Status of Higgs Theory Predictions at etercoliders

Jürgen R. Reuter

International Workshop on the **Circular Electron Positron Collider 2025 European Edition**

Barcelona June 16-19 2025

Ш Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

J. R. Reuter, DESY

Higgs sector most peculiar phase transition in the universe!

Cornerstone of all "Higgs factory" programs!

Potentially best path towards the "undiscovered country"

J. R. Reuter, DESY

J. R. Reuter, DESY

Higgs sector most peculiar phase transition in the universe!

Cornerstone of all "Higgs factory" programs!

Potentially best path towards the "undiscovered country"

J. R. Reuter, DESY

Higgs sector most peculiar phase transition in the universe!

Cornerstone of all "Higgs factory" programs!

Potentially best path towards the "undiscovered country"

Higgs Theory precision landscape

J. R. Reuter, DESY

• LHC HXSWG / LHC EWWG / LHC EFTWG:

1101.0593, 1201.3084, 1307.1347, 1610.07922

- LCGenG: focus on complete SM samples
- FCC-ee theory effort: CERN workshops '18-'22: 1906.05379
- US Snowmass CSS 2021 Reports:

2203.11110, 2209.08078, 2209.14872 etc.

• ECFA HTEF WS: ECFA HTEF Report: https://cds.cern.ch/record/2920434/ Simulation/MCs 11/21 https://indico.cern.ch/event/1078675/ Precision Calc. 05/22 https://indico.cern.ch/event/1140580/

Higgs Theory Precision Landscape

Intrinsic uncertainties:

missing higher-order calculations of observables

Parametric uncertainties:

imperfect knowledge/data extraction of SM input

SM Higgs precision predictions: analytic calculations & tools

SM production processes, bkgds., event selection eff. MC tools

Fully differential MC simulations:

NLO QCD/EW matched to QCD/QED showers

Estimation of efficiencies and systematics:

Simulation of full signal + backgrounds

J. R. Reuter, DESY

BSM Higgs precision predictions: analytic calculations & tools

Calculations in BSM Higgs models:

Higgs sector calculations towards full predictions

BSM Higgs as SM Higgs deviations:

Framework of SMEFT/HEFT, needed at NLO EW

CEPC Workshop 2025, Barcelona, 16.6.2025

4 / 18

Theoretical Uncertainties

Comparison of EWPOs / HPOs with SM to probe new physics \rightarrow multi-loop corrections in full SM

- Extraction of EWPOs / HPOs (pseudo-observables) from real observables \rightarrow backgrounds (in full SM), QED/QCD, MC tools
- Other" eletroweak parameters ("input" parameters) $\rightarrow m_{\rm t}, \alpha_{\rm s},$ etc. extracted from other processes
- Strip loop amps. of group theory / mass ratios / multiplicities / couplings. $\rightarrow O(1)$
- Extrapolate to higher orders from geometric series (beware of renormalons)
- Scale dependence for missing higher order corrections (QCD, MS, less useful for EW)
- Compare differences in renormalisation schemes (e.g. On-Shell vs. MS)

J. R. Reuter, DESY

Higgs Precision Calculations

Higgs: theory situation

Parametric Higgs decay uncertainties, Lepage/McKenzie/Peskin, 1404.0319

Full NLO EW exists for $ee \rightarrow ZH$, Denner/Dittmaier/Roth/Weber, hep-ph/0311089 $ee \rightarrow \nu\nu H$ Belanger/Boudjema/Fujimoto/Ishikawa/Kaneki/Kato/Shimizu, hep-ph/0212261

J. R. Reuter, DESY

	Partial width	QCD	electroweak	total
- U - I	$H \to b\bar{b}/c\bar{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%
olisned	$H\to \tau^+\tau^-/\mu^+\mu^-$	_	< 0.3%	< 0.3%
al results	$H \to gg$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$
	$H \to \gamma \gamma$	< 0.1%	< 1%	$<\!\!1\%$
	$H \to Z\gamma$	$\lesssim 0.1\%$	$\sim 5\%$	$\sim 5\%$
ins)	$H \to WW/ZZ \to 4\mathrm{f}$	< 0.5%	< 0.3%	$\sim 0.5\%$

