

00000000

Status of High Precision Calculation Study at the CEPC

Hao Zhang

Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences For "2025 European Edition of the International Workshop on the Circular Electron-Positron Collider (CEPC)", Barcelona, Spain, 16-19 Jun 2025

ADisclaimer

- As a short overview of the theoretical status, I will focus on:
 - The important physics at CEPC, and why they are important.
 - To understand these physics, what accuracy will be needed and the current status.
 - What we know we do not know.
 - Higgs physics.

A Disclaimer

- As a short overview of the theoretical status, I will focus on:
 - The important physics at CEPC, and why they are important.
 - To understand these physics, what accuracy will be needed and the current status.
 - What we know we do not know.
 - Higgs physics.
- I will not discuss:
 - The new development of the technologies (e.g., AMFlow, amplituhedron, ...).
 - Some interesting new methods (e.g., quantum computing).

Why?

• Why do we need high precision calculation?

Why?

• Why do we need high precision calculation?

The Goal

•	The m Particle	achine _{Ec.m.} (GeV)	<i>L</i> per IP $(10^{3}$ f able 3^{1} .	Integrated L per year CEPC ₁ operation (ab ⁻ , 2 IPS)	Years plan (@ 3	Total Integrated L MW (ab ⁻ , 2 IPs)	Total no. of events
	Н	$\frac{2}{40}$	I per ID	Integrated L	10	ToBal	$_{\rm T}^{2.61\times10^6}$
	P article	$L_{c.m.}$	$(10^{34}15^{*2}s^{-1})$	per3gear	Years	Integrated L	2.5×10^{12}
	W	160	(10 cm s) 16	$(ab^{-1}4, 2 \text{ IPs})$	1	$(ab^{-1}4.2 \text{ IPs})$	1.3×10^8
	ŧŧ**	360	0.55	0.133	150	0!85	$\hat{\boldsymbol{\theta}}: \hat{\boldsymbol{\Phi}} \times 10^{8}$
	Z	91	115*	30	2	60	2.5×10^{12}
	W	160	16	4,2	1	4.2	1.3×10^{8}
	$t\bar{t}^{**}$	360	0.5	0.13	5	0.65	0.4×10^{6}

 Table 3.2: CEPC operation plan (@ 50 MW)

	Particle	E _{c.m.} (GeV)	$L \text{ per IP} (10^{34} \text{ cm}^{-2} \text{s}^{-1})$	Integrated <i>L</i> per year (ab ⁻¹ , 2 IPs)	Years	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
	Н	240	<i>L</i> 8.3 ID	Integrated L	10	Zdtol	4.31×10^{6}
	P article	$(C_{\rm ext})$	L per IP (103422*2s ⁻¹)	per5year	Years	Integraded L	4.1×10^{12}
	W	160	26.7	$(ab^{-1}6.2)$ IPs)	1	$(ab^{-1}6.2)$ IPs)	2.1×10^8
	tt**	360	8:8	ð: 2	150	21.66	$\theta:\mathfrak{F} \times \mathfrak{H}^{\mathfrak{g}}$
L	Ζ	91	192*	50	2	100	4.1×10^{12}
Gao, J.	CEPC Techn	ical Design R	eport: Accelerator. Ra	adiat Detect Technol	Methods 8, 1	–1105 (2024).	2.1×10^{8}
	$t\bar{t}^{**}$	360	0.8	0.2	5	1.0	0.6×10^{6}

45

The Goal

• Naive statistic error?

 Z^*

• Precisely Higgs physics is one of the most important job of Higgs factory.

 W^*

 e^{-}

 Z^*

Ζ

F. An, et. al., Precision Higgs Physics at the CEPC, Chin. Phys. C 43 (2019) 043002.

W*

• Precisely Higgs physics is one of the most important job of Higgs factory.

 e^{-}

 Z^*

Ζ

F. An, et. al., Precision Higgs Physics at the CEPC, Chin. Phys. C 43 (2019) 043002.

 Z^{*}

 Precisely Higgs physics is one of the most important job of Higgs factory.

