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Update on the multi-photon Monte Carlo event
generator KKMCee

Z. Was∗,
∗

Institute of Nuclear Physics, Polish Academy of Sciences, Krakow

(A) Monte Carlo programs Bhlumi for Bhabha scattering luminosity measurements,

KKMC for lepton pair productions, demonstrated that predictions for observables,

of complex cuts , sub permille level (0.043% Opal lumi. measurement) are possible.

(B) Main building blocks — aspects enabling such precision: (i) Phase space (issues of

iterations or better solutions) (ii) Matrix Elements and spin (issues of iterations, separation

into parts) (iii) Tests for programs and of development process.

(C) KKMC for e+e− → l+l−(nγ) , including τ spin, decays and radiative corrections in

decays. represent good example. Hopefully its development will continue and precision

required by FCC will be reached.

(D) My aim: underline difficulties, challenges, and breakthrough steps, status of today.

(E) I will talk about lifetime project at the time when change of main authors is pressing →

(F) expertise survival, New People (NP) for long term involvement.

This research was funded in part by Narodowe Centrum Nauki, Poland, grant No. 2023/50/A/ST2/00224
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Talk plan

Sentimental... For me, first international step toward Monte Carlo for accelerator physics,

was my stay in Marseille in 80’s; first trip from there was Barcelona.

From Barcelona, early testbed for spin amplitudes with multileg amplitudes.

My talk supplements, but is of different, more work to do, perspective than

Standard model theory for the FCC-ee Tera-Z stage 1809.01830

1. KKMCee presentation and daily service. See other talk.

2. Recovering old f77 solutions, like attributing helicity states or polarimetric vectors.

3. KKMC-f77 in use by Belle collaboration. Input for future.

4. Anomalous couplings, extra algorithms.

5. All of above does not help to improve on precision. CHALLENGES

6. Toward higher order 3 hard photon amplitudes

7. Toward higher order 3 loop QED amplitudes

8. Toward two loop electroweak corrections.
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1, 2 KKMCee and old solutions 3

• The development of KKMCee was managed by Stanislaw Jadach. His

disappearance is not only the great loss for the project, but also underline

importance of man-power issues.

• At present, physics content of KKMCee does not evolve fast. It user interface is

managed through https://github.com/KrakowHEPSoft/KKMCee,

• Please have a look at Alan Price slides for details.

• Exclusive exponentiation open way to manage interface of theoretical predictions

with detailed experimental acceptance, which is irregular: rectangular detector

cells, backgrounds etc.

− some cuts may arrive in the middle of experimental runs → dead detector cells
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1, 2 KKMCee and old solutions 4

There are two modifications under imminent implementation:

• Attribution of tau helicities tags for each event. That is inconsistent with picture of

quantum entanglement, but for many applications can be used.

− Precision tag for this attribution is at the level of ∼ mτ/Eτ

• The tau decay polarimetric vectors are stored after being boosted to laboratory

frame.

− They can be boosted back to τ frames of users choice and introduced into event

weights emulating input from anomalous interaction. No need to use internal

boosting routine of KKMCee. Use of event stored on a disk is OK.

− Example algorithm (it is straightforward to re-code into any language) is

explained in Phys.Rev.D 109 (2024) 1, 013002
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3,4 KKMC-f77 Anomalous interactions 5

• FORTRAN version of KKMC is in daily use by Belle collaboration.

• Valuable source of New Physics applications, such as: anomalous dipole

moments, dark photon emissions, light exotic scalars. Bulk of the work for KKMCee

is completed (polarimetric vectors in generated event data-files)

• In future, path to solutions for ZH intermediate state processes, and many other.

• Even if high precision can not be achieved before investing into Matrix Elements,

prototypes source and benchmarks codes are needed.

• In the past we were developing such solutions (for start) based on fixed order

Monte Carlo combined with parallel simulations based on collinear resummations.

Examples: • early time: OldBab+LumLog for luminosity. • Later: KORALW+

YSFWW for four fermion production.