Intrinsic Higgs decay uncertainties, LHCHXSWG

decay	para. m_q	para. α_s	para. M_H
$H \to b\bar{b}$	1.4%	0.4%	_
$H \to c \bar c$	4.0%	0.4%	—
$H\to \tau^+\tau^-$	_	—	—
$H \to \mu^+ \mu^-$	_	—	—
$H \to gg$	< 0.2%	3.7%	_
$H\to\gamma\gamma$	< 0.2%	—	—
$H \to Z \gamma$	_	_	2.1%
$H \to WW$		_	2.6%
$H \to Z Z$	_	—	3.0%

5-10% NLO corrections

Higgs Precision Calculations

Parametric Higgs decay uncertainties, Lepage/McKenzie/Peskin, 1404.0319

- Full NLO EW exists for $ee \rightarrow ZH$, Denner/Dittmaier/Roth/Weber, hep-ph/0311089 Belanger/Boudjema/Fujimoto/Ishikawa/Kaneki/Kato/Shimizu, hep-ph/0212261 $ee \rightarrow \nu\nu H$
 - Solution Full 2-loop for $ee \rightarrow ZH$ available Chen/Guan/He/Li/Liu/Ma, 2209.14953
 - Missing NNLO EW corrections $[2\rightarrow 2, 2\rightarrow 3]$: intrinsic uncertainty 1% (a)
 - Compared to experimental uncertainty of 0.5-1.0%
 - J. R. Reuter, DESY

C	r	У	

Partial width	$\rm QCD$	electroweak	total
$H \to b\bar{b}/c\bar{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%
$H \to \tau^+ \tau^- / \mu^+ \mu^-$	—	< 0.3%	< 0.3%
$H \to gg$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$
$H \to \gamma \gamma$	< 0.1%	< 1%	$<\!\!1\%$
$H \to Z\gamma$	$\lesssim 0.1\%$	$\sim 5\%$	$\sim 5\%$
$H \to WW/ZZ \to 4 {\rm f}$	< 0.5%	< 0.3%	$\sim 0.5\%$

Intrinsic Higgs decay uncertainties, LHCHXSWG

decay	para. m_q	para. α_s	para. M_H
$H \to b\bar{b}$	1.4%	0.4%	_
$H\to c\bar{c}$	4.0%	0.4%	—
$H\to \tau^+\tau^-$	_	—	—
$H \to \mu^+ \mu^-$	_	—	—
$H \to gg$	< 0.2%	3.7%	—
$H\to\gamma\gamma$	< 0.2%	—	_
$H \to Z \gamma$			2.1%
$H \to WW$	_	_	2.6%
$H \to Z Z$		_	3.0%

5-10% NLO corrections

Higgs Branching Ratios

ILC/CEPC/FCC-ee projections

Higgs decays	red = updated compared to Snowmass 21/22					
	future projection (conservative)			future projection (agressive)		
	th.err. estimate	additional orders available	th.err. estimate	additional orders available	comments	
bb/cc	0.2	a^2+a*as	0.1	as^5	unc. dominated by N3LO EW-QCD	
ττ/μμ	<0.1	a^2+a*as	0.05 ??	af^2+af*as	what is dominant remaini error? how to estimate?	
WW/ZZ	0.3	as^2				
gg	1.0	as^4	0.5	as^5+a*as	unc. dominated by a^2 (3	
уу						
Zγ						

Notation:	
a = \alpha_ew	
as = \alpha_s	
at = y_t^2/(4 pi)	(ew. corr. enha
af = \alpha_ew with closed	fermion loop

J. R. Reuter, DESY

A. Freitas, Physics Preparatory Group, June 2025

Parametric uncertainties

Parametric uncertainties

SM predictions for Higgs decays need measured input parameters

Reviews: 1906.05379, 2012.11642

Numerical inpact of input parameter uncertainties:

 δm

 M_{W} [MeV] sin² θ_{eff}^{ℓ} [10⁻⁵] Γ_{Z} [MeV] $\Gamma[h \rightarrow gg]$ [%]

To keep impact subdo $\delta m_{
m t} < 50~{
m MeV}$ $\delta lpha_{
m s} < 5 imes 10^{-5}$ $\delta (\Delta lpha_{
m s}) < 10^{-5}$

