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Motivations
‣ Electron-positron colliders are one of the main promising alternatives for the post-LHC era 
‣ Based on the latest projections from ESPPU, CEPC will be able to provide measurements with 

statistical errors of  or better𝒪(0.1%)
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Energy (GeV) Integrated 
luminosity (ab-1) % error

91 100 2 x 10-4

160 6.9 0.02
240 21.6 0.23
360 1 0.14

‣ Obtaining and interpreting such measurements will be an incredible task both from experimental 
and theoretical side. 



Higher order corrections
‣ Obtaining a theoretical prediction at this level of precision is a formidable task, which requires to have 

all theory systematics under control (e.g. input scheme, electron PDFs, higher order corrections, …)

‣ The state-of-the-art is NLO EW corrections, no NNLO EW calculations for  scattering is 
available in literature (only some Sudakov approximations).
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‣ The pure virtual contributions are usually the main bottleneck; 
‣ Can we use re-use the same technology we developed for NNLO QCD or NNLO QCD-EW 

corrections? Yes, especially result for Drell-Yan, however there some additional complications: 
- Gamma-5 
- Renormalisation 
- Feynman integrals

NNLO EW corrections
Pure Virtual

3

This talk!

/

)
·

↳



Evaluating Feynman integrals
‣ What we would like to compute are objects like this:

I(αi; sj, d) = ∫
l

∏
k=1

ddqk

iπd/2

1
𝒟α1

1 … 𝒟αn
n

d = 4 − 2ϵ

kinematic variables e.g. (p1 − q1)2 − m2 + iδ

‣ Using Integration by Parts (IBP) identities, we can express all the integrals in our problem in terms a 
smaller subset, the so-called Master Integrals.
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𝒪(105−7) Integrals
IBPs 𝒪(102−3) Master Integrals



How to compute the Master Integrals?
‣ Many techniques have been developed during the years, each with pros and cons. Here I will focus 

on the method of differential equations. 

‣ The idea is that by differentiating a master w.r.t. a kinematical invariants we obtain a first order linear 
differential equations, whose solution is the master integrals we are interested in. 

‣ By repeating the same process for every master integral we obtain a system of first order linear 
and homogeneous differential equations.

∂
∂sk

I(αi; sj, d) = ∑ scalar integrals = ∑master integrals

IBPs
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What are we looking for?
‣ So we just have to solve a system of first order differential equations… HOW? 
‣ Ideally, we would like: 

- A method easy to automate 

- A solution compact and easy to handle to allow for simplifications 

- A solution fast to evaluate to be implemented in a Monte-Carlo 
- To have high control on numerical precision

2Reℳ(2)ℳ(0)* = ∑
i

ci MIi 𝒪(10−10 − 1010)
𝒪(10 − 102)

Li2(x) + Li2 ( 1
x ) = −

π2

6
−

log2(−x)
2

Li2(x) + Li2 (1 − x) =
π2

6
+ log(x)log(1 − x)
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Semi-analytical solution
‣ A possibility could be to use a semi-analytical approach. The result is provided as a power series 

which can be easily evaluated in every point of the domain. 

‣ The method has been firstly implemented in the Mathematica package DiffExp for a real kinematic 
variable [F.Moriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510] 

‣ The main advantage is that all the calculations can be carried out analytically.  
‣ This method is quite easy to automate. Provided that we have infinite time and space, we could 

achieve arbitrary precision. Moreover, once we have the solution, it can be evaluated numerically in 
a negligible amount of time. 

‣ However, DiffExp cannot handle complex kinematic variables. 

= − γE +
1
6

p2 +
1
60

(p2)2 +
1

420
(p2)3 +

1
2520

(p2)4 +
1

13860
(p2)5 + …
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Complex Mass Scheme

130 140 150 160 170 180 190p
s [GeV]

°0.4

°0.2

0.0

0.2

0.4

0.6

Complex mass

Real mass

Real part

Imaginary part

‣ In EW calculations, we have to deal with intermediate unstable particles, such as W and Z. We have 
to use a gauge invariant definition of the mass, which is given by the complex-mass scheme; 

‣ For these particles we consider their mass to be complex-valued:

μ2
V = m2

V − iΓVmV

‣ The complex mass scheme regularises the divergences, 
while preserving gauge invariance.  

‣ However, it requires all the masses to be complex-valued, 
included the ones in the Feynman integrals. If we utilise 
adimensional variables, they become complex-valued as 
well:

1
s − m2

V + iδ

x =
s

m2
V

→
s

μ2
V 8
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Analytic continuation
‣ As we saw, the analytic continuation must be discussed in the entire complex plane 
‣ Power series have a limited radius of convergence.  
‣ The radius is determined by the position of the nearest singularity.
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‣ As we saw, the analytic continuation must be discussed in the entire complex plane 
‣ Power series have a limited radius of convergence.  
‣ The radius is determined by the position of the nearest singularity.
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‣ As we saw, the analytic continuation must be discussed in the entire complex plane 
‣ Power series have a limited radius of convergence.  
‣ The radius is determined by the position of the nearest singularity.
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*For simplicity, we are not showing all 
the intermediate circles. 