			Estimated Precision				
00		Property	CEI	PC-v1	CEF	PC-v4	
	— Total	m_H	5.9	MeV	5.9	MeV	
	— ZH	Γ_H	2.	7%	2.	8%	
50- I	— WW fi — 77 fus	$\sigma(ZH)$	0.	5%	0.	5%	
		$\sigma(\nu\bar{\nu}H)$	3.0% $3.2%$		2%		
00	Total	Decay mode	$\sigma \times \mathrm{BR}$	BR	$\sigma imes \mathrm{BR}$	BR	
150		$H \to b\bar{b}$	0.26%	0.56%	0.27%	0.56%	
		$H \mathop{\rightarrow} c \bar{c}$	3.1%	3.1%	3.3%	3.3%	
		$H \mathop{\rightarrow} gg$	1.2%	1.3%	1.3%	1.4%	
	e⁺e→	$H \mathop{\rightarrow} WW^*$	0.9%	1.1%	1.0%	1.1%	
		$H \mathop{\rightarrow} ZZ^*$	4.9%	5.0%	5.1%	5.1%	
		$H \mathop{\rightarrow} \gamma \gamma$	6.2%	6.2%	6.8%	6.9%	
		$H \mathop{\rightarrow} Z\gamma$	13%	13%	16%	16%	
50		$H \!\rightarrow\! \tau^+ \tau^-$	0.8%	0.9%	0.8%	1.0%	
	e⁺e→	$H {\rightarrow} \mu^+ \mu^-$	16%	16%	17%	17%	
		${\rm BR}_{\rm inv}^{\rm BSM}$	—	$<\!0.28\%$	_	< 0.30%	
200 250	300	350 40	JU			_	

 W^*

 Z^*

Z

 Z^{*}

 Precisely Higgs physics is one of the most important job of Higgs factory.

			Estimated Precision			
300		Property	CEPC-v1		CEPC-v4	
	— Total	m_H	5.9	MeV	5.9	MeV
-	— ZH	Γ_H	2	7%	2.3	8%
50 - I	— WW fi — 77 fus	$\sigma(ZH)$	0.	5%	0.	5%
		$\sigma(\nu\bar{\nu}H)$	3.0% 3.2%		2%	
00	Total	Decay mode	$\sigma imes \mathrm{BR}$	BR	$\sigma \times \mathrm{BR}$	BR
		$H \to b \bar{b}$	0.26%	0.56%	0.27%	0.56%
		$H \mathop{\rightarrow} c \bar{c}$	3.1%	3.1%	3.3%	3.3%
50 <u>-</u>		$H \mathop{\rightarrow} gg$	1.2%	1.3%	1.3%	1.4%
	e⁺e→	$H\!\rightarrow\!WW^*$	0.9%	1.1%	1.0%	1.1%
		$H\!\rightarrow\! ZZ^*$	4.9%	5.0%	5.1%	5.1%
		$H \mathop{\rightarrow} \gamma \gamma$	6.2%	6.2%	6.8%	6.9%
		$H \mathop{\rightarrow} Z\gamma$	13%	13%	16%	16%
50-		$H \rightarrow \tau^+ \tau^-$	0.8%	0.9%	0.8%	1.0%
	e⁺e →	$H{\rightarrow}\mu^+\mu^-$	16%	16%	17%	17%
		${\rm BR}_{\rm inv}^{\rm BSM}$	_	$<\!0.28\%$	_	< 0.30%
200 250	300	350 40	0			_

 W^*

 Z^*

Z

• We need accurate estimation of the cross section of (at least) $e^+e^- \rightarrow Zh$.

J. Fleischer and F. Jegerlehner, Nucl. Phys. B 216 (1983) 469–492; B. A. Kniehl, Z. Phys. C 55 (1992) 605–618; Denner, J. Kublbeck, R. Mertig, and M. Bohm, Z. Phys. C 56 (1992) 261–272.

• Mixed NLO EW-QCD correction to $e^+e^- \rightarrow Zh$.