J. R. Reuter, DESY

$n_{\rm t}=0.5~{ m GeV}$	$\delta \alpha_{\rm S} = 0.001$	$\delta(\Delta \alpha) = 10^{-4}$	FCC-ee exp.
3	0.7	2	0.4
1.5	0.3	3.5	0.4
0.1	0.5	0.1	0.025
<0.2	3	—	1.8

To keep impact subdominant for FCC-ee/CEPC precision studies, would need:

Parametric uncertainties

Parametric uncertainties

- $\mathcal{O}(\alpha_t \alpha_s^2), \mathcal{O}(\alpha_t^2 \alpha_s), \mathcal{O}(\alpha_t \alpha_s^3)$

$$(\alpha_{t} \equiv \frac{y_{t}^{2}}{4\pi})$$

J. R. Reuter, DESY

A. Freitas, 1604.00406

• Complete NNLO corrections (Δr , $\sin^2 \theta_{eff}^{\ell}$) Freitas, Hollik, Walter, Weiglein '00 Awramik, Czakon '02; Onishchenko, Veretin '02 Awramik, Czakon, Freitas, Weiglein '04; Awramik, Czakon, Freitas '06 Hollik, Meier, Uccirati '05,07; Degrassi, Gambino, Giardino '14

 "Fermionic" NNLO corrections (g_{Vf}, g_{Af}) Czarnecki, Kühn '96 Harlander, Seidensticker, Steinhauser '98 Freitas '13,14

• Partial 3/4-loop corrections to ρ/T -parameter Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05; Chetyrkin et al. '06 Boughezal, Czakon '06

Higgs production channels

J. R. Reuter, DESY

Prefactor estimates: [del(x) = relative cross-section correction of O(x)] del(a^3) = del(a^2) * a/pi*nf, where a = g^2/(4*pi), nf = 12 = # of charged fermion species del(a^2*as) = del(a^2) * as/pi*2*CF (heuristic factor 2 to account for diagram combinatorics) del(a*as^2) = del(a*as) * as/pi*2*CA (heuristic factor 2 to account for diagram combinatorics)

updated compared to Snowmass 21/22				
future projection (conservative)				
. estimate	additional orders available	comments		
<0.1	a^2	estimate based on prefactors (see below)		

A. Freitas, Physics Preparatory Group, June 2025

The Higgsstrahlung process

- Higgsstrahlung main Higgs production mechanismus below ca. 500 GeV
- Need for NNLO corrections: O(1%) precision and better
- Expected experimental precision on cross section: CEPC: 0.5%
- On-shell Higgsstrahlung (SM) available at NNLO EW Freitas/Song(/Xie), 2101.00308, 2209.07612, 2305.16547

J. R. Reuter, DESY

[1811.10545], FCC-ee: 0.4% [EPJ ST 228(2019) 261], LCF: 0.62% [2503.19983]

	$\alpha(0)$ scheme	G_{μ} scheme
σ^{LO} [fb]	223.14	239.64
$\sigma^{\rm NLO}$ [fb]	229.78	232.46
$\sigma^{\text{NNLO,EW} \times \text{QCD}}$ [fb]	232.21	233.29

Gong ea., 2016; Chen/Feng/Jia/Sang, 2018

Semi-numerical approach for EW 2-loop problems

Virtual corrections — (N)NNLO master integrals

DESY.

Current multi-loop frontiers: G. Heinrich, DESY Theory Workshop talk, 09/2022 massless 5-point functions massless 5-point functions, 1 off-shell line $p^2 \neq 0$

- NNLO EW highly complicated: many mass scales (m_Z, m_W, m_H, m_t)
- Tensor & IntegrationByParts reduction to master integrals
- Analytic solution via diff.eq. (DE):
- (Semi-)Numerical solution of DE: DiffExp, AMFlow
- For NNLO EW: importance of viable γ_5 scheme

Abreu, Bonciani, Duhr, Gluza, Henn, Hirschi, Kossower, Liu, Ma, von Manteuffel, Panzer, Pezaro, Sotnikov, Stöckinger, Vicini, Weinzierl, Weißwange, Zoller amm.

