of fermion loops, and the contribution
with two closed fermion loops dominates over the one with
one closed fermion loop. The calculation was made
possible by a new seminumerical technique for the evalu-
ation of two-loop box and vertex diagrams. Although the
efficacy of our method has only been demonstrated by
evaluating diagrams with fermion loops, the bosonic
corrections require no new technical concept and thus
can also be computed with our method. Besides, our
method could also be applied to NNLO electroweak
corrections for other scattering processes.
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NNLO corrections to Z+H production at lepton colliders Ayres Freitas

!(0) scheme "! scheme

#LO [fb] 223.14 239.64

#NLO [fb] 229.78 232.46

#NNLO,EW→QCD [fb] 232.21 233.29

#NNLO,EW [fb] 233.86 233.98

Table 2: Results for the total cross-section for $+$− → %&, using input values and mixed EW-QCD
corrections from Ref. [23].

As evident from Tab. 2, the predictions in the two schemes are in very good agreement, but the
order-by-order corrections are smaller in the "! scheme.

5. Summary

This contribution describes a new semi-numerical technique for general 2-loop calculations
with arbitrary massive propagators. It makes use of dispersion relations and Feynman parameters.
Since it avoids integration-by-parts reduction and numerical integrals of high dimensionality, it
is relative efficient and requires modest computational resources. The numerical precision of
the method is limited by the machine floating point numbers, but it is sufficient for practical
phenomenological applications.

One such application are the fermionic electroweak NNLO corrections to the process $+$− →
%&. The corrections were found to be modest in size, but not negligible for the purposes of future
$+$− Higgs factories. The dependence on the renormalization scheme is significantly reduced by
including the electroweak NNLO corrections. Judging by the remaining scheme dependence, as
well as parametric power-counting estimates, the missing bosonic electroweak NNLO corrections
are expected to be numerically less important, but their computation would still be useful and in
general achievable with the methods described here.
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• Mixed NLO EW-QCD corrections to leptonic decay via HWW.
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δΓ/ΓLO +3.4% +0.2%

Table 2. The partial decay widths at various orders in the Gµ scheme.

Figure 2. The Meν distribution in the α(mZ) scheme (left) and in the Gµ scheme (right).

W boson. Here we observe similar behaviors as for the integrated decay rate. The NNLO
corrections are much smaller in the Gµ scheme, as shown in the right plot in figure 2,
where the green and blue curves almost completely overlap with each other. Since the
neutrino is not observable (although could be reconstructed), it is also interesting to study
the invariant mass of the visible part of the decay products. In figure 3 we show the MeW

distribution, again in the two schemes at different orders. This distribution can be measured
at the LHC and the future Higgs factories, with the W boson decaying hadronically. Our
results then provide the high precision theoretical predictions to be compared with the
experimental data.

5 Summary and outlook

In this paper, we have studied a class of two-loop triangle integrals entering the O(ααs)
corrections to the HW+W− vertex. We have constructed a canonical basis consisting
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Figure 3. The MeW distribution in the α(mZ) scheme (left) and in the Gµ scheme (right).

of 38 master integrals using the Baikov representation and intersection theory. We have
derived the ϵ-form differential equations for the master integrals, and are able to find fully
analytic solutions in terms of GPLs. The fully analytic form allows fast and accurate
numeric evaluation for any combination of external momenta and internal masses, which
is important for phenomenological studies.

We apply our results to the H → νeeW decay process. For the integrated decay
width, we find that the NNLO mixed QCD-EW corrections can reach 1% of the LO result
in the α(mZ) scheme. The size of the corrections are reduced to about 0.2% in the Gµ

scheme. This seems to indicate that the perturbative convergence in the Gµ scheme is
better. However, this needs to be confirmed by the behavior of the purely electroweak
two-loop corrections of order α2. We have also studied the differential decay rates and
drawn similar conclusions.

For the decay process, the complete O(ααs) corrections are not expected to be quite
different in size compared to those calculated in the heavy top limit [11–14]. However, the
fully analytic form of our results enable us to study cases where the virtuality of W± bosons
exceeds the top quark mass, where the heavy top approximation is no longer valid. This
is the case for, e.g., the W boson fusion process W+∗W−∗ → H. The O(ααs) corrections
for this production process will be presented in a forthcoming article.

A The canonical basis for the master integrals

In this appendix, we provide the canonical basis for the master integrals appearing in the
O(ααs) corrections to the HW+W− vertex. The 38 integrals are given by

f1 = F0,2,0,2,0,0,0,

f2 = um2
tF0,2,2,0,0,0,1,

f3 = 2m2
tR1F0,2,1,0,0,0,2 +m2

tR1F0,2,2,0,0,0,1,

f4 = vm2
tF0,0,0,2,2,0,1,

– 11 –
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• Distribution of the decay products from the Higgs boson 
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αb ≈ π yb
y f αb

Higgs-doublet model  (2HDM).  Without  any  other  devi-
ation from the predictions of the SM,  (because 
is  the  largest  in  the  down-type  fermions,  is prob-
ably  the  easiest  one  to  be  measured)  is  a  strong  hint  for
these types of NP models.

αbMuch effort has been made to measure . Although
the  direct  measurement  is  very  challenging  at  the  LHC
[22,23],  it  can  be  measured  indirectly  in  electric  dipole
moment (EDM) experiments [24-26] or at the LHC with
additional  model-dependent  assumptions  (e.g.,  in  the
frame of 2HDM [27-36]). The constraints on the indirect
measurement are strong but suffer from the potential con-
tributions of exotic degrees of freedom in the NP. For this
reason,  a  direct,  model-independent  measurement  is  still
necessary.

αb

In this work, we investigate the possibility of measur-
ing  directly  and  model-independently  at  a  future
Higgs factory.

II.  THE PHENOMENOLOGY OF THE BOTTOM-
QUARK YUKAWA INTERACTION

h→bb̄
To the leading order,  the effective Lagrangian in Eq.

(1) modifies the  decay width to

Γ(h→bb̄) = Γ(h→bb̄)SM
)
[[[[]

yb

ySM
b




2 (
cos2αb+β

−2
b sin2αb

)
, (3)

βb ≡
√

1−4m2
b/m

2
hwhere .  The  precise  measurement  of

the decay branching ratio can only constrain the combina-
tion

)
[[[[]

yb

ySM
b




2 (
cos2αb+β

−2
b sin2αb

)

∼
)
[[[[]

yb

ySM
b




2 )[[[[]1+
4m2

b

m2
h

sin2αb




=

)
[[[[]

ySM
b +δyb

ySM
b




2 (
1+0.0058sin2αb

)

∼1+2
)
[[[[]
δyb

ySM
b


+

)
[[[[]
δyb

ySM
b




2

+0.0058sin2αb (4)

yb αb αb
yb = ySM

b
Γ(h→bb̄)SM

αb

of  and , in which the contribution from  is numer-
ically  small.  Even if  we keep ,  the  partial  width
will be in the region of (1.0029±0.29%). This
small  discrepancy  is  just  below  the  sensitivity  at  Higgs
factories  [37-39]. Thus,  we  have  to  look  for  other  kin-
ematic variables that are sensitive to .

αb
h→b̄bg
To measure , we consider the interference effect in

the  process, whose Feynman diagrams are shown
in Fig. 1.

The transition amplitude can be written as

M = e±iαbM1+M2, (5)

M1
M2

αb
αb

bb̄

where  represents the contribution from Feynman dia-
grams  (a)  and  (b),  represents  the  contribution  from
Feynman diagram (c), both of which are -independent.
In Eq. (5), the sign before the phase angle  depends on
the chirality configuration of the  in the final state.

hbb̄
gbb̄ b

b
M1 M2

αb
αb

αb mb

Because the  vertex flips the chirality of the fermi-
on  line,  while  the  does  not,  if  the -quark is  mass-
less, the interference term will vanish. It can only appear
when the -quark is massive,  in which case the chirality
is  not  a  good  quantum  number.  The  terms  and 
can be non-zero at  the  same time due to  the  mass  inser-
tion effect.  The  technical  analysis  of  this  can  be  under-
stood easily.  Since  in  the  massless  limit  the  chiral  sym-
metry is  restored,  and one can remove  with the sym-
metry transformation of Eq.  (2),  should not have any
observable effect  in  this  limit.  Thus,  any  observable  ef-
fect of  is expected to be proportional to .

Our next aim is to find the phase space region where
the  interference  effect  is  large.  This  will  guide  us  to
design a suitable observable and cuts. The relative size of
the interference effect can be described by the ratio between
the interference term and the non-interference terms

e±iαbM1M∗2+ e∓iαbM∗1M2

|M1|2+ |M2|2
= 2cos(±αb+φ)

|M1| · |M2|
|M1|2+ |M2|2

,

(6)

φ M1M∗2
αb+φ

hgg

where  is phase angle of . As a matter of fact, we
can only measure  with this process.  However,  the
effective  vertex

(
αs

12
√

2πv
+

chgg

Λ

)
hGa
µνG

a,µν+
c̃hgg

Λ
hGa
µνG̃

a,µν (7)

chgg = c̃hgg = 0

|M1|·

can be independently and precisely measured at the LHC
[40-44],  so  that  the  model  dependence  from  this  part  is
low,  which  is  another  advantage  of  this  process.  In  our
work, we choose the SM value,  in the low
energy  limit.  To  obtain  a  significant  modulation  effect,
we  need  to  find  the  phase  space  region  where 

 

Fig. 1.    The Feynman diagrams that are used to measure the
relative sign between the bottom-quark Yukawa coupling con-
stant and the weak interaction gauge coupling constant.
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factory  shown  previously.  The  combined  results  are
shown in Fig. 7, Fig. 8, and Fig. 9.