Disadvantage difficult to use and/or loss of detector response details.

Advantage Helpful for fits.

Proven dead-end for precision below 0.5% level. Breakthrough of exclusive

exponentiation, game changer, but ... came with a price.

Z. Was Barcelona Jun 16 2025



3,4 KKMC-f77 Anomalous interactions 6

KKMC or photos rigorous “matrix element × full phase space” implementation

�

Phase Space
Low level
Monte Carlo

Model dependent
Matrix element

CEEX:O(α2)

CEEX:O(α1)

CEEX:O(α0)

EEX:O(α1)

EEX:O(α2)
EEX:O(α3)

Entry

Exit

Ph.Sp.

M.El.

.

• Phase-space Monte Carlo simulator is a

module producing “raw events” (includ-

ing importance sampling for possible in-

termediate resonances/singularities)

• Library of Matrix Elements; input for

“model weight”; independent module

• KKMC for e+e− → τ+τ−nγ and

photos for radiative corrections in de-

cays are non-Markovian algorithms, pho-

tons are generated independently first,

phase space constraints are added later,

thanks to conformal symmetry of eikonal

QED part KKMC or iteratively, Kinoshita-

Lee-Nauenberg theorem, for photos.

• KKMC handle initial state radiation,

photos massive states emission too.

Z. Was Barcelona Jun 16 2025



3,4 KKMC-f77 Anomalous interactions 7

I will use KKMC and photos as examples

• KKMC precision Monte Carlo for e+e− → l̄l(nγ). Non markovian algorithm,

exploits conformal symmetry. Clear way for consecutive higher orders of matrix

element implementation.

• photos for radiative corrections of resonance and particles decays, also non

markovian, use iterative procedure to implement phase space limits and

Jacobians. Convenient for generation massive states, but not developed for

second order matrix elements.

• And pairs emission will be needed for precision required at FCC.

• In both cases complete exact phase-space, where number of of photons is part

of crude distribution.

• Solution used in KKMC, based on conformal symmetry, is better suited for

beyond NL order matrix element implementation,

also for ISR when intermediate s-channel resonances/peaks are present.
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5, Lessons, messages of the past. 8

Both for KKMC and photos algorithms are non Markovian

1. For photos fixed order algorithm is preserved for tests. It is good for comparisons with

fixed order orthodox calculations, for KKMC such option is abandoned. It was present in

its predecessor KORALZ.

2. For fixed order MC binomial distribution for number of photons candidates has to be

used. To regulate infrared singularity, soft photon region need to be integrated out and

combined with virtual correction. That leads to technical approximation, photons below

threshold value are not generated. Alternatively negative weight events can be used.

Both solutions are not good for experiments.

3. If one goes to second order, things are getting worse for technical approximation.

4. Here exponentiation helps, primary distribution of photon number is poissonian and any

value can be used for minimal energy of the photon to be generated.

5. That is all I can say before entering discussions of matrix elements.

6. May be the only comment can be that in case of KKMC phase space constraints are

introduced in one step λ factor re-scaling of photon momenta. In case of photos

phase space constraints are introduced iteratively.
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5, Lessons, messages of the past. 9

1. Both KKMC and photos generation starts from non-markovian generation of

photon candidates accordingly to poisonian distribution, number of photons and

independently each photon energy, θ and φ.

2. Solution of KKMC phase space, is prepared for use with second order or higher

matrix elements. This is thanks to conformal symmetry of multi-photon phase

space. This enables independent generation of line-shape and beamstrahlung.

3. Solution of photos could have been extended to generation of additional

massive particles (lepton pair). Kinoshita-Lee-Nauenberg theorem is used to

relate phase-space slots of given multiplicity. It is less convenient for higher

order matrix element implementation, because of iterative nature of phase

space, jacobians and boundaries, implementation.

4. In both cases extensions to QCD higher orders, etc are possible, but there is a

question of man power.