No analytic 2-loop w/ mass. propagators yet: unknown generalized functions (beyond HPLs)

• Combination of numerical and analytical methods needed

W.i.p.: automation of 2-loop virtuals, Openloops2loop, Griffin, McMule

Fire6, FireFly, LiteRed, FiniteFlow, Caravel

The Higgsstrahlung process @ NNLO EW

Scheme dependence:

	$\alpha(0)$ scheme	G_{μ} scheme
σ^{LO} [fb]	223.14	239.64
$\sigma^{\rm NLO}$ [fb]	229.78	232.46
$\sigma^{\text{NNLO,EW} \times \text{QCD}}$ [fb]	232.21	233.29
$\sigma^{\text{NNLO,EW}}$ [fb]	233.86	233.98

J. R. Reuter, DESY

Very good agreement between the two schemes

a(0) scheme:

$$\alpha = \frac{e^2}{4\pi}$$

$$g = \frac{e}{\sin \theta_W} = \frac{e}{\sqrt{1 - m_W^2/m_Z^2}}$$

$$G_\mu \text{ scheme:}$$

$$\frac{G_\mu}{\sqrt{2}} = \frac{g^2}{8m_W^2}(1 + \Delta r).$$

- Fermionic 2-loop corrections dominant
- Scheme-dependence massively reduced
- Numerical precision limited, sufficient for applications
- Main theory uncertainty: missing bosonic corrections

Difference btw. $\alpha(0)$ and G_{μ} schemes	0.12 fb (0.05%)
$ \mathcal{M}_{(1,\mathrm{bos})} ^2$	0.65 fb (0.3%)

↔ Talk Alan Price

NLO QCD \oplus EW automated: Sherpa, MG5, Whizard

Fixed-order N(N)LO, resummation and matching in MCs =

Need $e^+e^- \rightarrow 2f$, 3f, 4f, 5f, 6f @ NLO QCD $\oplus EW$

(arbitrary cuts, fully differential)

J. R. Reuter, DESY

SM Higgs (here with polarization)

$e^+e^- \to HZ$	MCSANCee [199]		WHIZARD+RECOLA			$\sigma^{ m sig}$
$\sqrt{s} [\text{GeV}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}$ [fb]	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$\delta_{ m EW}~[\%]$	(LO/NLO)
250	225.59(1)	206.77(1)	225.60(1)	207.0(1)	-8.25	0.4/2.1
500	53.74(1)	62.42(1)	53.74(3)	62.41(2)	+16.14	0.2/0.3
1000	12.05(1)	14.56(1)	12.0549(6)	14.57(1)	+20.84	0.5/0.5

↔ Talk Alan Price

NLO QCD \oplus EW automated: Sherpa, MG5, Whizard

Fixed-order N(N)LO, resummation and matching in MCs =

Need $e^+e^- \rightarrow 2f$, 3f, 4f, 5f, 6f @ NLO QCD $\oplus EW$

J. R. Reuter, DESY

SM Higgs (here with polarization)

$e^+e^- \to HZ$	MCSANCee $[199]$		WHI	$\sigma^{ m sig}$		
$\sqrt{s} \; [\text{GeV}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$\delta_{ m EW}~[\%]$	(LO/NLO)
250	225.59(1)	206.77(1)	225.60(1)	207.0(1)	-8.25	0.4/2.1
500	53.74(1)	62.42(1)	53.74(3)	62.41(2)	+16.14	0.2/0.3
1000	12.05(1)	14.56(1)	12.0549(6)	14.57(1)	+20.84	0.5/0.5
	-		-	-	-	

$\mu^+\mu^- \to X$	$\sqrt{s} = 3$ TeV	$\sigma_{ m LO}^{ m incl}$ [fb]	$\sigma_{\rm NLO}^{\rm incl} [{\rm fb}]$	$\delta_{\rm F}$
W^+W^-		$4.6591(2) \cdot 10^2$	$4.847(7) \cdot 10^2$	+
ZZ		$2.5988(1)\cdot 10^{1}$	$2.656(2) \cdot 10^{1}$	+2
HZ		$1.3719(1)\cdot 10^{0}$	$1.3512(5)\cdot 10^{0}$	
HH		$1.60216(7)\cdot 10^{-7}$	$5.66(1)\cdot 10^{-7}$ *	