IV.  CONCLUSION AND DISCUSSION

δ(cosαb) ∼ ±0.23
cosαb

δ(cosαb) ∼ ±0.17
hgg

σ

In this work, we investigate the possibility of measur-
ing the phase angle in the bottom-quark Yukawa interac-
tion  for  a  future  Higgs  factory.  We  find  that,  for  a
240 GeV Higgs factory with 5.6 ab−1 integrated luminos-
ity,  the  accuracy  of  the  measurement  could  reach

, which changes a little for different val-
ues of (see Fig. 6). If the Higgs factory runs at 365
GeV and accumulates 1.5 ab−1 integrated luminosity,  the
accuracy could increase to  (see Fig. 9).
This  result,  combined  with  the  interaction measure-
ment result from the LHC, can help us fix the phase angle
in  the  bottom-quark  Yukawa  interaction  with  the  125
GeV SM-like Higgs boson discovered at  the LHC. With
such  an  accuracy  of  the  measurements,  NP  models  with
anomalous bottom-quark Yukawa interaction, such as the
wrong-sign limit  of  the  type-II  2HDM,  will  be  dis-
covered (or excluded) with a C.L. of at least 3 .

h→bb̄

h→gg

b

In  our  simulation,  we  generated  the  Monte  Carlo
events with tree level amplitude. The infra-red (IR) diver-
gence in the cross section is avoided by adding kinematic
cuts.  There have been a number of studies on the higher
order  correction  to  the  decay  channel  since  the
1980s  (for  example,  see  [53-66]).  Some of  these  studies
include  the  interference  effect  with  the  channel.
Because the phase space region that makes the dominant
contribution to the measurement is the nearly collinear re-
gion of  the two -jets, a  calculation including resumma-
tion effects in that region would probably result in a sig-
nificant  improvement  in  the  accuracy  of  the  theoretical
prediction.

b
b

b
b

b

b
c

Z

Z

The -tagging efficiency used in this work is high. It
is  probable  that  the -tagging  efficiency  at  future  Higgs
factories  will  not  reach  the  assumed  value.  There  are
some potential causes for a decrease in the -tagging effi-
ciency.  For  example,  because  the  two -jets  are  nearly
collinear, it may be difficult to tag both of them with high
efficiency.  Second,  the -jet in  this  process  is  not  ener-
getic  enough;  therefore,  the  mis-tagging  rate  of  the
charm-quark jet could be higher than that of our assump-
tion.  However,  these  will  not  be  severe  problems.  One
may require only one -tagged jet in the signal events and
accept  a  higher -mis-tagging rate,  because  the  simula-
tion  shows  that  these  SM  backgrounds  are  still  small
enough.  When researchers  try to analyze the data with a
hadronic  decay  boson,  these  problems  will  be  more
subtle.  A  more  realistic  simulation  is  necessary  in  this
case.  Because  the  hadronic  decay  branching  ratio  is
much larger,  these data  may improve the results.  Never-
theless, this topic is beyond the scope of our work.

 

Yb

Z

Fig. 7.    (color online) The constraint of  for the 240 GeV
Higgs  factory  with  5.6  ab−1 integrated  luminosity  combined
with 365 GeV lepton collider with 1.5ab−1 integrated luminos-
ity  after  combining  the  leptonic  and  hadronic  decaying 
channels.

 

αb

Z αb(in)
αb(out)

Fig. 8.    (color online) The  measurement accuracy for the
240  GeV  Higgs  factory  with  5.6  ab−1 integrated  luminosity
combined with the 365 GeV lepton collider having 1.5 ab−1 in-
tegrated luminosity after combining the leptonic and hadronic
decaying  channels;  is  the  real  input  of  the  phase
angle, while  is the measured value with uncertainty.

 

cosαb

Z cosαb(in)
cosαb(out)

Fig.  9.    (color  online)  The  measurement accuracy for
the 240 GeV Higgs factory with 5.6 ab−1 integrated luminos-
ity combined with the 365 GeV lepton collider having 1.5 ab−1

integrated luminosity  after  combining  the  leptonic  and  had-
ronic  decaying  channels;  is  the  real  input  of  the
phase angle, and  is the measured value with uncer-
tainty.
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ji5

b
ji3
, ji4

ji5
∆ < 45 120◦ < θi1i2

< 150◦

boson decay,  and  as  the  gluon from the  Higgs  boson
decay. For  the  signal  events,  the  reconstruction  effi-
ciency is ~80%. We require that there are at least two -
jets in  and , , and .

Z→ j j
The  dominant  SM  background  processes  for  the

 channel are

e+e− → j j j j j
e+e− → j jh(→cc̄ j)
e+e− → j jh(→ j j j).

ζH
ζH

αb

After  the  reconstruction,  we  can  obtain  the  distribu-
tion, which is shown in Fig. 3; we show the  distribu-
tions for the residue SM backgrounds and the signal with
different values of .

3.    Data Analysis

We define the binned likelihood function by

L(µ,α) ≡
Nbin)

i=1

[
µs(α)i+bi

]ni

ni!
e−µs(α)i−bi , (22)

µ s(α)i
αb = α bi

ni
αb = α0

where  is the signal strength,  is the number of sig-
nal events in the ith bin under the hypothesis ,  is
the number of SM background events in the ith bin,  and

 is  the  number  of  total  events  observed  in  the ith  bin.
Thus, under the assumption that , the logarithm of

the ratio of the likelihood function will be

−2∆ log L ≡−2log
L(µ,α)

L(µ0,α0)

=−2
Nbin∑

i=1

{
µ0s(α0)i−µs(α)i+ [µ0s(α0)i+bi]

× log
(
µs(α)i+bi

µ0s(α0)i+bi

)}
. (23)

−2∆ log L = q2 qσ

αb = 0
Yb ≡ ybeiαb/ySM

b

With ,  we  can  estimate  the  confidence
level  (C.L.)  exclusion  region  under  the  SM  hypothesis

. We present the result in the complex plane for the
complex parameter defined by . The result
is shown in Fig. 4.

δα
α0

We can estimate the measurement uncertainty  for
arbitrary  by solving

−2log
L(µ̂,α0+δα)

L(1,α0)
= 1, (24)

µ̂

αb→0 αb→π

where  is chosen by minimizing the quantity on the left-
hand side of Eq. (24). The result is shown in Fig. 5. The
larger uncertainty for  and  is due to the smal-
ler derivative of the cosine function in these regions. This
effect  can be checked easily if  we compare the behavior
shown in Fig.  5 with  that  shown in Fig.  6,  in  which  the

ζH αb = 0
αb = π/2 αb = π

ζH Z→e+e− ζH Z→µ+µ−
αb = 0 Z→e+e−

αb = 0 Z→µ+µ−

Fig. 2.    (color online) The  distributions for the SM background, the SM bottom-quark Yukawa interaction ( ), bottom-quark
Yukawa interaction with CP-odd scalar  ( ),  and the wrong-sign bottom-quark Yukawa interaction ( )  at  240 GeV Higgs
factory with 5.6 ab−1 integrated luminosity. (a) The  distribution of  channel; (b)  distribution of  channel; (c) ra-
tio of the event rates with respect to the SM case ( ) of  channel; (d) ratio of the event rates with respect to the SM case
( ) of  channel.
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Abstract: We compute the full one-loop radiative corrections (including both weak and
QED corrections) for two processes e+e− → Zh0,H0A0 in the Inert Higgs Doublet model
(IHDM). Up to O(αw) and O(αem) order, we use FeynArts/FormCalc to compute the
one-loop virtual corrections and Feynman Diagram Calculation (FDC) to evaluate the real
emission, respectively. Being equipped with these computing tools, we investigate radiative
corrections of new physics for five scenarios with three typical collision energies of future
electron-positron colliders: 250GeV, 500GeV, and 1000GeV. By scanning the parameter
space of IHDM, we identify the allowed regions which are consistent with constraints and
bounds, from both theoretical and experimental sides. We find that the radiative correc-
tions of the IHDM to e+e− → Zh0 can be sizeable and are within the detection potentials
of future Higgs factories. We also find that the new physics of IHDM could also be directly
detected by observing the process e+e− → H0A0 which could have large enough production
rate. We propose six benchmark points and examine their salient features which can serve
as physics targets for future electron-positron colliders, such as CEPC/CLIC/FCC-ee/ILC
as well as for LHC.
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We compute the full one-loop radiative corrections for charged scalar pair production eþe− → HþH− in
the inert doublet model. The on-shell renormalization scheme has been used. We take into account both the
weak contributions as well as the soft and hard QED corrections. We compute both the real emission and
the one-loop virtual corrections using the Feynman diagrammatic method. The resummed cross section is
introduced to cure the Coulomb singularity which occurs in the QED corrections. We have analyzed the
parameter space of the inert doublet model in three scenarios after taking into account theoretical
constraints, the collider experimental bounds, and dark matter search bounds as well. It is found that the
weak interaction dominates the radiative corrections, and its size is determined by the triple Higgs coupling
λh0HþH− , which is further connected to the mass of the charged scalar. In the scenario where all the
constraints are taken into account, we find that for

ffiffiffi
s

p
¼ 250 GeV and

ffiffiffi
s

p
¼ 500 GeV, the weak

corrections are around −6% ∼ −5% and −10% ∼ −3%, respectively. While for
ffiffiffi
s

p
¼ 1000 GeV, the weak

corrections can reach −15% ∼þ25%. The new feature is that the weak corrections can be positive near the
threshold when the charged scalar is heavier than 470 GeV. Six benchmark points for future collider
searches have been proposed.