5. Training takes time and other domains value expertise higher...
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5, Lessons, messages of the past. 10

Phase-space alone makes no sense:

1. Matrix elements and spin degrees of freedom must match that. For spin,

language of matrix elements is more convenient than work with distributions

2. Especially important is matching enhancements of matrix elements; collinear

and soft, with phase space parametrisations and pre-samplers.

3. I will drop virtual corrections and mixed real-virtual ones. Nothing about

complex masses, how they affect parametric ambiguities → non-analytic nature

of dispersion relations. That is valid at one loop level, what is beyond?

4. Kleiss-Stirling formalism for spin amplitudes. We had to revise reference

frames, common definition independently of number of particles (photons) in

final state: S. Jadach, B.F.L. Ward, Z. Was,Global positioning of spin GPS scheme for half spin massive

spinors Eur.Phys.J.C 22 (2001) 423. For photos (working on distributions) reference

frame orientation was essential too. Matrix elements required re-do: divide

them in parts corresponding to: crude level distribution build from eikonal parts

and parts which could have been identified in higher order amplitudes.
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5, Lessons, messages of the past. 11

Easiest case – Matrix Element for Z decay:

• Single photon amplitude, current J , nearly like Born level amplitude, but its

parts must match what is in higher order amplitudes. Momenta p, q, k1 of

outgoing fermions and photon.

• The same is true for amplitudes of other processes.

Details, will be covered later, fermion spinors dropped lot hidden in J .

• Notation useful for Kleiss-Stirling techniques input.

•

I = IA + IB + IC

•

I = J/

[(

p·e1
p·k1

− q ·e1
q ·k1

)]

−
[

1

2

e/1k/1
p·k1

]

J/+ J/

[

1

2

e/1k/1
q ·k1

]

three gauge invariant parts, IA is eikonal; IB , IC carry collinear contrib from p and q
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5, Lessons, messages of the past. 12

MIRACLE?

If IA is taken only, all double collinear-infrared logarithms appear after phase space

integration.

If parts IB and IC are added to spin amplitudes, and integration is repeated,

nothing change in double logarithms, but collinear ones are now reproduced also.

Fermion masses are taken into account.

This is of course no miracle, but one of the properties at the bottom of

Yennie-Frautchi-Suura exponentiation.

How does it work for other processes and first order effects?

Different languages but separation at the amplitude level for parts corresponding

(after integration) to logarithms will appear.

For single gluon emission structure of amplitude is essentialy the same as for QED.

I will go through single photon emission amplitudes of W decay and of scalar QED

processes too. Patterns origin is more general than YFS.

Z. Was Barcelona Jun 16 2025



5, Lessons, messages of the past. 13

• Feynman diagrams for FSR in Z/γ∗
decays

• Out of the first two diagrams distribution for Z/γ decay was obtained.

• Other two diagrams appear e.g. in scalar QED, and/or in decays of W’s or B mesons.

• Let us look into sub-structure of these amplitudes.

Z. Was Barcelona Jun 16 2025



The Feynman diagrams for e+e− → ν̄eνeγ. 14

We will start with the process e+e−νeν̄eγ

For the details of notation see later ...

Next two slides: five diagrams, five lines in formula (last 3 for diagram no.5) ...

The four momenta pa, pb, pc, pd, k1 denote respectively momenta of incoming

electron, positron, outcoming neutrino, antineutrino and finally photon.

The indices for the spin states for the fermions are denoted respectively as λa, λb,

λc, λd and for photon σ1.

The photon polarization vector is denoted as ǫσ1 .

We will search for gauge invariant parts. Expansion with respect to contact

interaction helpful.

