Higgs measurement with the CEPC Ref-TDR

Yanping Huang Institute of High Energy Physics, CAS

2025 European Edition of International Workshop on the Circular Electron-Positron Collider (CEPC), June 16th, 2025

Introduction

Design the sub-detectors with a detail engineering consideration
 Mechanical support structures, electronics, cabling etc
 Full simulation as realistic as possible
 All events are reconstructed using a sophisticated reconstruction chain
 Kalman-filter based track reconstruction and CyberPFA

Performance

- Higgs mass measurement via recoil mass
- $H \rightarrow \gamma \gamma \text{ measurement}$
- $H \rightarrow invisible measurement$

Outline

States Branching ratio measurement in hadronic final states

Physics Processes

- Higgs signal production: Higgsstrahlung ($e^+e^- \rightarrow ZH$), W-boson fusion ($e^+e^- \rightarrow \nu\nu H$), and Z-boson fusion $(e^+e^- \rightarrow e^+e^-H)$
- Background process: ۲

+
$$e^+e^- \rightarrow$$
 2-fermion: e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$ and $q\bar{q}$

 $(e^+e^- \rightarrow We\nu)$, Single Z production $(e^+e^- \rightarrow Zee)$

<i>i</i>	Process	Cross section @ 240 GeV	Cross section @ 360 GeV
Н	Higgs bo	son production, cross section	on in fb
	$e^+e^- \rightarrow ZH$	196.9	126.6
	$e^+e^- \rightarrow \nu_e \bar{\nu}_e H$	6.2	29.6
	$e^+e^- \rightarrow e^+e^-H$	0.5	2.8
L	Total Higgs	203.6	159.0
Ş	backgro	und processes, cross sectio	n in pb
	$e^+e^- \rightarrow e^+e^-(\gamma)$ (Bhabha)	930	325
/	$e^+e^- ightarrow q\bar{q}(\gamma)$	54.1	23.0
	$e^+e^- ightarrow \mu^+\mu^-(\gamma)$	5.30	2.4
	$e^+e^- \rightarrow \tau^+\tau^-(\gamma)$	4.75	2.1
	$e^+e^- \rightarrow t\bar{t}$	_	0.566
	$e^+e^- \to WW$	16.7	11.3
	$e^+e^- \rightarrow ZZ$	1.1	0.68
	$e^+e^- \rightarrow e^+e^-Z$	4.54	5.83
	$e^+e^- \rightarrow e^+\nu W^- + \text{c.c.}$	5.09	6.04
	WHIZARAL 9.5	R(<u>event generato</u>	′ <u>r for cross secti</u>

calculation and MC sample generation

0.26% Chinese Phys. C 44 123001 UL on BR(

UL on BR(0.26% * $e^+e^- \rightarrow 4$ -fermion: WW production ($e^+e^- \rightarrow W^+W^- \rightarrow 4f$), ZZ production ($e^+e^- \rightarrow ZZ_{4\overline{V}} + 4f$), Single W production UL on BR(0.26% Chinese Phys. C 44 123001

The free parameter of SM Higgs sector, related to fundamental property of elementary particles

- Even neglecting the statistical uncertainty, Δm_H @ LHC can only reach ~50 - 80 MeV
- In the lepton collider, m_H can be reconstructed with the recoil mass method

	mass precision (Δm_H)						
_	HL-LHC*	FCC-ee	ILC	CEPC	CLIC		
	$14 \mathrm{TeV}$	Baseline	Lumi upgrade	Baseline	Baseline		
	(3 ab^{-1})	(10 yrs)	(20 yrs)	(10 yrs)	(15 yrs)		
	$50 { m MeV}$	4 MeV	$15 { m MeV}$	5.9 MeV 32	2 MeV		

Mass measurement from CEPC Ref-TDR

Based on Higgs-strahlung process $e^+e^- \rightarrow ZH$ with $\sqrt{s} = 240$ GeV and $Z \rightarrow \mu^+\mu^-$

Mass measurement via the recoiling mass of $Z \rightarrow \mu \mu$ based on 20ab⁻¹:

Simple cut-base selections with the momentum of di-muon system

	Final States	$2 u 2\mu$	4μ	$2\mu 2e$	$2\mu 2q$	2μ	$\mu\mu$
	Events number	120000	40000	40000	80000	100000	4000
	Muon pair	31.4%	41.7%	6.7%	29.5%	88.2%	95.6
Background II-	$M_{\rm rec} \in [110, 150] {\rm GeV}$	5.8%	8.5%	1.1%	3.4%	42.0%	88.2
T I 🛉	$MEZ \in [0, 50]$ GeV	4.7%	5.9%	0.7%	3.0%	25.8%	87.1
	$E_{\mu\mu} \in [0, 110]$ GeV	4.1%	5.1%	0.7%	3.0%	25.3%	86.6
-	$p_{\mu\mu} \in [20, 60]$ GeV	2.7%	3.4%	0.4%	2.2%	6.5%	78.7
-	$m_{\mu\mu} \in [50, 120] \text{ GeV}$	2.6%	3.2%	0.1%	1.7%	6.5%	78.7
135 140 Mass [GeV]	$M_{ m rec}^2 = (\sqrt{s})$	$\bar{s} - E_{\mu}$	_ — <i>E</i>	$(E_{\mu^+})^2$	$-\leftertec{p_{\mu^{-}}} ight.$	$- + \vec{p_{\mu}}$	$+ ^{2}$