DOI: 10.1103/PhysRevD.109.015009

I. INTRODUCTION

The Standard Model (SM) particle spectrum has been
completed with the discovery of the Higgs boson on July 4,
2012, by the ATLAS and CMS experiments at CERN [1,2].
Furthermore, this discovery has confirmed that the SM of
particle physics is the underlying theoretical framework
valid at least for energies up to the electroweak (EW) scale.
The two collaborations also carried out several Higgs boson
couplings measurements at the Large Hadron Collider
(LHC) during run-1 and run-2 such as the couplings of

theHiggs boson to top quarks [3,4], tau leptons [5,6], bottom
quarks [7,8], and all the electroweak gauge bosons, includ-
ing the decays to ZZ# [9,10],WW# [11–14], and γγ [15]. In
addition, recently upper limits have been set on the h0 → γZ
signal strength [16,17] and on the Higgs boson production
cross section times branching fraction to muons [18,19].
The aforementioned measurements will be improved

at future experiments such as the High-Luminosity LHC
[20,21], scheduled to operate from 2029, where the Higgs
boson couplings are projected to be improved to a precision
level of 5–10%. In addition, the experimental uncertainties
will be further reduced in the clean environment of the
future lepton colliders, such as the International Linear
Collider (ILC) [22,23], the Circular Electron Positron
Collider (CEPC) [24], the Compact Linear Collider
(CLIC) [25–27], and the Future Circular Collider [28]. For
example, at the ILC, with a c.m. energy of about 250GeVand
a luminosity of 2 ab−1, some Higgs boson couplings will
most likely be measured at a precision level of 1% for
h0 → bb̄ and below 1% for h0 → ZZ;WW [29].
Although new physics beyond the SM has not yet been

established by the current LHC dataset, it is necessary in
order to understand several puzzles of the SM and the
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of them for future e+e− colliders. We end this work with concluding remarks and brief
discussions in section 6.

2 Review of IHDM, its theoretical and experimental constraints

2.1 A brief introduction to IHDM

The IHDM is a simple extension of the SM which can also provide a viable dark matter
candidate. It is a version of the 2HDM with an exact discrete Z2 symmetry. The SM scalar
sector parametrized by H1 is extended by an inert scalar doublet H2 which can provide a
stable dark matter candidate. Under Z2 symmetry all the SM particles are even while H2
is odd. We shall use the following parameterization of the two doublets:

H1 =

⎛

⎝ G±

1√
2(v + h0 + iG0)

⎞

⎠ , H2 =

⎛

⎝ H±

1√
2(H

0 + iA0)

⎞

⎠ (2.1)

with G0 and G± are the Nambu-Goldstone bosons absorbed, after electroweak symmetry
breaking, by the longitudinal component of W± and Z0, respectively. v is the vacuum
expectation value (VEV) of the SM Higgs H1. The most general renormalizable, gauge
invariant and CP invariant potential is given by:

V = µ2
1|H1|2 + µ2

2|H2|2 + λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 + λ4|H†
1H2|2

+λ5
2
{
(H†

1H2)2 + h.c
}

(2.2)

In the above potential, because of Z2 symmetry, there is no mixing terms like µ2
12(H

†
1H2+

h.c.). In addition, by hermicity of the potential, all λi, i = 1, · · · , 4 are real valued. The
phase of λ5 can be absorbed by a suitable redefinition of the fields H1 and H2, therefore
the scalar sector of the IHDM is CP conserving. After spontaneous symmetry breaking of
SU(2)L ⊗U(1)Y down to electromagnetic U(1)em, the spectrum of the above potential will
have five scalar particles: two CP even H0 and h0 which will be identified as the SM Higgs
boson with 125GeV mass, one CP odd A0 and a pair of charged scalars H±. Their masses
are given by:

m2
h0 = −2µ2

1 = 2λ1v
2

m2
H0 = µ2

2 + λLv
2

m2
A0 = µ2

2 + λSv
2

m2
H± = µ2

2 +
1
2λ3v

2 (2.3)

where λL,S are defined as:

λL,S = 1
2(λ3 + λ4 ± λ5) . (2.4)
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ofweak corrections depends on the coupling λh0HþH− , which
is further related to themass of charged scalar. In scenario III
we find that for

ffiffiffi
s

p
¼ 250 and

ffiffiffi
s

p
¼ 500 GeV, the weak

corrections are around −6% ∼ −5% and −10% ∼ −3%,
respectively. While for

ffiffiffi
s

p
¼ 1000 GeV, the weak correc-

tions can reach −15% ∼þ25%. The new feature is that the
weak corrections can be positive near the thresholdwhen the
charged scalar mass is larger than 470 GeV. We have
proposed six benchmark points for future lepton collider
searches.
The outline of this paper is as follows: In Sec. II, we

briefly describe the model, including its mass spectra, key
trilinear and quartic scalar couplings, and list various
theoretical and experimental constraints that we will take
into account in this work. In Sec. III, we provide the leading-
order (LO) formula for the cross sections of the eþe− →
HþH− process, introduce the on-shell renormalization
scheme for the IDM, and set up basic notations and
conventions. Moving on, we study the one-loop contribu-
tions to the eþe− → HþH− process and examine the
importance of soft and hard photon emission in order to
guarantee the cancellation of the infrared (IR) divergences at
the next-to-leading order (NLO) calculation. Furthermore,
we tackle the challenge posed by the Coulomb singularity
using efficient resummation techniques. We present our
numerical results in Sec. IV. In Sec. V, we propose some
benchmark points (BPs) and examine their radiative cor-
rections for future eþe− colliders. We end this work with
discussions in Sec. VI.

II. REVIEW OF THE INERT DOUBLET MODEL

A. A brief introduction to IDM

The IDM is one of the simplest extensions beyond the
SM. This model has an extra doublet H2 which is added to
the scalar sector of the SM. This doublet does not generate
any VEV and it does not have direct coupling to the
fermions of the SM. An unbroken Z2 symmetry is imposed
such that fermions, gauge bosons, and the SM doublet are
invariant while the additional scalar doublet is odd i.e.
H2 → −H2 under this symmetry. The parametrization of
the two doublets is given by

H1 ¼
" G#

1ffiffi
2

p ðvþ h0 þ iG0Þ

#
;

H2 ¼
" H#

1ffiffi
2

p ðH0 þ iA0Þ

#
; ð1Þ

where G0 and G# are the Goldstone bosons gauged out,
after electroweak symmetry breaking, by the longitudinal
components of W# and Z, respectively. The v denotes the
VEV of the SM Higgs doublet H1.

Then the renormalizable scalar potential can be given as

V ¼ μ21jH1j2 þ μ22jH2j2 þ λ1jH1j4 þ λ2jH2j4

þ λ3jH1j2jH2j2 þ λ4jH†
1H2j2

þ λ5
2
fðH†

1H2Þ2 þ H:c:g: ð2Þ

Note that because of the exact Z2 symmetry, the above
potential has no mixing terms like μ212ðH

†
1H2 þ H:c.Þ.

In addition, since the potential must be Hermitian, all
λi; i ¼ 1;…; 4 are dimensionless and real whilst the phase
of λ5 can be absorbed by a suitable redefinition of the fields
H1 and H2. After spontaneous symmetry breaking of the
group SUð2ÞL ⊗ Uð1ÞY down to Uð1Þem, we have five
physical scalars: h0 which is the SM 125 GeV Higgs boson
and four inert scalars: H, A, H#. Their masses are given by

m2
h0 ¼ −2μ21 ¼ 2λ1v2;

m2
H0 ¼ μ22 þ λLv2;

m2
A0 ¼ μ22 þ λSv2;

m2
H# ¼ μ22 þ

1

2
λ3v2; ð3Þ

where λL;S are defined as

λL;S ¼
1

2
ðλ3 þ λ4 # λ5Þ: ð4Þ

From above relations, one can easily find the expressions of
λi as a function of physical masses:

λ1 ¼
m2

h0

2v2
;

λ3 ¼
2ðm2

H# − μ22Þ
v2

;

λ4 ¼
ðm2

H0 þm2
A0 − 2m2

H#Þ
v2

;

λ5 ¼
ðm2

H0 −m2
A0Þ

v2
: ð5Þ

The IDM involves eight independent parameters: five
λ1;…;5, μ1, μ2 and the VEV. One parameter can be
eliminated by using the minimization condition, while
the VEV is fixed by the Z boson mass, fine-structure
constant and Fermi constant GF. Finally, we are left with
six independent parameters, which we choose as follows

fμ22; λ2; mh0 ; mH# ; mH0 ; mA0g: ð6Þ

One alternative parametrization is to use λL or λS in place
of μ22, as can be seen from Eq. (3). The advantage of such
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Figure 5. Single parameter range corresponding to a 0.5% deviation of the Higgsstrahlung total
cross-section from the SM NLO prediction at →

s = 240 GeV, including the LO and NLO SMEFT
results and a comparison with the global fit of [53]. Many of the global fit limits are asymmetric, and
we have plotted the absolute value of the weakest limit. For →

s = 365 GeV and →
s = 500 GeV, we

assume a 1% measurement. Note that the scale is kept fixed at µ = 240 GeV to aid in the comparison.
The fits assume unpolarized beams.

Figure 6. Single parameter range corresponding to a 0.5% and 1% deviation of the Higgsstrahlung total
cross-section from the SM NLO prediction at →

s = 240 GeV, and →
s = 365 GeV and →

s = 500 GeV,
respectively. Results are compared with the global fit of [53]. The current limits for the 4-fermion
operators are from [58]. Many of the global fit limits are asymmetric, and we have plotted the absolute
value of the weakest limit. Note that the scale is kept fixed at µ = 240 GeV to aid in the comparison.
The fits assume unpolarized beams.

with CKin = CφD/4−Cφ!, so we apply the substitution H → hZ−1
H with ZH = 1+(v2T /Λ2)CKin,

so that the kinetic part of the Lagrangian for the field h has the canonical form. Similarly to
the equivalent SM calculation, we can extract the relation between µ2 and the rest of the
Lagrangian parameters by calculating the tadpole term of the potential

Vt(h) = vT

(

v2Tλ − µ2 − 3
4
v4T
Λ2Cφ

)

hZ−1
H (3.10)
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Figure 1. Left: total parametric uncertainty in the SM prediction of mW as a function of the
input uncertainty in mt, for two di!erent assumptions on ωEM (solid and dashed curves). The solid
diagonal line represents the contribution from mt alone. The horizontal line represents the expected
experimental precision in mW at FCC-ee, while the vertical line indicates the expected precision
in mt after HL-LHC. Uncertainties in ωS(m2

Z
) (10→4), ωEM (3 · 10→5 baseline, 10→5 improved [21]),

mZ (1 keV), and mH (3MeV) according to recent projections for FCC-ee are assumed. Right:
Comparison of indirect determination of mt and mW from the fit to EWPO (elliptical contours)
and the projected precision from direct measurements (bands). We show in grey the projections for
the HL-LHC, while in blue we show the FCC-ee ones. These results include the projected future
intrinsic theory uncertainties in EWPO. The FCC-ee results in a scenario where theory calculations
are improved so that these uncertainties become subdominant is shown in the (small) yellow ellipse.
See Appendix A for details.