Lots of details (sorry) follows, necessary to keep gauge invariant parts in the code,

useful for using first order amplitudes parts as parts of higher order amplitudes as

well.
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The Feynman diagrams for e+e− → ν̄eνeγ. 15
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The Feynman diagrams for e+e− → ν̄eνeγ. 16

The first-order matrix elementa obtained from the Feynman diagrams depicted in

fig. 14, can be written in a rather straightforward way:

M1{I}

(

p
λ
k1
σ1

)

=eQe v̄(pb, λb) M
bd
{I}

6pa +m− 6k1
−2k1pa

6ǫ⋆σ1
(k1) u(pa, λa)

+eQe v̄(pb, λb) 6ǫ⋆σ1
(k1)

−6pb +m+ 6k1
−2k1pb

M
ac
{I} u(pa, λa)

+e v̄(pb, λb) M
bd,ac

{I} u(pa, λa)
ǫ⋆σ1

(k1) · (pc − pa + pb − pd)

(ta −M2
W )(tb −M2

W )

+e
v̄(pb, λb)g

Weν
λb,λd

6ǫ⋆σ1
(k1) v(pd, λd)ū(pc, λc)g

Weν
λc,λa

6k1 u(pa, λa)

(ta −M2
W )(tb −M2

W )

−e
v̄(pb, λb)g

Weν
λb,λd

6k1 v(pd, λd)ū(pc, λc)g
Weν
λc,λa

6ǫ⋆σ1
(k1) u(pa, λa)

(ta −M2
W )(tb −M2

W )
,

(1)

aM1{I}

(

p
λ
k1
σ1

)

The subscripts 1 and {I} denote respectively, that the amplitudes are of the first

order and are included as part of the initial state bremsstrahlung. This spurious notation is however

convenient for the reader interested in ref. Jadach:1998wp.
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The Feynman diagrams for e+e− → ν̄eνeγ. 17

or, equivalently:

M1{I}

(

p
λ
k1
σ1

)

= M0 + M1 + M2 + M3

M
0
= eQe v̄(pb, λb) M

bd
{I}

6pa + m − 6k1

−2k1pa

6ǫ
⋆
σ1

(k1) u(pa, λa)

+ eQe v̄(pb, λb) 6ǫ⋆σ1
(k1)

−6pb + m+ 6k1

−2k1pb

M
ac
{I} u(pa, λa)

M
1
= M

1′
+ M

1′′

M
1′

= +e v̄(pb, λb) M
bd,ac

{I}
u(pa, λa)ǫ

⋆
σ1

(k1) · (pc − pa)
1

ta − M2
W

1

tb − M2
W

,

M
1′′

= +e v̄(pb, λb) M
bd,ac

{I}
u(pa, λa)ǫ

⋆
σ1

(k1) · (pb − pd)
1

ta − M2
W

1

tb − M2
W

,

M2 = +e v̄(pb, λb)g
Weν
λb,λd

6ǫ⋆σ1
(k1) v(pd, λd)ū(pc, λc)g

Weν
λc,λa

6k1 u(pa, λa)
1

ta − M2
W

1

tb − M2
W

M
3
= −e v̄(pb, λb)g

Weν
λb,λd

6k1 v(pd, λd)ū(pc, λc)g
Weν
λc,λa

6ǫ
⋆
σ1

(k1) u(pa, λa)
1

ta − M2
W

1

tb − M2
W

,

(2)
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Details/notations for e+e− → ν̄eνeγ. 18

where, the part of the amplitude, consisting of bosonic couplings (gZ,f
λ denote

coupling constant of Z with fermion f and handedness λ, in electric charge units),

final state fermion spinors and boson propagators reads as

M
xy

{I} = ie2(RZ +RW ) = ie2
∑

B=W,Z

Πµν
B (X) GB

e,µ (GB
f,ν)[cd] (3)

with

GB
e,µ = γµ

∑

λ=±

1

2
(1 + λγ5)g

B,e
λ

(GB
f,ν)[cd] = ū(pc, λc)G

B
f,νv(pd, λd)

Πµν
B=Z(X) =

gµν

X2 −M2
Z + iΓZX2/MZ

Πµν
B=W (X) =

gµν

t−M2
W

.