Y. Gong, Z. Li, X. Xu, L. L. Yang, Phys. Rev. D 95 (2017) 093003; Q.-F. Sun, F. Feng, Y. Jia, W.-L. Sang, Phys. Rev. D 96 (2017) 051301.

Y. Gong, Z. Li, X. Xu, L. L. Yang, Phys. Rev. D 95 (2017) 093003; Q.-F. Sun, F. Feng, Y. Jia, W.-L. Sang, Phys. Rev. D 96 (2017) 051301.

Y. Gong, Z. Li, X. Xu, L. L. Yang, Phys. Rev. D 95 (2017) 093003; Q.-F. Sun, F. Feng, Y. Jia, W.-L. Sang, Phys. Rev. D 96 (2017) 051301.

Y. Gong, Z. Li, X. Xu, L. L. Yang, Phys. Rev. D 95 (2017) 093003; Q.-F. Sun, F. Feng, Y. Jia, W.-L. Sang, Phys. Rev. D 96 (2017) 051301.

20

• Mixed NLO EW-QCD correction to $e^+e^- \rightarrow Zh$, with finite width effect of the *Z* boson.

W. Chen, F. Feng, Y. Jia, W.-L. Sang, Chin. Phys. C 43 (2019) 013108.

• Mixed NLO EW-QCD correction to $e^+e^- \rightarrow Zh$, with finite width effect of the *Z* boson.

W. Chen, F. Feng, Y. Jia, W.-L. Sang, Chin. Phys. C 43 (2019) 013108.

• Beyond NLO EW-QCD correction, NNLO EW?

Complete two-loop electroweak corrections to $e^+e^- \rightarrow HZ$

Xiang Chen,^{1,*} Xin Guan,^{1,†} Chuan-Qi He,^{1,‡} Zhao Li,^{2,3,4,§} Xiao Liu,^{5,¶} and Yan-Qing Ma^{1,4,**} ¹School of Physics, Peking University, Beijing 100871, China ²Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ³School of Physics Sciences, University of Chinese Academy of Sciences, Beijing 100039, China ⁴Center for High Energy Physics, Peking University, Beijing 100871, China ⁵Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK ~ 30,000 Feynman diagrams;

7675 master integrals after reduction;

only ~104 CPU · h with AMFlow;

More labors and CPU · h are needed;

Full result is still on the way!

X. Chen, X. Guan, C.-Q. He, Z. Li, X. Liu, Y.-Q. Ma, arXiv:2209.14953[hep-ph].

• Beyond NLO EW-QCD correction, NNLO EW?

A. Freitas, Q. Song, Phys. Rev. Lett. 130 (2023) 031801; A. Freitas, Q. Song, PoS (LL2024) 001;

- Distribution of the decay products from the Higgs boson.
- Mixed NLO EW-QCD corrections to leptonic decay via HWW.

	LO	NLO EW	NNLO QCD-EW						
$\Gamma (10^{-5} \text{ GeV})$	4.597	4.474	4.518						
$\delta \Gamma \ (10^{-5} \text{ GeV})$		-0.123	+0.044						
$\delta\Gamma/\Gamma_{ m LO}$		-2.7%	+1.0%						

$\alpha(m_Z)$ scheme

G_{μ} scheme

	LO	NLO EW	NNLO QCD-EW
$\Gamma (10^{-5} \text{ GeV})$	4.374	4.524	4.531
$\delta\Gamma \ (10^{-5} \text{ GeV})$		+0.150	+0.007
$\delta\Gamma/\Gamma_{ m LO}$		+3.4%	+0.2%

- Distribution of the decay products from the Higgs boson.
- Mixed NLO EW-QCD corrections to leptonic decay via HWW.

C. Ma, Y. Wang, X. Xu, L. L. Yang, B. Zhou, JHEP09 (2021) 114.

• Distribution of the decay products from the Higgs boson contains information of new physics!

 $\alpha_b \stackrel{\text{O. Bi, K. Ghai, 7}}{\sim} \pm 0.17$. Gao, HZ, Chin. Phys. C 45 (2021) 023105.