- ★ A high signal efficiency of ~80% with a clear Higgs signal on top of continuous background

Systematics estimation for Higgs mass measurement

$M_H = 125 GeV \pm 3.1 MeV(stat.) \pm 3.7 MeV(sys.)$ with the final precision of 4.8 MeV

Momentum scale uncertainty: 2MeV

• $\delta_{Z_{peak}} = \frac{\sigma_{p_T}}{\sqrt{N}}$, $\sigma_{p_T} = 2 \times 10^{-3}$ with $\sim 3 \times 10^7$ radiative return events @

+ Together with low-Lumi Z events, $\delta_{p_T} \sim 10^{-6}$ is easily visible from Z boson

Central-of-mass energy uncertainty: 2MeV

+ $\delta\sqrt{s}$: $\delta mH \sim 1$: 1

Beam Energy Spread uncertainty:

◆ Beam energy spread is ~0.17% @240GeV,

Initial state radiation: 1MeV

Branching ratio measurement in hadronic final states

Sig	$H \rightarrow b\overline{b}$	$H \rightarrow c \overline{c}$	H
predictions	57.7%	2.91%	

۲ $H \rightarrow s\bar{s}$ and $H \rightarrow WW^*/ZZ^*$ with W/Z hadronic decays ^{ttH}

Difficulty: distinguish with different Jet flavor and contamination among them

Higgs decays dominated with the hadronic final states: $H \rightarrow bb$, $H \rightarrow gg$, $H \rightarrow c\bar{c}$,

Selection for herein end to the set of the

e ⁺	, , ,
	·*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
e-	Z

					z		
Process	$H \rightarrow$	/	、 、	×		$H \rightarrow s\overline{s}$	$(ZZ)_{sl}$
Theo. N	781 e-(1)		e ⁺ (3)	e ⁻ (1)	e ⁻ (4)	60	11129800
Simu. N	495000	494500	371500	497250	497000	494250	26499801
Muon pair	በሩ በ0/	NG 70/	NG 70/	በሩ 70/	NG 70/	_ 96.6%	18.8%
Isolation	Category	Name	Decay	modes	Cross section/fb	- 90.5%	12.9%
Z-mass		$l\overline{l}$	$e^+e^ e^+e^ e^ e^ e^+e^ e^ e^+e^ e^ e$	$ \stackrel{\rightarrow}{\rightarrow} e^+ e^- \\ \stackrel{\rightarrow}{\rightarrow} \mu^+ \mu^- $	24992.21 4991.91	86.8%	9.1%
H-mass			$e^+e^ e^+e^ e^ e^+e^ e^ e^+e^ e^ e^+e^ e^ e^- $	$\rightarrow \tau^+ \tau^-$ $\rightarrow \nu_e \overline{\nu_e}$	4432.18 45390.79	- 86.5%	1.5%
$\cos \theta$	Two-fermion	$ u \overline{ u}$	$e^+e^ e^+e^ e^ e$	$\rightarrow \nu_{\mu} \bar{\nu}_{\mu}$ $\rightarrow \nu_{-} \bar{\nu}_{-}$	4416.30 4410.26	86.2%	1.5%
N _{charged}	background		e+e-	$\rightarrow u\bar{u}$	10110.43	- 86.1%	1.5%
			e^+e^-	$\rightarrow d\bar{d}$	10010.07 10102.75		
		qq	$e \cdot e \\ e^+ e^-$	$\rightarrow cc$ $\rightarrow s\bar{s}$	10102.75 9924.40		
			e^+e^-	$\rightarrow b\bar{b}$	9957.70	_	

	100 66	
eptons	403.66	
$V \rightarrow q\bar{q}$	2423.43	$the signature of 7H (7 - e^{i(1-1)})$
$V \rightarrow q\bar{q}$	2423.56	
e^+e^-	78.49	
$\mu^{+}\mu^{-}$	845.81	$10^6 = \sqrt{s} = 240 \text{ GeV}, 2$
$\rightarrow \nu \nu$	28.94	
$\tau^+\tau^-$	147.28	າ based on muon reconst §້ ^{10°} 📔 🛛 🚄
$\mu^{+}\mu^{-}$	43.42	Ö 10 ⁴ –
$\tau^{+}\tau^{-}$	14.57	
$\rightarrow d\bar{d}$	125.83	10 ³ မျို
$\rightarrow u\bar{u}$	190.21	officiency ~86% for differ 5
$\rightarrow d\bar{d}$	90.03	$\frac{10^{2}}{10^{2}}$
$\rightarrow u\bar{u}$	55.59	10
$\rightarrow \mu \nu_{\mu}$	436.70	
$\tau \tau \nu_{\tau}$	435.93	
$\rightarrow qq$	2612.62	\overline{a} ckaround from $(ZZ)_{a1}$
$\rightarrow ccss$	1607.55	$- \frac{1}{Sl} = \frac{1}{Sl$
$\rightarrow uudd$	1610.32	
$\mu\mu\nu_{\mu}\nu_{\mu}$	221.10	
$\tau \tau \nu_{\tau} \nu_{\tau}$	211.18	
$ee\nu_e\nu_e$	249.48	