(4)

The final-state spinors are explicitly included, and Fierz transformation is applied for

the part of W exchange. The W coupling constant reads
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Details/notations for e+e− → ν̄eνeγ. 19

gWeν
λc,λa

=
1√

2 sin θW
δλc

λa
δλc

+ . (5)

Only for the W contribution, the superscripts xy in M{I} have the meaning, they

define the momentum transfer in the W propagator Πµν
W (X): for xy = ac the

transfer a is ta = (pa − pc)
2, for bd it is tb = (pb − pd)

2. If both are explicitly

marked, then the expression

M
bd,ac

{I} = ie2GW
e,µ (GW, µ

ν )[cd] (6)

is used. For that parts of formula (2) W propagators are explicitly given. The

notations RZ and RW will be used later.

Let us start now to rewrite expression (2). It is straightforward to notice that the first

term M0 can be split into soft IR parts proportional to ( 6p±m) and non-IR parts

proportional to 6k1. The non-IR parts are individually gauge invariant by

construction. The soft part of M0, with Z couplings only, is gauge invariant as well.

aTransfers can be expressed also as ta = (pb − k1 − pd)
2 and tb = (pa − k1 − pc)2,

this make difference if extrapolation procedures are used for the configurations off mass shell where

pa + pb 6= pc + pd + k1, otherwise M1′ = M1′′ of course.
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Details/notations for e+e− → ν̄eνeγ. 20

Employing the completeness relations of eq. (A14) we obtain the different form of
(2):

M1{I}

(

p
λ
k1
σ1

)

= −
eQe

2k1pa

∑

ρa

B

[

pb
λb

pa
ρa

]

[cd]U
[

pa
ρa

k1
σ1

pa
λa

]

+
eQe

2k1pb

∑

ρb

V
[

pb
λb

k1
σ1

pb
ρb

]

B

[

pb
ρb

pa
λa

]

[cd]

+
eQe

2k1pa

∑

ρ

B

[

pb
λb

k1
ρ

]

[cd]U
[

k1
ρ

k1
σ1

pa
λa

]

−
eQe

2k1pb

∑

ρ

V
[

pb
λb

k1
σ1

k1
ρ

]

B

[

k1
ρ

pa
λa

]

[cd]

+M
1′

+ M
1′′

+ M
2
+ M

3
.

(7)

The terms M1′

to M3 correspond to the last three linesb of eq. (1). These
contributions are also IR-finite. In the next step let us remove the sum in the first
two terms thanks to the diagonality of U and V ( ref.Jadach:2000ir). The matrices

bThe term M1 +M2 +M3 originates from the WWγ vertex

−ie
[

gµν(p− q)ρ + gνρ(q − r)µ + gµρ(r − p)ν
]

where all momenta are outcoming, and indices on outgoing lines are paired with momenta as pµ, qν rρ;

M1 originates from the term where gµν connects the e−–νe, e+–ν̄e fermion lines.
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Details/notations for e+e− → ν̄eνeγ. 21

B are also defined in this reference. We obtain

M1{I}

(

p
λ
k1
σ1

)

=s
{I}
σ1

(k1)B̂
[p
λ

]

+
(

r
B′

{I} + M
1′)

+
(

r
B′

{I} + M
1′′)

+ r
A′

{I} + r
A′′

{I} +
(

M
2
+ M

3)

r
B′

{I}

(

p
λ
k1
σ1

)

= −
eQe

2k1pa

∑

ρ

B̄

[

pb
λb

pa
ρa

]

[cd]U
[

pa
ρa

k1
σ1

pa
λa

]

r
B′′

{I}

(

p
λ
k1
σ1

)

= +
eQe

2k1pb

∑

ρ

V
[

pb
λb

k1
σ1

pb
ρb

]

B̄

[

pb
ρb

pa
λa

]

[cd]

r
A′

{I}

(

p
λ
k1
σ1

)

= +
eQe

2k1pa

∑

ρ

B

[

pb
λb

k1
ρ

]

[cd]U
[

k1
ρ

k1
σ1

pa
λa

]

,

r
A′′

{I}

(

p
λ
k1
σ1

)

= −
eQe

2k1pb

∑

ρ

V
[

pb
λb

k1
σ1

k1
ρ

]

B

[

k1
ρ

pa
λa

]

[cd],

s
{I}
σ1

(k1) = − eQe

bσ1 (k1, pa)

2k1pa

+ eQe

bσ1 (k1, pb)

2k1pb

.