30MeV becomes necessary to match the experimental precision in mW. The impact of the

intrinsic theoretical uncertainties of the electroweak precision fit is not considered in this

result, but their e!ect is shown in Figure 1 (right).

In this paper, we revisit the potential of a tt threshold scan by performing a full

analysis including FCC-ee simulated events and a phenomenological study using N3LO

theory predictions. For this purpose, we consider a tt threshold scan at FCC-ee with a

total integrated luminosity of 410 fb→1 [22]. In Section 2 we present a full demonstration of

a cross section measurement using simulated events, including background simulation and

experimental systematic uncertainties. These results are then used in Section 3 to derive

projections for the uncertainties on the top quark mass (mt) and width (”t), including

estimates for experimental, machine-related, parametric, and theoretical uncertainties, by

performing a phenomenological analysis of the tt threshold scan. We then investigate the

dependence of the results on the assumptions on the systematic uncertainties (Section 4)

and we explore the possibility of a determination of the top Yukawa coupling above the tt

production threshold in Section 5. The baseline scenario for this dedicated run assumes

an integrated luminosity of 2.65 ab→1 at
→
s = 365GeV. Finally, in Section 7 we compare

– 3 –

All these observations approximately carry over to ~Mcri
t

and ~Mcri
H .

Apart from the issue of gauge dependence, our analysis
differs from that of Refs. [10,11] in the following respects.
In Refs. [10,11], the OðααsÞ term in δαsðμÞ [13] and the
Oðα4sÞ terms in δαsðμÞ [17] and δqðμÞ [18] were not
included; μthr was affected by the MMC

t variation, which
explains the sign difference in the corresponding shift in
Mcri

H ; and the scale uncertainties were found to be approx-
imately half as large as here for reasons unknown to us.
In Fig. 1, the RG evolution flow from μthr to μcri and

beyond is shown in the ðλ; βλÞ plane. The propagation with
μ of the 1σ and 3σ confidence ellipses with respect toMMC

t
and MH tells us that the second condition in Eq. (2) is
almost automatic, the ellipses for μ ¼ 1018 GeV being
approximately degenerated to horizontal lines. For default
input values, λðμÞ crosses zero at μ ¼ 1.55 × 1010 GeV.
The contour of Mcri

t approximately coincides with the right
envelope of the 2σ ellipses, while the one of Mcri

H , which
relies onMMC

t , is driven outside the 3σ band as μ runs from
μcriH to μthr.
Our upgraded and updated version of the familiar phase

diagram [10,11,20,24] is presented in Fig. 2. Besides the
boundary of the stable phase defined by Eq. (2), on which
the critical points with Mcri

t and Mcri
H are located, we also

show contours of λðμ0Þ ¼ 0 and βλðμ0Þ ¼ 0. The demar-
cation line between the metastable phase and the instable
one, in which the lifetime of our vacuum is shorter than the

age of the Universe, is evaluated as in Ref. [20] and
represents the only gauge-dependent detail in Fig. 2. The
customary confidence ellipses with respect to MMC

t and
MH, which are included Fig. 2 for reference, have to be
taken with caution because they misleadingly suggest that
the tree-level mass parameter MMC

t and its error [2]
identically carry over to Mt, which is actually the real
part of the complex pole position upon mass renormaliza-
tion in the on-shell scheme [25]. In view of the resonance
property, a shift of order Γt ¼ 2.00 GeV [2] would be
plausible, which should serve as a useful error estimate for
the time being.
In conclusion, we performed a high-precision analysis of

the vacuum stability in the SM incorporating full two-loop
threshold corrections [5,12–14], three-loop beta functions
[6], and Oðα4sÞ corrections to the matching and running of
gs [7,17] and yq [8,18], and adopting two gauge-indepen-
dent approaches, one based on the criticality criterion (2)
for λðμÞ [5] and one on a reorganization of VeffðHÞ so that
its minimum is gauge independent order by order [20]. For
the Mt upper bound we thus obtained Mcri

t ¼ ð171.44$
0.30þ0.17

−0.36Þ GeV and ~Mcri
t ¼ ð171.64$ 0.30þ0.17

−0.36Þ GeV,
respectively, where the first errors are experimental, due
the 1σ variations in the input parameters [2], and the second
ones are theoretical, due to the scale and truncation
uncertainties. In want of more specific information, we
assume the individual error sources to be independent and

FIG. 1 (color online). RG evolution of λðμÞ from μthr to μcri and
beyond in the ðλ; βλÞ plane for default input values and matching
scale (red solid line), effects of 1σ (brown solid lines) and 3σ
(blue solid lines) variation in MMC

t , theoretical uncertainty due to
the variation of ξ from 1=2 to 2 (upper and lower black dashed
lines with asterisks in the insets), and results for Mcri

t (green
dashed line) and Mcri

H (purple dashed line). The 1σ (brown
ellipses) and 3σ (blue ellipses) contours due to the errors in
MMC

t andMH are indicated for selected values of μ. The insets in
the upper right and lower left corners refer to μ ¼ MMC

t and
μ ¼ 1.55 × 1010 GeV, respectively.

FIG. 2 (color online). Phase diagram of vacuum stability (light-
green shaded area), metastability, and instability (pink shaded
area) in the ðMH;MtÞ plane, contours of λðμ0Þ ¼ 0 for selected
values of μ0 (purple dotted lines), contours of βλðμ0Þ ¼ 0 for
selected values of μ0 (solid parabolalike lines) with uncertainties
due to 1σ error in αð5Þs ðMZÞ (dashed and dot-dashed lines), critical
line of Eq. (2) (solid green line) with uncertainty due to 1σ error
in αð5Þs ðMZÞ (orange shaded band), and critical points with Mcri

t
(lower red bullet) and Mcri

H (right red bullet). The present world
average of ðMMC

t ; MHÞ (upper left red bullet) and its 1σ (purple
ellipse), 2σ (brown ellipse), and 3σ (blue ellipse) contours are
marked for reference.

PRL 115, 201802 (2015) P HY S I CA L R EV I EW LE T T ER S week ending
13 NOVEMBER 2015
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Fig. 2 The t t̄ cross-section as a function of centre-of-mass energy cal-
culated from QQbar_threshold including the cross-section values with-
out ISR or LR (baseline), the ones with ISR only and the ones with both
ISR and LS

for the nominal estimations, but its impact will be discussed
as systematic uncertainties later in Sect. 6.

To extract the top quark mass, width and αS , the number
of events are counted at each centre-of-mass energy in the
scan. A likelihood function is constructed to perform the fits
with the counted numbers, between the expected number of
events evaluated with the cross-section turn-on curve and
the observed number of events from the CEPC. The latter
number is simply set equal to the former to make the nominal
evaluation and estimate the measurement precision, i.e. the
1σ error in the likelihood curve. The likelihood function is
defined as

L =
N∏

i=1

P(D|σt t̄ (mtop,#top,αS,
√
si ) × Li × ε), (2)

where the observed number of events (D) should follow
the Poissonian distribution with the expected mean as E =
σt t̄ (mtop,#top,αS,

√
si ) × L × ε under certain centre-of-

mass energy (
√
si indexed with i). The likelihood function

combines all N energy points by multiplying all the Poisso-
nian probability P of each collision energy. In the equation,
σt t̄ stands for the cross-section, mtop for the top quark mass,
#top for the top quark width, αS for the strong coupling, Li
for the luminosity allocated to the collisions at the centre-of-
mass energy of

√
si , and ε for the selection efficiency times

acceptance of the t t̄ signal events. The precision of measure-
ment on mtop,#top, and αS is evaluated by minimising the
negative log likelihood function.

The cross-section curve contains different amounts of
information at different the centre-of-mass energy scan
points, for top quark mass, width and αS . One needs to find
out what level of sensitivity the cross-section curve can pro-

vide for the measurements. The Fisher information is used
here as a rule of thumb. At a certain centre-of-mass energy
(
√
s) one can consider the measured cross-section (σ ) as

a random variable which follows a Gaussian distribution
(G) with its mean value centred at the true cross-section
(σ0(
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s, θ), where θ can be top quark properties like top

quark massmtop and width#top as well as the strong coupling
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In this way, the Fisher information can reflect the sensitiv-
ity to the measurements of top quark mass, width and αS as a
function of centre-of-mass energy, respectively, as shown in
Fig. 3. The larger the value in the Y-axis of the Fisher infor-
mation is, the more sensitive to the relevant measurement
the cross-section at this centre-of-mass energy would be. The
cross-section curve is found most sensitive to top quark mass
when the cross-section ramps up around the threshold, and
is sensitive to top quark width when the cross-section peaks,
while it is sensitive to αS by its overall rate thus mainly close
to the cross-section peak.

The effects of ISR and LS wear out the original cross-
section curve resulting significant drops in Fish information
for all three parameters as shown in Fig. 3. Considering the
ISR effect only, collisions at

√
s = 343.00 GeV provide the

highest sensitivity to the top quark mass,
√
s = 343.75 GeV

for top quark width and
√
s = 343.25 GeV for αS . Considering

both ISR and LS effects, the optimal energy points are shifted.
Then collisions at

√
s = 342.75 GeV provide the highest

sensitivity to the top quark mass measurements,
√
s = 344.00

GeV for top quark width, and
√
s = 343.50 GeV for αS .

