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Disclaimer

The topics I cover are certainly not complete but 
chosen to avoid overlap with other talks 
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Physics Landscape at Higgs Factories 

❖Higgs couplings measured to a few % 

❖Self coupling with 50% precision 

❖Top-quark pole mass uncertainty of 500 MeV 

❖Flavour physics observables improved by about 
one order of magnitude compared to today 

❖ Improvement on direct Dark matter limits 

❖ Possible surprises?
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lepton colliders are combined with HL-LHC & LEP/SLD
imposed U(2) in 1&2 gen quarks

J. De Blas et al JHEP 12 (2019) 117

An electron-positron Higgs factory is the highest-
priority next collider. -EUROPEAN STRATEGY FOR PARTICLE 
PHYSICS

https://link.springer.com/article/10.1007/JHEP12(2019)117
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Theory Requirements

❖Factor 5-200 reduction of experimental error 

❖QED effects of 0.1% could be included in LEP 
error budget  

❖Future colliders will deliver full LEP Statistics in 
minutes

S.Jadach and M.Skrzypek, Eur. Phys. J.C 79, no.9, 756 (2019)
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How to treat QED Corrections?

Collinear Resummation 
❖Collinear logs are resummed with 

universal PDF ( ) 

❖Recently matched to NLO 

❖Combined with Parton Shower to 
generate photon emissions 

❖Beyond NLO becomes tricky

PT = 0

Jadach et.al, Z.Phys.C 49 (1991) 
577-584,Europhys. Lett.17(1992) 
123–128

Soft Resummation 

❖Soft logs resummed to infinite order 
using the YFS theorem 

❖Provides a robust scheme for the 
inclusion of real and virtual 
corrections at any order.

S.Frixone et.al  JHEP 03 (2020) 
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YFS Theorem 

Yennie, Frautschi, and Suura showed how to 
reorder the entire perturbative series such 
that all IR divergences are resummed 

It also provides an analytical treatment of the 
multi-photon phasespace 

See talk by Z.Was
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YFS Master Equation

dσ =
∞

∑
nγ=0

eY(Ω)

nγ!
dΦQ [

nγ

∏
i=1

dΦγ
i S̃(ki) Θ(ki, Ω)] β̃0 +

nγ

∑
j=1

β̃1(kj)
s̃(kj)

+
nγ

∑
j, k = 1
j < k

β̃2(kj, kk)
s̃(kj)s̃(kk)

+ ⋯

Y(Ω) = ∑
i<j

ℛe Bij(Φn) + B̃ij(Φn+1)

This expression contains no approximations.It does require 
any further matching. The accuracy is limited by how far you 

can calculate the betas
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Virtual Emissions 

β̃1
0(Φn) = 𝒱(Φn) − ∑

ij

𝒟ij(Φij)

IR Finite one-loop contribution 
YFS Subtraction term

Taking the soft limit allows us to 
factorise out amplitude 

Full One-loop amplitude
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Virtual Emissions 

β̃1
0(Φn) = 𝒱(Φn) − ∑

ij

𝒟ij(Φij)

Full One-loop amplitude

❖ Calculation of one-loop EW(QCD) corrections is 
essentially automated 

❖ OpenLoops 

❖ Recola 

❖ MadLoop 

❖ GoSam 

❖ BlackHat

I can’t calculate one-loop amplitudes but I 
can interface them 
- Anonymous MC Author 

Eur.Phys.J.C 79 (2019) 10, 866

Comput.Phys.Commun. 214 (2017) 140-173

JHEP 05 (2011) 044

Eur.Phys.J.C 74 (2014) 8, 3001

Phys.Rev.D 78 (2008) 036003

https://inspirehep.net/literature/1747023
https://inspirehep.net/literature/1455789
https://inspirehep.net/literature/891365
https://inspirehep.net/literature/1292822
http://www.apple.com/uk
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Virtual Emissions 

β̃1
0(Φn) = 𝒱(Φn) − ∑

ij

𝒟ij(Φij)

YFS Subtraction term

Automatically constructed in Sherpa 
using YFS algorithm  
Convolution of the YFS form-factor with the 
born amplitude 

SciPost Phys. 13 (2022) 026

Bij = −
i

8π3
ZiZjθiθj ∫

d4k
k2 ( 2piθi − k

k2 − 2(k ⋅ pi)θi
+

2pjθj + k
k2 + 2(k ⋅ pj)θj )

2

https://inspirehep.net/literature/2055725
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Virtual Corrections 

β̃1
0 (Φn) = 𝒱(Φn) − ∑

ij

𝒟̃ij (Φij ⊗ Φn)
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Sherpa automatically constructs the subtraction 
terms while external tools provide the IR 
divergent  one-loop amplitude