(8)

The soft part is now clearly separated from the remaining non-IR part, used in the

CEEX exponentiation for construction of O(α) corrections. We have ordered the

expression, with the help of expansion similar to the contact interaction for W

propagator as well.
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Second order matrix elements. 22

Exact Matrix Element: e+e− → νµν̄µγγ explicitly;

• Expressions are valid for any current J ,

• For complete amplitude add fermionic fields, eg. ū(p) and v(q); 1-st/2-nd photon

momenta/polarizations are: k1/k2 e1/e2.

I
{1,2}
1 =

1

2
J/

(

p·e1
p·k1

−
q ·e1
q ·k1

)(

p·e2
p·k2

−
q ·e2
q ·k2

)

eikonal

I
{1,2}
2l = −

1

4

[(

p·e1
p·k1

−
q ·e1
q ·k1

)

e/2k/2
p·k2

+

(

p·e2
p·k2

−
q ·e2
q ·k2

)

e/1k/1
p·k1

]

J/ β1

I
{1,2}
2r =

1

4
J/

[(

p·e1
p·k1

−
q ·e1
q ·k1

)

k/2e/2
q ·k2

+

(

p·e2
p·k2

−
q ·e2
q ·k2

)

k/1e/1
q ·k1

]

β1

I
{1,2}
3 = −

1

8

(

e/1k/1
p·k1

J/
k/2e/2
q ·k2

+
e/2k/2
p·k2

J/
k/1e/1
q ·k1

)

startforβ2...
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Second order matrix elements. 23

I
{1,2}
4p =

1

8

1

p·k1 + p·k2 − k1 ·k2

(

e/1k/1e/2k/2
p·k1

+
e/2k/2e/1k/1
p·k2

)

J/

I
{1,2}
4q =

1

8
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k/2e/2k/1e/1
q ·k1

+
k/1e/1k/2e/2
q ·k2

)

I
{1,2}
5pA =

1

2
J/

k1 ·k2
p·k1 + p·k2 − k1 ·k2

(

p·e1
p·k1

−
k2 ·e1
k2 ·k1

)(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

)

I
{1,2}
5pB = −

1

2
J/

1

p·k1 + p·k2 − k1 ·k2

(

k1 ·e2k2 ·e1
k1 ·k2

− e1 ·e2

)

I
{1,2}
5qA =

1

2
J/

k1 ·k2
q ·k1 + q ·k2 − k1 ·k2

(

q ·e1
q ·k1

−
k2 ·e1
k2 ·k1

)(

q ·e2
q ·k2

−
k1 ·e2
k1 ·k2

)

I
{1,2}
5qB = −

1

2
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k1 ·e2k2 ·e1
k1 ·k2

− e1 ·e2

)

I
{1,2}
6B = −

1

4

k1 ·k2
p·k1 + p·k2 − k1 ·k2

[

+

(

p·e1
p·k1

−
k2 ·e1
k1 ·k2

)

e/2k/2
p·k2

+

(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

)

e/1k/1
p·k1

]

J/
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Second order matrix elements. 24

I
{1,2}
7B = −

1

4
J/

k1 ·k2
q ·k1 + q ·k2 − k1 ·k2

[

+

(

q ·e1
q ·k1

−
k2 ·e1
k1 ·k2

)

k/2e/2
q ·k2

+

(

q ·e2
q ·k2

−
k1 ·e2
k1 ·k2

)

k/1e/1
q ·k1

]

• for the exponentiation we have used separation into 3 parts only. It is crystal

clear, also in case of contributions with t-channel W , was very useful for KKMC,

• for PHOTOS kernel, parts I
{1,2}
3 , I

{1,2}
4p , I

{1,2}
4q studied separately as well.