4 Extraction of one parameter

In this section, the extraction of one parameter at a time is dis-
cussed, i.e. top quark mass, width or αS , while the other two
are fixed to their predictions in the SM. With the total lumi-
nosity assumed up to 100 fb−1, the optimal scan strategy is
discussed with only statistical uncertainty, while detailed sys-
tematic uncertainties are presented in Sect. 6. The first ques-
tion is how many energy points are optimal for the extraction
of one parameter assuming the total luminosity fixed. The
study with the total luminosity evenly allocated with dif-
ferent numbers of centre-of-mass energy scan point is then
performed. Using the Fisher information as a guide, one can
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for the nominal estimations, but its impact will be discussed
as systematic uncertainties later in Sect. 6.

To extract the top quark mass, width and αS , the number
of events are counted at each centre-of-mass energy in the
scan. A likelihood function is constructed to perform the fits
with the counted numbers, between the expected number of
events evaluated with the cross-section turn-on curve and
the observed number of events from the CEPC. The latter
number is simply set equal to the former to make the nominal
evaluation and estimate the measurement precision, i.e. the
1σ error in the likelihood curve. The likelihood function is
defined as
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√
si indexed with i). The likelihood function
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nian probability P of each collision energy. In the equation,
σt t̄ stands for the cross-section, mtop for the top quark mass,
#top for the top quark width, αS for the strong coupling, Li
for the luminosity allocated to the collisions at the centre-of-
mass energy of

√
si , and ε for the selection efficiency times

acceptance of the t t̄ signal events. The precision of measure-
ment on mtop,#top, and αS is evaluated by minimising the
negative log likelihood function.

The cross-section curve contains different amounts of
information at different the centre-of-mass energy scan
points, for top quark mass, width and αS . One needs to find
out what level of sensitivity the cross-section curve can pro-

vide for the measurements. The Fisher information is used
here as a rule of thumb. At a certain centre-of-mass energy
(
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s) one can consider the measured cross-section (σ ) as
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In this way, the Fisher information can reflect the sensitiv-
ity to the measurements of top quark mass, width and αS as a
function of centre-of-mass energy, respectively, as shown in
Fig. 3. The larger the value in the Y-axis of the Fisher infor-
mation is, the more sensitive to the relevant measurement
the cross-section at this centre-of-mass energy would be. The
cross-section curve is found most sensitive to top quark mass
when the cross-section ramps up around the threshold, and
is sensitive to top quark width when the cross-section peaks,
while it is sensitive to αS by its overall rate thus mainly close
to the cross-section peak.

The effects of ISR and LS wear out the original cross-
section curve resulting significant drops in Fish information
for all three parameters as shown in Fig. 3. Considering the
ISR effect only, collisions at

√
s = 343.00 GeV provide the

highest sensitivity to the top quark mass,
√
s = 343.75 GeV

for top quark width and
√
s = 343.25 GeV for αS . Considering

both ISR and LS effects, the optimal energy points are shifted.
Then collisions at

√
s = 342.75 GeV provide the highest

sensitivity to the top quark mass measurements,
√
s = 344.00

GeV for top quark width, and
√
s = 343.50 GeV for αS .

4 Extraction of one parameter

In this section, the extraction of one parameter at a time is dis-
cussed, i.e. top quark mass, width or αS , while the other two
are fixed to their predictions in the SM. With the total lumi-
nosity assumed up to 100 fb−1, the optimal scan strategy is
discussed with only statistical uncertainty, while detailed sys-
tematic uncertainties are presented in Sect. 6. The first ques-
tion is how many energy points are optimal for the extraction
of one parameter assuming the total luminosity fixed. The
study with the total luminosity evenly allocated with dif-
ferent numbers of centre-of-mass energy scan point is then
performed. Using the Fisher information as a guide, one can
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for the nominal estimations, but its impact will be discussed
as systematic uncertainties later in Sect. 6.

To extract the top quark mass, width and αS , the number
of events are counted at each centre-of-mass energy in the
scan. A likelihood function is constructed to perform the fits
with the counted numbers, between the expected number of
events evaluated with the cross-section turn-on curve and
the observed number of events from the CEPC. The latter
number is simply set equal to the former to make the nominal
evaluation and estimate the measurement precision, i.e. the
1σ error in the likelihood curve. The likelihood function is
defined as
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combines all N energy points by multiplying all the Poisso-
nian probability P of each collision energy. In the equation,
σt t̄ stands for the cross-section, mtop for the top quark mass,
#top for the top quark width, αS for the strong coupling, Li
for the luminosity allocated to the collisions at the centre-of-
mass energy of

√
si , and ε for the selection efficiency times

acceptance of the t t̄ signal events. The precision of measure-
ment on mtop,#top, and αS is evaluated by minimising the
negative log likelihood function.

The cross-section curve contains different amounts of
information at different the centre-of-mass energy scan
points, for top quark mass, width and αS . One needs to find
out what level of sensitivity the cross-section curve can pro-

vide for the measurements. The Fisher information is used
here as a rule of thumb. At a certain centre-of-mass energy
(
√
s) one can consider the measured cross-section (σ ) as

a random variable which follows a Gaussian distribution
(G) with its mean value centred at the true cross-section
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s, θ), where θ can be top quark properties like top
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In this way, the Fisher information can reflect the sensitiv-
ity to the measurements of top quark mass, width and αS as a
function of centre-of-mass energy, respectively, as shown in
Fig. 3. The larger the value in the Y-axis of the Fisher infor-
mation is, the more sensitive to the relevant measurement
the cross-section at this centre-of-mass energy would be. The
cross-section curve is found most sensitive to top quark mass
when the cross-section ramps up around the threshold, and
is sensitive to top quark width when the cross-section peaks,
while it is sensitive to αS by its overall rate thus mainly close
to the cross-section peak.

The effects of ISR and LS wear out the original cross-
section curve resulting significant drops in Fish information
for all three parameters as shown in Fig. 3. Considering the
ISR effect only, collisions at

√
s = 343.00 GeV provide the

highest sensitivity to the top quark mass,
√
s = 343.75 GeV

for top quark width and
√
s = 343.25 GeV for αS . Considering

both ISR and LS effects, the optimal energy points are shifted.
Then collisions at

√
s = 342.75 GeV provide the highest

sensitivity to the top quark mass measurements,
√
s = 344.00

GeV for top quark width, and
√
s = 343.50 GeV for αS .

4 Extraction of one parameter

In this section, the extraction of one parameter at a time is dis-
cussed, i.e. top quark mass, width or αS , while the other two
are fixed to their predictions in the SM. With the total lumi-
nosity assumed up to 100 fb−1, the optimal scan strategy is
discussed with only statistical uncertainty, while detailed sys-
tematic uncertainties are presented in Sect. 6. The first ques-
tion is how many energy points are optimal for the extraction
of one parameter assuming the total luminosity fixed. The
study with the total luminosity evenly allocated with dif-
ferent numbers of centre-of-mass energy scan point is then
performed. Using the Fisher information as a guide, one can
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for the nominal estimations, but its impact will be discussed
as systematic uncertainties later in Sect. 6.

To extract the top quark mass, width and αS , the number
of events are counted at each centre-of-mass energy in the
scan. A likelihood function is constructed to perform the fits
with the counted numbers, between the expected number of
events evaluated with the cross-section turn-on curve and
the observed number of events from the CEPC. The latter
number is simply set equal to the former to make the nominal
evaluation and estimate the measurement precision, i.e. the
1σ error in the likelihood curve. The likelihood function is
defined as

L =
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P(D|σt t̄ (mtop,#top,αS,
√
si ) × Li × ε), (2)

where the observed number of events (D) should follow
the Poissonian distribution with the expected mean as E =
σt t̄ (mtop,#top,αS,

√
si ) × L × ε under certain centre-of-

mass energy (
√
si indexed with i). The likelihood function

combines all N energy points by multiplying all the Poisso-
nian probability P of each collision energy. In the equation,
σt t̄ stands for the cross-section, mtop for the top quark mass,
#top for the top quark width, αS for the strong coupling, Li
for the luminosity allocated to the collisions at the centre-of-
mass energy of

√
si , and ε for the selection efficiency times

acceptance of the t t̄ signal events. The precision of measure-
ment on mtop,#top, and αS is evaluated by minimising the
negative log likelihood function.

The cross-section curve contains different amounts of
information at different the centre-of-mass energy scan
points, for top quark mass, width and αS . One needs to find
out what level of sensitivity the cross-section curve can pro-

vide for the measurements. The Fisher information is used
here as a rule of thumb. At a certain centre-of-mass energy
(
√
s) one can consider the measured cross-section (σ ) as

a random variable which follows a Gaussian distribution
(G) with its mean value centred at the true cross-section
(σ0(
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In this way, the Fisher information can reflect the sensitiv-
ity to the measurements of top quark mass, width and αS as a
function of centre-of-mass energy, respectively, as shown in
Fig. 3. The larger the value in the Y-axis of the Fisher infor-
mation is, the more sensitive to the relevant measurement
the cross-section at this centre-of-mass energy would be. The
cross-section curve is found most sensitive to top quark mass
when the cross-section ramps up around the threshold, and
is sensitive to top quark width when the cross-section peaks,
while it is sensitive to αS by its overall rate thus mainly close
to the cross-section peak.

The effects of ISR and LS wear out the original cross-
section curve resulting significant drops in Fish information
for all three parameters as shown in Fig. 3. Considering the
ISR effect only, collisions at

√
s = 343.00 GeV provide the

highest sensitivity to the top quark mass,
√
s = 343.75 GeV

for top quark width and
√
s = 343.25 GeV for αS . Considering

both ISR and LS effects, the optimal energy points are shifted.
Then collisions at

√
s = 342.75 GeV provide the highest

sensitivity to the top quark mass measurements,
√
s = 344.00

GeV for top quark width, and
√
s = 343.50 GeV for αS .