• New result for specific new physics model.

JHEP	PUBLISHED FOR SISSA BY Dependence Received: September 17, 2020 Revised: February 17, 2021 Accepted: April 8, 2021 Published: May 13, 2021	$H_1 = \begin{pmatrix} G^{\pm} \\ \frac{1}{\sqrt{2}}(v+h^0+iG^0) \end{pmatrix}, \qquad H_2 = \begin{pmatrix} H^{\pm} \\ \frac{1}{\sqrt{2}}(H^0+iA^0) \end{pmatrix}$
One-loop radiative c	orrections to ${ m e^+e^-} ightarrow { m Zh^0/H^0A^0}$	$V = \mu_1^2 H_1 ^2 + \mu_2^2 H_2 ^2 + \lambda_1 H_1 ^4 + \lambda_2 H_2 ^4$
in the Inert Higgs D	oublet Model	$+ \lambda_3 H_1 ^2 H_2 ^2 + \lambda_4 H_1^{\dagger} H_2 ^2$
Hamza Abouabid, ^a Abdesslam A Bin Gong, ^{d,e} Wenhai Xie ^{d,e} and ^a Université Abdelmalek Essaadi, FS	Arhrib, ^a Rachid Benbrik, ^b Jaouad El Falaki, ^c Qi-Shu Yan ^{e,f} TT, B. 416, Tangier, Morocco	$+rac{\lambda_5}{2}\{(H_1^{\dagger}H_2)^2+ ext{H.c.}\}.$
^o Laboratoire de Physique fondament Sidi Bouzid, BP 4162, Safi, Moroce ^c EPTHE, Physics Department, Facu	PHYSICA	L REVIEW D 109, 015009 (2024)
P.O.B. 8106, Agadir, Morocco ^d Theory Division, Institute of High 19B Yuquan Road, Shijingshan Dis ^e School of Physics Sciences, Univers 19A Yuquan Road, Shijingshan Dis ^f Center for Future High Energy Phy 19B Yuquan Road, Shijingshan Dis E-mail: hamza.abouabid@gmail jaouad.elfalaki@gmail.com, t yanqishu@ucas.ac.cn	Full one-loop radiativ Hamza Abouabid [®] , ^{1,*} Abd Wen ¹ Université Abdel	<i>A</i> corrections to e ⁺ e ⁻ → H ⁺ H ⁻ in the inert doublet model Hesslam Arhrib, ^{1,†} Jaouad El Falaki [®] , ^{2,‡} Bin Gong [®] , ^{3,4,§} Hai Xie [®] , ^{3,4,∥} and Qi-Shu Yan ^{4,5,¶} Halek Essaadi, FSTT, B. 416, Tangier, Morocco
	² LPTHE, Physics Department, Facult ³ Theory Division, Institute of High E ⁴ School of Physics Sciences, Uni ⁵ Center for Future High Energy	lty of Sciences, Ibnou Zohr University, P.O.B. 8106 Agadir, Morocco Energy Physics, Chinese Academy of Sciences, Beijing 100049, China iversity of Chinese Academy of Sciences, Beijing 100049, China Physics, Chinese Academy of Sciences, Beijing 100049, China

• For SMEFTers

• For SMEFTers

Top Physics and Electroweak Physics

• Why is it so important?

M. M. Defranchis, J. de Blas, A. Mehta, M. Selvaggi, M. Vos, arXiv:2503.18713[hep-ph]; A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner, O. L. Veretin, Phys. Rev. Lett. 115 (2015) 201802.