• In fact older works on spin amplitdues were used E. Richter-Was

Z.Phys.C64:227-240,1994, Z.Phys.C61:323-340,1994.

• Other parts clearly visible but not used. Further separation of β2 terms possible ...

• IMPORTANT: higher order amplitudes could be constructed from parts of lower

order ones plus numerically rather insignificant corrections.

• IMPORTANT: Gauge cancellation at spin amplitudes level open path for interface

to elelectroweak effects through form-factors.
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- Case of electron neutrino, limits of QED 25

Z

ν
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e+

W

ν
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Figure 1: Double emission from electron
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- Case of electron neutrino, limits of QED 26

Z

ν

ν̄
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e+

W

ν
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e+

Figure 2: Single emission from electron and positron
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- Case of electron neutrino, limits of QED 27

W

W
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W

W

W
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Figure 3: Single and double emission from W
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- Case of electron neutrino, limits of QED 28

W

W

ν

ν̄

e−

e+

W

χ

W

ν

ν̄

e−

e+

Figure 4: Four boson coupling and coupling for unphysical χ field.

This χ is needed for “pure QED”...
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- Case of electron neutrino, limits of QED 29

The formula for the complete spin amplitude (Z exchange only) can be easily

re-ordered into consecutive contributions M1,M2,M3, ..., each gauge invariant:

M =M
Z
2{I}

(

p
λ
k1
σ1

k2
σ2

)

=M1 +M2 +M3 +M4 +M5 +M6 +M7

(9)

We can now write the complete spin amplitude, of W interactions, as a sum of even

more gauge invariant parts:

MW =M1 +M2 +M3 +M4 +M5 +M6 +M7+

M8 +M9 +M10 +M11,
(10)
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- Footnote: On extension, hint from QCD 30

Matrix Element: qq̄ → Jgg - part proportional to TATB fermion spinors dropped

I
(1,2)
lr =

(

p·e1
p·k1

−
k2 ·e1
k2 ·k1

−
e/1k/1
2p·k1

)

J/

(

k/2e/2
2q ·k2

+
k1 ·e2
k1 ·k2

−
q ·e2
q ·k2

)

I
(1,2)
ll =

p·k2
p·k1 + p·k2 − k1 ·k2

(

p·e1
p·k1

−
k2 ·e1
k2 ·k1

−
e/1k/1
2p·k1

)(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

−
e/2k/2
2p·k2

)

J/

I(1,2)rr = J/
q ·k1

q ·k1 + q ·k2 − k1 ·k2

(

q ·e1
q ·k1

−
k2 ·e1
k2 ·k1

−
k/1e/1
2q ·k1

)(

q ·e2
q ·k2

−
k1 ·e2
k1 ·k2

−
k/2e/2
2q ·k2

)

I(1,2)e = J/

(

1−
p·k2

p·k1 + p·k2 − k1 ·k2
−

q ·k1
q ·k1 + q ·k2 − k1 ·k2

)(

k1 ·e2
k1 ·k2

k2 ·e1
k1 ·k2

−
e1 ·e2
k1 ·k2

)

Remainder:

I(1,2)p = −
1

4

1

p·k1 + p·k2 − k1 ·k2

(

e/1k/1e/2k/2 − e/2k/2e/1k/1
k1 ·k2

)

J/

I(1,2)q = −
1

4
J/

1

q ·k1 + q ·k2 − k1 ·k2

(

k/1e/1k/2e/2 − k/2e/2k/1e/1
k1 ·k2

)
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- Footnote: On extension, hint from QCD 31

Matrix Element: qq̄ → Jgg - part proportional to TBTA fermion spinors dropped

I
(2,1)
lr =

(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

−
e/2k/2
2p·k2

)

J/

(

k/1e/1
2q ·k1

+
k2 ·e1
k2 ·k1

−
q ·e1
q ·k1

)