4 Extraction of one parameter

In this section, the extraction of one parameter at a time is dis-
cussed, i.e. top quark mass, width or αS , while the other two
are fixed to their predictions in the SM. With the total lumi-
nosity assumed up to 100 fb−1, the optimal scan strategy is
discussed with only statistical uncertainty, while detailed sys-
tematic uncertainties are presented in Sect. 6. The first ques-
tion is how many energy points are optimal for the extraction
of one parameter assuming the total luminosity fixed. The
study with the total luminosity evenly allocated with dif-
ferent numbers of centre-of-mass energy scan point is then
performed. Using the Fisher information as a guide, one can
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for the nominal estimations, but its impact will be discussed
as systematic uncertainties later in Sect. 6.

To extract the top quark mass, width and αS , the number
of events are counted at each centre-of-mass energy in the
scan. A likelihood function is constructed to perform the fits
with the counted numbers, between the expected number of
events evaluated with the cross-section turn-on curve and
the observed number of events from the CEPC. The latter
number is simply set equal to the former to make the nominal
evaluation and estimate the measurement precision, i.e. the
1σ error in the likelihood curve. The likelihood function is
defined as

L =
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√
si ) × Li × ε), (2)

where the observed number of events (D) should follow
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√
si indexed with i). The likelihood function

combines all N energy points by multiplying all the Poisso-
nian probability P of each collision energy. In the equation,
σt t̄ stands for the cross-section, mtop for the top quark mass,
#top for the top quark width, αS for the strong coupling, Li
for the luminosity allocated to the collisions at the centre-of-
mass energy of

√
si , and ε for the selection efficiency times

acceptance of the t t̄ signal events. The precision of measure-
ment on mtop,#top, and αS is evaluated by minimising the
negative log likelihood function.

The cross-section curve contains different amounts of
information at different the centre-of-mass energy scan
points, for top quark mass, width and αS . One needs to find
out what level of sensitivity the cross-section curve can pro-

vide for the measurements. The Fisher information is used
here as a rule of thumb. At a certain centre-of-mass energy
(
√
s) one can consider the measured cross-section (σ ) as

a random variable which follows a Gaussian distribution
(G) with its mean value centred at the true cross-section
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In this way, the Fisher information can reflect the sensitiv-
ity to the measurements of top quark mass, width and αS as a
function of centre-of-mass energy, respectively, as shown in
Fig. 3. The larger the value in the Y-axis of the Fisher infor-
mation is, the more sensitive to the relevant measurement
the cross-section at this centre-of-mass energy would be. The
cross-section curve is found most sensitive to top quark mass
when the cross-section ramps up around the threshold, and
is sensitive to top quark width when the cross-section peaks,
while it is sensitive to αS by its overall rate thus mainly close
to the cross-section peak.

The effects of ISR and LS wear out the original cross-
section curve resulting significant drops in Fish information
for all three parameters as shown in Fig. 3. Considering the
ISR effect only, collisions at

√
s = 343.00 GeV provide the

highest sensitivity to the top quark mass,
√
s = 343.75 GeV

for top quark width and
√
s = 343.25 GeV for αS . Considering

both ISR and LS effects, the optimal energy points are shifted.
Then collisions at

√
s = 342.75 GeV provide the highest

sensitivity to the top quark mass measurements,
√
s = 344.00

GeV for top quark width, and
√
s = 343.50 GeV for αS .

4 Extraction of one parameter

In this section, the extraction of one parameter at a time is dis-
cussed, i.e. top quark mass, width or αS , while the other two
are fixed to their predictions in the SM. With the total lumi-
nosity assumed up to 100 fb−1, the optimal scan strategy is
discussed with only statistical uncertainty, while detailed sys-
tematic uncertainties are presented in Sect. 6. The first ques-
tion is how many energy points are optimal for the extraction
of one parameter assuming the total luminosity fixed. The
study with the total luminosity evenly allocated with dif-
ferent numbers of centre-of-mass energy scan point is then
performed. Using the Fisher information as a guide, one can
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Figure 14: Upper panel: cross section (R-ratio) in the pole scheme at LO, NLO, NNLO
and NNNLO. The band shows the scale variation at NNNLO. Lower panel: comparison
of the scale dependence in the pole vs. the PS scheme at NNNLO. The R-ratio is divided
by its reference value in the PS scheme for both bands.

renormalon divergence. These shifts are also clearly visible by comparing the successive
LO, ..., NNNLO approximations (dashed/red) lines in the Figure. Su!ciently above
threshold where the energy dependence of the cross section becomes mild, both schemes
give nearly identical results. These features are highlighted in the lower panel, which
shows the relative scale dependence as function of cms energy

→
s in both schemes, by

normalizing the R-ratio to the reference result at µ = 80 GeV. In Table 2 we provide, in
the second and third column for the PS shift and pole scheme, respectively, numerical
values of the shift of the maximum of the cross section at a given order relative to the
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Figure 9: Top-pair production cross section near threshold at NNNLO in QCD. The
width of the band reflects the scale variation in the interval [50, 350] GeV. For compari-
son, the leading-order cross section (dashed) is depicted.

The PS shift mass scheme with µf = 20 GeV is our reference scheme. The above includes
S-wave production from virtual s-channel Z-boson exchange, but not the small P-wave
contribution [31]. The R-ratio can be converted to the cross section in picobarn through

ω(s) =
4εϑ(mZ)2

3s
R(s) = 0.828977

(
344GeV

→
s

)2

R(s) pb , (4.8)

where the QED coupling ϑ(mZ) = 1/128.944 has been used. Except for an update of the
strong coupling and top width input, this corresponds to the result published in letter
form in [9].

The third-order result for the cross section is shown in Figure 9 including the scale un-
certainty from varying µ from 50 to 350 GeV. For comparison we also show the (strongly
scale-dependent) leading-order cross section (evaluated with µ = 80 GeV), which high-
lights the importance of QCD corrections.

4.1 Scale dependence

In this section we provide a more detailed assessment of the residual scale dependence
than in [9], including a discussion of finite-width scale dependence.

4.1.1 Renormalization scale dependence

In order to display the change in the predicted cross section and the reduction of the scale
uncertainty from second to third order we define the R-ratio normalized to a reference
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renormalized mass via mb ¼ mOS þ δm, and keep on-shell
condition of external heavy quark momentum p2 ¼ ðmOSÞ2
untouched. In the spirit of perturbation theory, δm is a
small quantity and can be expanded to any desired order.
The expansion can be readily implemented either at
the integrand level or, alternatively, at the integral level
by formulating and solving differential equations with
respect to δm. After the expansion of δm, we can sub-
stitute renormalization constants, which can be found in
Refs. [47–49], to obtain the final renormalized cross
section. We note that performing renormalization in this
way makes our calculation very systematic, and at the same
time introduces negligible efforts against the calculation of
bare cross section at the highest order in αs.
Another key technique in our calculation is that the

master integrals are calculated with numerical values of ϵ
and the ϵ dependence is only reconstructed at the cross
section level, as proposed in Refs. [40,41]. The advantage
of this technique is that we do not need to manipulate
Laurent expansions of ϵ during the intermediate stages of
calculations, which significantly reduces the computa-
tional time.
Finally, we discuss how to compute differential cross

sections based on the previously outlined methods. Using
the invariant mass distribution of the heavy-quark pair as an
example, the differential cross section can be derived by
inserting a delta function δ

!
ðpQ þ pQ̄Þ2 −M2

QQ̄

"
into the

final state phase space integration. This integration can be
approached similarly to the total cross-section calculation,
noting that the delta function can be expressed as cut
propagators using reverse unitarity [25–27]. We highlight
that the boundary conditions for differential equations of
master integrals in differential cross-section computation
can be determined by aligning them with integrals from the
total cross section. Specifically, we solve the differential
equation and formulate master integrals as piecewise
functions of MQQ̄, represented by 13 deeply expanded
power series with undetermined coefficients. By integrating
over MQQ̄, we collapse the cut propagator and arrive at
integrals that belong to the integral families of the total
cross section, which are already known. Consequently, we
can ascertain both the unknown coefficients and the
piecewise functions.
Thanks to all these strategies mentioned above, the

computational resources utilized in this work amount to
less than 105 CPU core hours in total.
Results.—By combining everything together, we end up

with final results at the NNNLO level, which are free of
ultraviolet and infrared divergences as expected from the
Kinoshita-Lee-Nauenberg theorem [50,51]. Our result of
the NNNLO total cross section is expressed as a piecewise
function of x ¼ 4m2=s represented by 5 power series.
Expanding these series to 40 orders enables us to achieve at
least 10 correct digits in the physical region, with a relative
error of approximately 2−40 ∼ 10−12. The expressions can

be found in a computer-readable ancillary file attached to
this Letter [52].
To provide numerical result for top-quark pair produc-

tion, we choose top-quark mass as m ¼ 172.69 GeV [53]
and set all other quarks as massless. Electromagnetic
coupling is chosen as a fixed value α ¼ 1=132.2, and
strong coupling αsðμÞ is running as a function of renorm-
alization scale μ, which is computed using the RunDec

package [54,55] with input value α
nf¼5
s ðmZÞ ¼ 0.1181.