SeaSyde
[TA, R. Bonciani, S. Devoto, N.Rana,  


A.Vicini, arXiv:2205.03345]

‣ SeaSyde (Series Expansion Approach for SYstems of Differential Equations) 
is a general package for solving a system of differential equations using the 
series expansion approach; 

‣ Seasyde can handle complex kinematic variables by introducing an original 
algorithm for the analytic continuation in the complex plane, thus being able to 
handle complex internal masses; 

‣ SeaSyde can deal with arbitrary system of differential equations, covering also 
the case of elliptic integrals; 

‣ Other public packages implementing the series expansion technique are 
AMFlow, DiffExp, Line.

https: //github.com/TommasoArmadillo/SeaSyde
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IBPs 
(Kira+FireFly+Ratracer)
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Creating a numerical grid

Master 
Integrals

Differential Equations 
(In-house Mathematica 

package based of LiteRed 
and Kira)

Boundary Conditions 
(AMFlow)

Solving the system 
(SeaSyde)

Numerical grid

‣ The numerical grid is then implemented in a Monte-Carlo; 
‣ This approach is completely general and easy to automate, 

and can be applied, in principle, to any integral family.
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Feynman 
Integrals



Examples
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NCDY - 2L Mixed CCDY - 2L Mixed Z on shell - 2L EW NCDY - 2L EW NCDY - 2L EW

Example

Topology

Number of 
masters 36 56 51 104 126

Reduction

Kira 2.3 + Firefly

12 hours

(32 core)

16 hours

(32 core)

1 day

(32 core)

30 m 

(120 core + Ratracer)

8 h

(120 core + Ratracer)

AMFlow

1 point

50 min

(32 core)

75 min

(32 core)

6 h 45 m

(32 core)

1 hour

(120 core)

4 hours

(120 core)

Dimension 
equations 700 Kb 2.1 Mb / 45 Mb 350 Mb

SeaSyde

3250 points 5 days 10 days / ?? ??

↳↳



Conclusion

‣ The method of differential equations, and in particular its semi-analytical approach, is a powerful 
technique for evaluating Feynman integrals with multiple scales; 

‣ The main bottleneck is obtaining the IBP relations which are necessary to write down the differential 
equations; 

‣ We implemented the method in the publicly available Mathematica package SeaSyde, which can 
handle arbitrary internal complex masses; 

‣ The method has been already applied in the calculation of the mixed QCD-EW corrections to the 
Neutral and charged current Drell-Yan; 

‣ The techniques that we developed for NNLO Mixed corrections can be generalised to full 2-loop EW 
calculations.
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THANK YOU



SeaSyde [TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

A SIMPLE EXAMPLE

{ f′￼(x) + 1
x2 − 4x + 5

f(x) = 1
x + 2

f(0) = 1
fhom(x) = xr

∞

∑
k=0

ckxk

rc0 = 0
1
5 c0 + c1(r + 1) = 0
4

25 c0 + 1
5 c1 + c2(2 + r) = 0

11
125 c0 + 4

25 c1 + 1
5 c2 + c3(3 + r) = 0

…

fhom(x) = 5 − x −
3
10

x2 +
11
150

x3 + . . .



SeaSyde [TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

A SIMPLE EXAMPLE

{ f′￼(x) + 1
x2 − 4x + 5

f(x) = 1
x + 2

f(0) = 1

fpart(x) = fhom(x)∫
x

0
dx′￼

1
(x′￼+ 2)

f −1
hom(x′￼)

=
1
2

x −
7
40

x2 +
2
75

x3 + . . .

f(x) = c fhom(x) + fpart(x)

= 1 +
3
10

x −
47
200

x2 +
3

250
x3 + …



SeaSyde [TA, R. Bonciani, S. Devoto, N.Rana,  

A.Vicini, arXiv:2205.03345]

A SIMPLE EXAMPLE

{ f′￼(x) + 1
x2 − 4x + 5

f(x) = 1
x + 2

f(0) = 1

f(x) = c fhom(x) + fpart(x)

= 1 +
3
10

x −
47
200

x2 +
3

250
x3 + …

‣ This procedure can be generalised to systems of differential equations; 
‣ The method has been firstly implemented in the Mathematica package DiffExp for a real 

kinematic variable [F.Moriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510] 
‣ The great advantage of this approach is that we can reach arbitrary precision just by adding more 

terms in the serie



Precision
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‣ The precision is controlled by the number of terms we decide to keep in the series expansion; 
‣ The number of terms impact on the execution time. 



Taylor vs Logarithmic
‣ When moving along an horizontal line, the Feynman prescription plays an important role
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Analytic continuation
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‣ When moving along an horizontal line, the Feynman prescription plays an important role
1

s − m2
V + iδ



Creating a grid

s

t

BC

‣ This approach is completely general and 
easy to automate; 

‣ We have to solve a 56x56 system of 
differential equations w.r.t. to the Mandelstam 
variables s and t; 

‣ Since we are not putting the system in 
canonical form, these are usually quite 
complicated and the solution might require 
some time; 

‣ The computation of a grid with 3250 points 
required 3 weeks on 26 cores.∼
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