I
(2,1)
ll =

p·k1
p·k2 + p·k1 − k2 ·k1

(

p·e2
p·k2

−
k1 ·e2
k1 ·k2

−
e/2k/2
2p·k2

)(

p·e1
p·k1

−
k2 ·e1
k2 ·k1

−
e/1k/1
2p·k1

)

J/

I(2,1)rr = J/
q ·k2

q ·k2 + q ·k1 − k2 ·k1

(

q ·e2
q ·k2

−
k1 ·e2
k1 ·k2

−
k/2e/2
2q ·k2

)(

q ·e1
q ·k1

−
k2 ·e1
k2 ·k1

−
k/1e/1
2q ·k1

)

I(2,1)e = J/

(

1−
p·k1

p·k2 + p·k1 − k2 ·k1
−

q ·k2
q ·k2 + q ·k1 − k2 ·k1

)(

k2 ·e1
k2 ·k1

k1 ·e2
k2 ·k1

−
e2 ·e1
k2 ·k1

)

I(2,1)p = −
1

4

1

p·k2 + p·k1 − k2 ·k1

(

e/2k/2e/1k/1 − e/1k/1e/2k/2
k2 ·k1

)

J/

I(2,1)q = −
1

4
J/

1

q ·k2 + q ·k1 − k2 ·k1

(

k/2e/2k/1e/1 − k/1e/1k/2e/2
k2 ·k1

)
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- Footnote: On extension, hint from QCD 32

For QCD we have separation too; 12 gauge invariant parts

• Terms like
(

p·e1
p·k1

− k2 ·e1
k2 ·k1

− e/1k/1
2p·k1

)

A

once integrated over part of phase space give Atarelli-Parisi kernel

• Terms
q ·k1

q ·k1 + q ·k2 − k2 ·k1
B

if combined with phase space Jacobians can be used to redefine fermionic fields

from v(q) to v(q − k2) for example. Term of such type appeared already in scalar

QED (normalization of hadronic current).

• No applications for QCD developed ... But amplitudes properties predeced many

of QCD phenomenology tools.

• I should now go after virtual corrections, but this would be too much for today.
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- Future 33

Higher orders are installed in KKMC only.

1. That required work on spin amplitudes, it was not straightforward.

2. How to write fixed order amplitutes into parts, the ones which could have been

obtained from from lower orders and the one which could have been used for

higher order ones.

3. For e+e− → τ+τ−γγ + · · · that was already complicated, need to

separation into initial state and final state amplitudes appeared.

4. Fortunately interferences were easy to introduce.

5. for e+e− → ν̄eνeγγ + · · · things became more complicated. Expansion

around contact interaction was necessary to use and QED was not anymore

pure. Care about charged higgs ghosts and their contributions was necessary.

6. separation into amplitude parts was essential for electroweak non-QED effects

instalation.
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Plans, points 6, 7, 8 34

• Toward higher order 3 hard photon amplitudes If previous bullet OK, that is

feasible path. It must be training ground for NP.

• If my present NP attempt work that should not be of great problem.

• Toward higher order 3 loop QED amplitudes Seee Bennie Ward talks (e.g.

2410.09115) and Phys.Rev.D 99 (2019) 7, 076016

• Toward two loop electroweak corrections. Non QED Electroweak effects need

to be separated out and implemented in a form of effective couplings of some sort.

Matching with third order QED amplitudes and at least 4-5 explicit photons final

states.
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Outlook 35

• Solution need to work with exclusive exponentiation where final states of multiple

photons need to be present in predictions.

• At one loop level electroweak corrections were encapsulated into form factors

multiplying couplings.

• That was working well with exclusive exponentiation, no breaking of gauge

cancellations, because of the way how spin amplitudes for real emissions were

divided into parts.

• That was challenge already at 1 loop level. To preserve all field theory

constraints, analytic, dispersion relations ....

Finally solutions must be experimentalist friendly, they have many other things to

worry. Some cuts may appear at random. For example of dead detector cells.

Interaction between sub-communities essential.
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