Other electroweak parameters are chosen from Ref. [53].
Figure 2 shows our result for the total cross-section of tt̄

production, where LO, NLO, NNLO, and NNNLO are
shown in black, blue, green and red respectively, and the
dashed, dotted, and dot-dashed lines correspond to γ − γ,
Z − Z, γ − Z and Z − γ contributions at NNNLO, respec-
tively. In the upper panel, the middle lines of each band
correspond to the choice of μ ¼

ffiffiffi
s

p
for the renormalization

scale, and the upper and lower lines correspond to the scale
variations between μ ¼

ffiffiffi
s

p
=2 and μ ¼ 2

ffiffiffi
s

p
. It can be

found that the NNNLO correction significantly reduces
the scale dependence. However, the NNNLO result near the
production threshold, say for

ffiffiffi
s

p
< 370 GeV, still suffers

from large uncertainty due to Coulomb interaction.
Perturbative calculations become unreliable in this region,
necessitating the application of resummation for further
improvement [20,21,56].
The total cross section can also be expressed in the form

σNNNLO ¼ σLOð1þ Δ1 þ Δ2 þ Δ3Þ; ð1Þ

where the order αs, α2s and α3s correctionsΔ1,Δ2 andΔ3 are
displayed in the lower panel of Fig. 2 as functions of the
center-of-mass energy, respectively. The renormalization
scale is set to

ffiffiffi
s

p
. The smallness of Δ3 confirms a good

convergence of perturbative expansion with respect to αs.
In Fig. 3, we further show the reduction of the scale

dependence after includingOðα3sÞ correction by varying the
renormalization scale in a larger range. It is found that, for a
collision energy of 500 GeV, the scale dependence has been

FIG. 2. Total cross section for tt̄ production. Refer to the text
for details.
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Beam polarization LO NLO NNLO
(e−

L , e
+
R) σS [pb] ALO

FB σS [pb] A1 [10−2] σS [pb] A2 [10−2]
(0, 0) 0.58477 0.2342 0.78874−0.01484

+0.01741 3.67+0.313
−0.267 0.85037−0.01009

+0.01002 2.92+0.188
−0.168

(−80%, +30%) 0.32039 0.2549 0.43232−0.00814
+0.00955 3.62+0.309

−0.263 0.46633−0.00556
+0.00553 2.86+0.183

−0.163
(+80%, −30%) 0.56846 0.2226 0.76657−0.01441

+0.01691 3.70+0.316
−0.270 0.82623−0.00977

+0.00970 2.95+0.191
−0.170

(+80%, +30%) 0.99800 0.2196 1.34571−0.02530
+0.02968 3.71+0.317

−0.270 1.45035−0.01714
+0.01701 2.96+0.192

−0.171
(−80%, −30%) 0.45224 0.2664 0.61037−0.01151

+0.01350 3.59+0.306
−0.261 0.65856−0.00788

+0.00784 2.82+0.180
−0.160

Table 2. Top-quark pair production at √
s = 380GeV for unpolarized beams and the polarization

configurations of table 1. The renormalization scale is chosen to be µ = √
s, with the scale

uncertainties of the symmetric cross sections σS given by the shifts in the super- and subscripts
(corresponding to scales µ = 2√

s and µ = √
s/2, respectively). Symmetric cross sections σS in units

of pb, AFB to LO, and the terms A1, A2 defined in (2.10), (2.11) that yield the expanded AFB,
respectively, to NLO and NNLO QCD. The numbers for A1, A2 and their scale variations are given
in the unit of 10−2.

Beam polarization LO NLO NNLO
(e−

L , e
+
R) σS [pb] ALO

FB σS [pb] A1 [10−2] σS [pb] A2 [10−2]
(0, 0) 0.62928 0.2845 0.79311−0.01186

+0.01389 3.39+0.287
−0.245 0.83400−0.00685

+0.00648 2.31+0.106
−0.101

(−80%, +30%) 0.34658 0.3083 0.43708−0.00655
+0.00767 3.31+0.281

−0.240 0.45987−0.00381
+0.00362 2.25+0.102

−0.097
(+80%, −30%) 0.60992 0.2710 0.76845−0.01147

+0.01344 3.43+0.291
−0.248 0.80780−0.00660

+0.00623 2.35+0.109
−0.104

(+80%, +30%) 1.06997 0.2675 1.34797−0.02012
+0.02357 3.44+0.292

−0.249 1.41687−0.01156
+0.01091 2.36+0.109

−0.104
(−80%, −30%) 0.49064 0.3215 0.61895−0.00929

+0.01088 3.27+0.277
−0.237 0.65144−0.00543

+0.00516 2.21+0.099
−0.095

Table 3. Top-quark pair production at √
s = 400GeV. The meaning of the variables is as in table 2.

variations are derived by first obtaining the values of the symmetric and antisymmetric cross
sections σS , σA, respectively, at µ = 2√

s and µ = √
s/2 by means of the renormalization-

group equation from which the scale uncertainties for the various quantities listed in the
aforementioned tables are composed. For the unexpanded AFB and the corresponding
C1, C2 coefficients being defined as ratios, it is expected that there is a cancellation between
the scale dependence of the symmetric and antisymmetric cross sections if one chooses to
vary both simultaneously. Consequently, the scale uncertainties for these ratios are relatively
small and may not display the usual improvement when the higher order perturbative
corrections are included, see table 6. Alternatively, one may choose to set the scale of σS

different from that of σA to obtain a more conservative estimate for the scale uncertainties
of these ratios. However, we refrain from listing in these tables the scale uncertainties
derived with these alternative conventions, both for the sake of not over-loading the tables
and also because their magnitudes are comparable to that of the scale uncertainties of σS ,
which are provided. On the other hand, this feature is not exhibited in the QCD correction
factors A1, A2 related to the expanded AFB, and one does observe the usual improvement
when the higher order perturbative corrections are included, see e.g. tables 2, 3, 4, and 5.
In particular, the improvement becomes better when the total energy of the collision is
increased, which is expected because the perturbative convergences improves away from the
pair-production threshold.

– 7 –
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e+e− →WW

colliders or a future lepton collider with higher center-of-
mass energies, and the indirect probes studied here. Third
generation  quark  operators  also  enter  Higgs  processes,
and a combined Higgs and electroweak analysis is partic-
ularly relevant  for  future  lepton  colliders  in  this  frame-
work.  Previously,  an  optimal-observable  analysis  of

 with  information  on W decay  angles  was
shown  to  be  useful  in  probing  the  corresponding  tree-
level  operators  [19, 94], which  could  be  extended  to  in-
clude loop  effects.  However,  this  requires  additional  ef-
fort  in  calculating  the  one-loop  contributions  to  the  full
differential  cross  section.  We  leave  these  many  possible
extensions of our current analysis to future studies. 
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A.1.    List of operator contributions to observables
 

c(3)
ϕl ,c

′
ll,cϕD,cϕWB

Table  A1.    List of  the  corresponding  coefficients  of  type  I  operators  that  contribute  to  different  observables.  Besides  these  coeffi-
cients, there are also four Wilson coefficients that contribute to all observables: .

Processes Observables Wilson Coefficient

Neutrino DIS and APV gνeLV ,g
νe
LA c(1)

ϕl ,cϕe,cll,cle

geu
AV +2ged

AV
2geu

AV −ged
AV

2geu
VA −ged

VA

c(1)
ϕq c(3)

ϕq ,cϕu cϕd c(1)
ϕl

cϕe c(1)
lq c(3)

lq clu,cld cqe ceu ced

, , ,

, , , , , ,

gee
VA c(1)

ϕl ,cϕe,cee,cll

2
g
νµµ,SM
LV δg

νµµ
LV +g

νµµ,SM
LA δg

νµµ
LA)

g
νµµ,SM
LV

[2
+
)
g
νµµ,SM
LA

[2 c(1)
ϕl cϕe cle cll, , , 

Z-pole ΓZ c(1)
ϕl ,cϕe,c

(3)
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ϕq ,cϕu,cϕd ,c

(+)
ϕQ,cϕb,cbB,cbW

σhad c(1)
ϕl ,cϕe,c

(3)
ϕq ,c

(1)
ϕq ,cϕu,cϕd ,c

(+)
ϕQ,cϕb,cbB,cbW

Re c(1)
ϕl ,cϕe,c

(3)
ϕq ,c

(1)
ϕq ,cϕu,cϕd ,c

(+)
ϕQ,cϕb,cbB,cbW

Rµ c(1)
ϕl ,cϕe,c

(3)
ϕq ,c

(1)
ϕq ,cϕu,cϕd ,c

(+)
ϕQ,cϕb,cbB,cbW

Rτ c(1)
ϕl ,cϕe,c

(3)
ϕq ,c

(1)
ϕq ,cϕu,cϕd ,c

(+)
ϕQ,cϕb,cbB,cbW

Ao,e
FB c(1)

ϕl ,cϕe

Ao,µ
FB c(1)

ϕl ,cϕe

Ao,τ
FB c(1)

ϕl ,cϕe

Continued on next page

Fig. 13.    (color online) Comparison of the current precision of EW observables and the projections for CEPC and FCC-ee.
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2

E2C =
dω[2]

dxL
=

n∑

i,j

∫
dω

EiEj

Q2
ε(xL → 1→ cosϑij

2
), (1)

where the ϑ is the angular distance between particle
i, j, and the energy of the two particles are denoted by
Ei, Ej . The E2C observable was extensively studied at
early e+e→ colliders [22–32]. A previous study has used
E2C measurement to extract ϖS by comparing it to the-
oretical calculations at NNLO + NNLL precision [18].
Due to the large uncertainty in both theoretical predic-
tion and hadronization corrections in the collinear region,
only the intermediate region data was used, correspond-
ing to ϑ between 60↑ to 160↑. The determined result
was ϖS(mZ) = 0.1175± 0.00018(exp.)± 0.00102(hadr.)±
0.00257(ren.) ± 0.00078(res.). Even so, the theoretical
and hadronization uncertainties are notably larger com-
pared to the experimental ones.

To mitigate such limitation, the ratio of E3C to E2C
has been proposed to extract ϖS in the collinear re-
gion [19]. The E3C is an energy correlator that captures
the correlation among three particles, defined as

E3C =
dω[3]

dxL
=

n∑

i,j,k

∫
dω

EiEjEk

Q3

ε

(
xL →max

(
1→ cosϑij

2
,
1→ cosϑik

2
,
1→ cosϑjk

2

))
.