Pole cancellation for the virtual occur 
locally without input from the real 
emissions i.e Not via KLN theorem 
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Real Emissions 

β̃1
1 (Φn+1) =

1
2(2π)3

ℳ
1
2
0 (Φn+1)

2
− ∑

ij

𝒟̃ij (Φij+1 ⊗ Φn)

Real emission squared 
amplitude 

IR Finite contribution for real 
corrections

YFS Subtraction term
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Real Emissions 

β̃1
1 (Φn+1) =

1
2(2π)3

ℳ
1
2
0 (Φn+1)

2
− ∑

ij

𝒟̃ij (Φij+1 ⊗ Φn)

Real emission squared 
amplitude 

❖ Tree level amplitudes calculations fully 
automated 

❖ Sherpa: Comix/Amegic 

❖ Madgraph 

❖ Whizard: O`Mega 

❖…..
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Real Corrections 

β̃1
1 (Φn+1) = ℛ(Φn+1)
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The real emissions are simple tree level 
amplitudes which can be calculated using 
standard methods in Sherpa

In the soft limit we see this contribution vanishes 
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NLO-EW Results

Prel
im

ina
ry

Sherpa+O
penLoops

A.Price, F.Krauss et al 25XY.abcd

❖ YFS NLO results are compatible with Sherpa’s 
collinear based NLO calculations 

❖ Great consistency check as both approaches 
are based on very different algorithms  

❖ Error bands are from varying the input scheme

See Juergen Reuter talk on Higgs Physics
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Real-Virtual Emissions 

β̃2
1 (Φn+1) = ℛ𝒱(Φn+1) − ∑

ij

𝒟(1)
ij (Φij+1 ⊗ Φn)

IR Finite one-loop contribution 
with additional real emission YFS Subtraction term

YFS defined to all orders so we 
can look at NNLO corrections

Full One-loop amplitude
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Real-Virtual Corrections 

β̃2
1 (Φn+1) = ℛ𝒱(Φn+1)
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One-loop amplitudes again provided by external tool.

Sherpa again automatically constructs the subtraction 
term 

I can’t calculate one-loop amplitudes but I can 
interface them 
- Anonymous MC Author 

These corrections contain no approximations e.g 
all masses  are kept 
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Double Real Corrections 
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By far the most complicated subtraction 
term 
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Double Virtual EW Corrections 

Unfortunately, there is not automated tool for 
the calculation of double virtual correction.

Tommaso ArmadilloAyres Freitas LoopFest 2024
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Double Virtual EW Corrections 

See talk by Tommaso Armadillo

Unfortunately, there is not automated tool for 
the calculation of double virtual correction.

But there is significant work underway

❖Two-Loop QED Corrections to the Scattering of 
Four Massive Leptons 

❖ Two-loop radiative corrections to e+e− → γγ∗ 
cross section 

❖ Lepton-pair scattering with an off-shell and an 
on-shell photon at two loops in massless QED 

❖Two-Loop Electroweak Corrections with Fermion 
Loops to e+e− → ZH

JHEP 11 (2023) 148 

JHEP 11 (2023) 041 

Phys.Rev.Lett. 130 (2023) 3

Phys.Rev.Lett. 132 (2024) 23

https://arxiv.org/abs/2308.09479
https://inspirehep.net/literature/2152949
https://inspirehep.net/literature/2722126
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QCD for : NLL Parton Showerse+e−

❖ Reproduce analytical resummation results  

❖ Global/Non-Global Event Shapes 

❖ Fragmentation/DGLAP evolution 

❖ Ensure that the (N)NLL region is under control 
with improved kinematical mappings 

❖ NNLL brings large corrections and 
improvement wrt data

PanScales van Beekveld et al

https://arxiv.org/pdf/2406.02661
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QCD for : NLL Parton Showerse+e−

❖ Explores connection between angular ordering 
and dipole showers 

❖ Addresses NLL deficiencies found in recoil 
schemes of current dipole showers   

❖ Multi-Jet Merging now available 

❖ Matching NLO underway

ALARIC [Herren, Höche, Krauss, Reichelt, Schönherr,’22]
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QCD for : NLL Parton Showerse+e−

❖ Explores connection between angular ordering 
and dipole showers 

❖ Addresses NLL defi


❖ Multi-Jet Merging now available 

❖ Matching NLO underway

ALARIC [Herren, Höche, Krauss, Reichelt, Schönherr,’22]

Nearly all QCD improvements at the LHC can be used for e+e−

See talks on Wednesday morning for more QCD
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Conclusions 

We have a lot of work to do to ensure 
our theory calculations do not hold back 

  e+e−

I can see a path for the theory community to 
achieve this but it will take huge effort by the 

community 

But we have plenty of time ! 