• Essentially difficult at hadron colliders

Z. Li, X. Sun, Y. Fang, G. Li, S. Xin, S. Wang, Y. Wang, Y. Zhang, HZ, Z. Liang, Eur. Phys. J. C (2023) 83:269.

Z. Li, X. Sun, Y. Fang, G. Li, S. Xin, S. Wang, Y. Wang, Y. Zhang, HZ, Z. Liang, Eur. Phys. J. C (2023) 83:269.

Z. Li, X. Sun, Y. Fang, G. Li, S. Xin, S. Wang, Y. Wang, Y. Zhang, HZ, Z. Liang, Eur. Phys. J. C (2023) 83:269.

Z. Li, X. Sun, Y. Fang, G. Li, S. Xin, S. Wang, Y. Wang, Y. Zhang, HZ, Z. Liang, Eur. Phys. J. C (2023) 83:269.

Z. Li, X. Sun, Y. Fang, G. Li, S. Xin, S. Wang, Y. Wang, Y. Zhang, HZ, Z. Liang, Eur. Phys. J. C (2023) 83:269.

• A little about the "mass".

• A little about the "mass".

• New results beyond QQbar_threshold ("N3LO" QCD+NNLO EW).

X. Chen, X. Guan, C.-Q. He, X. Liu, Y.-Q. Ma, Phys. Rev. Lett. 132 (2024) 101901.

• Forward-backward asymmetry in top-pair production.

Beam polarization	L)	NLO		NNLO	
(e_L^-, e_R^+)	$\sigma_S \text{ [pb]}$	$A_{\rm FB}^{ m LO}$	$\sigma_S \text{ [pb]}$	$A_1 [10^{-2}]$	$\sigma_S \; [pb]$	$A_2 [10^{-2}]$
(0, 0)	0.58477	0.2342	$0.78874_{+0.01741}^{-0.01484}$	$3.67^{+0.313}_{-0.267}$	$0.85037_{+0.01002}^{-0.01009}$	$2.92^{+0.188}_{-0.168}$
(-80%, +30%)	0.32039	0.2549	$0.43232_{+0.00955}^{-0.00814}$	$3.62\substack{+0.309\\-0.263}$	$0.46633_{+0.00553}^{-0.00556}$	$2.86^{+0.183}_{-0.163}$
(+80%, -30%)	0.56846	0.2226	$0.76657_{+0.01691}^{-0.01441}$	$3.70_{-0.270}^{+0.316}$	$0.82623_{+0.00970}^{-0.00977}$	$2.95^{+0.191}_{-0.170}$
(+80%, +30%)	0.99800	0.2196	$1.34571_{+0.02968}^{-0.02530}$	$3.71_{-0.270}^{+0.317}$	$1.45035_{+0.01701}^{-0.01714}$	$2.96^{+0.192}_{-0.171}$
(-80%, -30%)	0.45224	0.2664	$0.61037^{-0.01151}_{+0.01350}$	$3.59_{-0.261}^{+0.306}$	$0.65856^{-0.00788}_{+0.00784}$	$2.82_{-0.160}^{+0.180}$

Published for SISSA by O Springer

RECEIVED: February 4, 2023 REVISED: April 14, 2023 ACCEPTED: April 21, 2023 PUBLISHED: May 11, 2023

Top and bottom quark forward-backward asymmetries at next-to-next-to-leading order QCD in (un)polarized electron positron collisions

Werner Bernreuther,^{*a*,*} Long Chen,^{*b*,*} Peng-Cheng Lu^{*b*,*} and Zong-Guo Si^{*b*,*}

^a Institut f
ür Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University, 52056 Aachen, Germany
^b School of Physics, Shandong University, Jinan, Shandong 250100, China

• SMEFT

Y. Liu, Y. Wang, C. Zhang, L. Zhang, J. Gu, Chin. Phys. C. 46 (2022) 113105.

Some Memorandum and New Topics

Some Memorandum and New Topics

 $>^{1.5}$

• Energy correlators and QCD.

Z. Liu, M. Ruan, M. Xiao, Z. Xu, arXiv:2406.10946[ł

Some Memorandum and New Topics

• Testing the violation of the Bell inequality at CEPC.

Q. Bi, Q.-H. Cao, K. Cheng, HZ, Phys. Rev. D 109 (2024) 036022.

Some Memorandum and New Topics

• Testing the violation of the Bell inequality at CEPC.

Q. Bi, Q.-H. Cao, K. Cheng, HZ, Phys. Rev. D 109 (2024) 036022.