(2)
The ratio of E3C/E2C has minimal non-singular con-

tributions in the collinear limit and allows for safe ne-
glect of higher fixed-order corrections. It also dimin-
ishes non-perturbative e!ects and the associated uncer-
tainties. In order to estimate the sensitivity to ϖS us-
ing the E3C/E2C, we calculate the E3C and E2C at
NLO+NNLL precision using the methodology introduced
in Ref. [33], at a center-of-mass energy of

↑
s = 91.2 GeV

in e+e→ colliders. It would be interesting to consider the
matching to NNLO correction which is available for E2C
since Ref.[34] and can be calculated in principle with the
methods in Ref.[35] and Ref.[34]. However, such a cal-
culation is computationally expensive. We also found
that while the matching e!ect from LO to NLO is non-
negligible on E2C and E3C respectively, the e!ect on the
ratio is small, especially in the collinear region. Therefore
we expect the correction due to further NNLO matching
to be minor.

We consider the ϑ angles in the collinear region, from
6↑ to 60↑, corresponding to xL = (1 → cosϑ)/2 in the
range of 0.003–0.25. The predicted E3C/E2C distribu-
tion at the parton level with di!erent ϖS(mZ) values are
shown in Fig. 1. A variation of 3% in ϖS leads to an
approximate 2% change in the E3C/E2C ratio.

In the next sections, we will discuss in detail the dif-
ferent types of uncertainties that enter ϖS determination
using E3C/E2C ratio.
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FIG. 1: Top: Theoretical prediction of E3C/E2C for
di!erent ϖS(mZ) values. The lower panel shows the
ratio to ϖS(mZ) = 0.118 prediction. Uncertainties of

E2C, E2C and their ratio are shown at ϖS(mZ) = 0.118.
Bottom: E3C uncertainty derived from pythia

simulation and theoretical calculations at di!erent
orders.

III. Theoretical scale uncertainties

For theoretical predictions of E2C and E3C at NLO+
NNLL precision, there are two scales that enter the cal-
culation: the hard scale and jet scale. In some earlier
studies [18], the two scales were varied independently to
evaluate the theoretical uncertainties from missing higher
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ϵ⃗jSfxyg!−1i !

1ffiffiffi
2

p ð1; 1; 0Þ;

ϵ⃗jSfxyg!1i !
1ffiffiffi
2

p ð1;−1; 0Þ;

ϵ⃗jSfxyg!0i ! ð0; 0; 1Þ; ð19Þ

and the expectation value of Ŝfxyg, EðŜfxygÞ, is directly
determined by the quadrupole distribution of the decay
products with EðŜfxygÞ ! 10hqxyi, as shown in Fig. 2.
We first consider the decay channel Wþð→ lþνlÞ×

W−ð→ jjÞ, where the lepton l is electron or muon. In this
channel, both the angular momentum of Wþ and the linear
polarization of W− can be determined correctly. Therefore,
we choose to measure the correlation between the angular
momentum of Wþ and the linear polarization of W− to test
the Bell inequalities in this channel, and the new Bell
observable is defined as

I ðS;LÞ
3 ≡ I3ðŜa⃗1 ; Ŝa⃗2 ; Ŝfx3y3g; Ŝfx4y4gÞ; ð20Þ

where ðxi; yiÞ are the coordinates in the rest frame of W−,
and a⃗i are the directions in the rest frame of Wþ.
The observable I ðS;LÞ

3 is reconstructed in following steps.
First, measure the distribution of W% decay products and
obtain the parameters of the density matrix using
Eqs. (12)–(17). The W− decays hadronically and only
the quadruple distribution of it is needed. Second, construct
the density matrix ρ̂WW in Eq. (11) with the parameters
obtained in the previous step. Third, calculate the proba-
bilities PðSa⃗ ! SfxygÞ and PðSa⃗ ! Sfxyg % 1Þ by projec-
ting the density matrix to the eigenstates jSa⃗ ! Ai ⊗
jSfxyg ! Bi; ðA;B ! −1; 0; 1Þ,3 and then construct I ðS;LÞ

3

according to Eq. (1). Note that the coefficients related to the

angular momentum of W−, namely d−i , C
d
ij and Cqd

ij;k are
independent of the projection, which is the reason why they
are not needed in the first step.
We perform aMonte-Carlo simulation of eþe− → Wþð→

lþνlÞW−ð→ jjÞ processes with
ffiffiffi
s

p
! 240 GeV. The par-

ton level events are generated by MADGRAPH5_AMC@NLO

[40] and then passed to PYTHIA8 [47] for showering and
hadronization. The showered events are passed to FASTJET

[48] for jet clustering with Durham algorithm, and the
clustering is taken to be stopped when it reaches 2 exclusive
jets.We require the energy of lepton and jets to be larger than
15 GeV and 5 GeV respectively, and the invariant mass of
the two jets satisfy jmjj −mW j < 20 GeV. In addition, we
require the angle between the leptonmissing vector, θlpmiss

, to
satisfy cos θlpmiss

< 0.2 [49], so that the background from
W → τν are negligible. As shown in Fig. 3, we find that the
showering and selection cuts slightly dilute the signal of
entanglements, but the observed I ðS;LÞ

3 is still in good
consistency with the parton level results, making I ðS;LÞ

3 a
good observable to test Bell inequalities inW% pair system.
The statistical significance of observing the violation of the
Bell inequalities can be calculated with the standard χ2

statistical test,

χ2 !
X

i

"
I ðS;LÞ
3 − 2

δi

#2

; ð21Þ

where the sum runs over the bins with I3 > 2, and the
statistical uncertainty δi are calculated from the standard
error of mean in Eqs. (12)–(17). Using the observable I ðS;LÞ

3 ,
the Bell inequality violation can be tested at 3σ significance
at 240 GeV eþe− collider with 150 fb−1 luminosity.
Likewise, another semileptonic decay mode, Wþð→

jjÞW−ð→ l−ν̄lÞ, can also be used to test the Bell inequal-
ities. In this decay mode, we choose to measure the linear

FIG. 2. Distributions of the decay products of W bosons in
different eigenstates of Sfxyg, viewed from the z-direction. The
color stands for the density of distribution. The decay products of
the W boson in the state jSfxyg ! %1i have positive or negative
quadrupole distribution respectively.

FIG. 3. The value of I ðL;SÞ
3 forW% pair produced from eþe− →

WþW− with
ffiffiffi
s

p
! 240 GeV.

3See Appendix C for examples of explicit expression of the
projection results.
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and the expectation value of Ŝfxyg, EðŜfxygÞ, is directly
determined by the quadrupole distribution of the decay
products with EðŜfxygÞ ! 10hqxyi, as shown in Fig. 2.
We first consider the decay channel Wþð→ lþνlÞ×

W−ð→ jjÞ, where the lepton l is electron or muon. In this
channel, both the angular momentum of Wþ and the linear
polarization of W− can be determined correctly. Therefore,
we choose to measure the correlation between the angular
momentum of Wþ and the linear polarization of W− to test
the Bell inequalities in this channel, and the new Bell
observable is defined as

I ðS;LÞ
3 ≡ I3ðŜa⃗1 ; Ŝa⃗2 ; Ŝfx3y3g; Ŝfx4y4gÞ; ð20Þ

where ðxi; yiÞ are the coordinates in the rest frame of W−,
and a⃗i are the directions in the rest frame of Wþ.
The observable I ðS;LÞ

3 is reconstructed in following steps.
First, measure the distribution of W% decay products and
obtain the parameters of the density matrix using
Eqs. (12)–(17). The W− decays hadronically and only
the quadruple distribution of it is needed. Second, construct
the density matrix ρ̂WW in Eq. (11) with the parameters
obtained in the previous step. Third, calculate the proba-
bilities PðSa⃗ ! SfxygÞ and PðSa⃗ ! Sfxyg % 1Þ by projec-
ting the density matrix to the eigenstates jSa⃗ ! Ai ⊗
jSfxyg ! Bi; ðA;B ! −1; 0; 1Þ,3 and then construct I ðS;LÞ
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according to Eq. (1). Note that the coefficients related to the

angular momentum of W−, namely d−i , C
d
ij and Cqd

ij;k are
independent of the projection, which is the reason why they
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We perform aMonte-Carlo simulation of eþe− → Wþð→

lþνlÞW−ð→ jjÞ processes with
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ton level events are generated by MADGRAPH5_AMC@NLO

[40] and then passed to PYTHIA8 [47] for showering and
hadronization. The showered events are passed to FASTJET

[48] for jet clustering with Durham algorithm, and the
clustering is taken to be stopped when it reaches 2 exclusive
jets.We require the energy of lepton and jets to be larger than
15 GeV and 5 GeV respectively, and the invariant mass of
the two jets satisfy jmjj −mW j < 20 GeV. In addition, we
require the angle between the leptonmissing vector, θlpmiss

, to
satisfy cos θlpmiss

< 0.2 [49], so that the background from
W → τν are negligible. As shown in Fig. 3, we find that the
showering and selection cuts slightly dilute the signal of
entanglements, but the observed I ðS;LÞ

3 is still in good
consistency with the parton level results, making I ðS;LÞ

3 a
good observable to test Bell inequalities inW% pair system.
The statistical significance of observing the violation of the
Bell inequalities can be calculated with the standard χ2
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where the sum runs over the bins with I3 > 2, and the
statistical uncertainty δi are calculated from the standard
error of mean in Eqs. (12)–(17). Using the observable I ðS;LÞ

3 ,
the Bell inequality violation can be tested at 3σ significance
at 240 GeV eþe− collider with 150 fb−1 luminosity.
Likewise, another semileptonic decay mode, Wþð→

jjÞW−ð→ l−ν̄lÞ, can also be used to test the Bell inequal-
ities. In this decay mode, we choose to measure the linear

FIG. 2. Distributions of the decay products of W bosons in
different eigenstates of Sfxyg, viewed from the z-direction. The
color stands for the density of distribution. The decay products of
the W boson in the state jSfxyg ! %1i have positive or negative
quadrupole distribution respectively.

FIG. 3. The value of I ðL;SÞ
3 forW% pair produced from eþe− →

WþW− with
ffiffiffi
s

p
! 240 GeV.

3See Appendix C for examples of explicit expression of the
projection results.
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¡Gracias!