Simultaneous measurement

- Multi-classification of different modes with Particle Transformer
 - Simultaneous measurement on signal and background from contamination
- Training variables based on the basic information of all tracks:
 - High correction rate for bb (~94%)

0.8

- 0.6

0.4

-0.2

 $^{\perp}0.0$

11

Measurement of Higgs decays with hadronic final states

- Good separation among different signal mode and background
- Based on simple counting and unfolding method,
 achieve ~0.3% precision for $H \rightarrow b\bar{b}$
- Taking into account 20% position uncertainty for tracking, ~0.1% systematic uncertainty for H → b b

More promising precision is expected with the MVA score shape information

→gg	$H \rightarrow ZZ^*$	$\mathbf{H} \rightarrow \mathbf{W} \mathbf{W}^*$	H→ss¯
57%	2.64%	21.5%	4.4×10^(-4)
.3%	7.8%	1.2%	98.8%
.7%	1.0%	0.9%	179.0%

Exps	Data	UL on BR(H→inv)	Publication
ATLAS	LHC Run 2	10%	<u>JHEP08(2022)104</u>
CMS	LHC Run 2	10%	<u>PRD 105 (2022)</u> <u>092007</u>
ILC	250, 350, 500 GeV; 250, 350, 500 fb-1	0.26%	arXiv:1909.07537
FCC- ee	240+365 GeV; 10.8+3 ab-1	3.9 σ on BR(ZZ→4v)	<u>Presentation</u>
CEPC	240 GeV, 5.6 ab-1	0.26%	<u>Chinese Phys. C 44</u> <u>123001</u>

• In SM, $H \rightarrow$ invisible is via $H \rightarrow ZZ^* \rightarrow 4\nu$ with Br of 0.106%

• Focus on the ZH, $Z \rightarrow \mu^+ \mu^- / e^+ e^- / q\bar{q}$

◆ Z-missing mass resolutions: 0.23%, 0.31%, 5.1-5.9%

Low signal/background ratio with simple selection

$H \rightarrow$ invisible measurement

Exps	Data	UL on BR(H→inv)	Publication
ATLAS	LHC Run 2	10%	<u>JHEP08(2022)104</u>
CMS	LHC Run 2	10%	<u>PRD 105 (2022)</u> <u>092007</u>
ILC	250, 350, 500 GeV; 250, 350, 500 fb-1	0.26%	<u>arXiv:1909.07537</u>
FCC- ee	240+365 GeV; 10.8+3 ab-1	3.9 σ on BR(ZZ→4v)	<u>Presentation</u>
CEPC	240 GeV, 5.6 ab-1	0.26%	<u>Chinese Phys. C 44</u> <u>123001</u>

* In SM, $H \rightarrow$ invisible is via $H \rightarrow ZZ^* \rightarrow 4\nu$ with Br of 0.106%

• Focus on the ZH, $Z \rightarrow \mu^+ \mu^- / e^+ e^- / q \bar{q}$

◆ Z-missing mass resolutions: 0.23%, 0.31%, 5.1-5.9%

Low signal/background ratio with simple selection

ML-based discriminant

$H \rightarrow invisible results$

	5.6 ab ⁻¹				20 ab^{-1}		
channel	unc	CEPC-v4	significance	UL (%)	unc	significance	UL (%)
2μ	+84.3% -80.4%	222%	1.25 σ	0.179%	$^{+44.1\%}_{-43.1\%}$	2.36 σ	0.093%
2e	+124.4% -100.0%	428%	0.86σ	0.266%	+64.9% -62.6%	1.62σ	0.137%
2q	+57.8% -57.6%	90%	1.74σ	0.121%	+30.6% -30.5%	3.28σ	0.064%
combine	+44.3% -43.7%	82%	2.31 σ	0.092%	$^{+23.4\%}_{-23.2\%}$	4.36 σ	0.049%

Two scenarios: + SM $H \rightarrow$ invisible as a signal: expected uncertainty and statistical significance • With 20ab-1, it reaches 4.36 σ , close to discovery level

+ BSM $H \rightarrow$ invisible as a signal, while the SM one as a background: expected upper limits

17

Conclusion

- Based on TDR-Ref, some physics benchmarks are achieved:
 - Higgs mass measurement with the precision of 4.8MeV
 - Simultaneous measurement on Higgs decays to hadronic final state with the precision of ~0.4% for $H \rightarrow b\bar{b}$
 - + $H \rightarrow \gamma \gamma$ branch ratio measurement with sensitivity of ~3.2%
 - With 20ab-1, Higgs to invisible decay reaches 4.36 σ , close to discovery level
- More promising and comprehensive results are expected with advanced technics and detail consideration