↔ Talk Alan Price

NLO QCD \oplus EW automated: Sherpa, MG5, Whizard

Fixed-order N(N)LO, resummation and matching in MCs =

Need $e^+e^- \rightarrow 2f$, 3f, 4f, 5f, 6f @ NLO QCD $\oplus EW$

(unresolved) real radiation

J. R. Reuter, DESY

SM Higgs (here with polarization)

$e^+e^- \to HZ$	MCSANCee $[199]$		WHIZARD+RECOLA			$\sigma^{ m sig}$
$\sqrt{s} \; [\text{GeV}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$\delta_{ m EW}~[\%]$	(LO/NLO)
250	225.59(1)	206.77(1)	225.60(1)	207.0(1)	-8.25	0.4/2.1
500	53.74(1)	62.42(1)	53.74(3)	62.41(2)	+16.14	0.2/0.3
1000	12.05(1)	14.56(1)	12.0549(6)	14.57(1)	+20.84	0.5/0.5
	-		-	-	-	

Bredt/Kilian/JRR/Stienemeier, 2208.09438

$\mu^+\mu^- \to X, \sqrt{s} = 3 \text{ TeV}$	$\sigma_{ m LO}^{ m incl} ~[{ m fb}]$	$\sigma_{\rm NLO}^{\rm incl}$ [fb]	δ_{E}
W^+W^-	$4.6591(2) \cdot 10^2$	$4.847(7) \cdot 10^2$	+
ZZ	$2.5988(1)\cdot 10^{1}$	$2.656(2)\cdot 10^{1}$	+2
HZ	$1.3719(1)\cdot 10^{0}$	$1.3512(5)\cdot 10^{0}$	1
HH	$1.60216(7)\cdot 10^{-7}$	$5.66(1) \cdot 10^{-7}$ *	

Validation against: Denner/Dittmaier/Roth/Weber, hep-ph/0301189

process	cross section $@$ LO [fb]	NLO EW [fb]
$e^+e^- \to H + \nu_e \bar{\nu}_e$	84.9752	75.61601 ± 0.26
$e^+e^- \rightarrow H + \nu_l \bar{\nu}_l$ with $l = \mu, \tau$	3.9246278	4.396657 ± 0.0058
$e^+e^- \rightarrow H + \nu \bar{\nu}$ (with OpenLoops)	92.824	84.409 ± 0.26
$e^+e^- \rightarrow H + \nu \bar{\nu}$ (with Recola)	92.72 ± 0.11	$84.82^{*}\pm 0.13$
$e^+e^- \rightarrow H + \nu \bar{\nu}$ in Ref. [3]	92.64 ± 0.002	85.01 ± 0.08

Note: G_{μ} scheme, $m_H = 115$ GeV, $\sqrt{s} = 500$ GeV

↔ Talk Alan Price

NLO QCD \oplus EW automated: Sherpa, MG5, Whizard

Fixed-order N(N)LO, resummation and matching in MCs =

Need $e^+e^- \rightarrow 2f$, 3f, 4f, 5f, 6f @ NLO QCD $\oplus EW$

(unresolved) real radiation

J. R. Reuter, DESY

SM Higgs (here with polarization)

$e^+e^- \to HZ$	MCSANCee [199]		WHIZARD+RECOLA			$\sigma^{ m sig}$
$\sqrt{s} \; [\text{GeV}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}$ [fb]	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$\delta_{ m EW}~[\%]$	(LO/NLO)
250	225.59(1)	206.77(1)	225.60(1)	207.0(1)	-8.25	0.4/2.1
500	53.74(1)	62.42(1)	53.74(3)	62.41(2)	+16.14	0.2/0.3
1000	12.05(1)	14.56(1)	12.0549(6)	14.57(1)	+20.84	0.5/0.5

Bredt/Kilian/JRR/Stienemeier, 2208.09438

$\mu^+\mu^- \to X, \sqrt{s} = 3 \text{ TeV}$	$\sigma_{ m LO}^{ m incl} ~[{ m fb}]$	$\sigma_{\rm NLO}^{\rm incl} \; [{\rm fb}]$	$\delta_{ m E}$
W^+W^-	$4.6591(2) \cdot 10^2$	$4.847(7) \cdot 10^2$	+
ZZ	$2.5988(1) \cdot 10^{1}$	$2.656(2)\cdot 10^{1}$	+2
HZ	$1.3719(1) \cdot 10^{0}$	$1.3512(5)\cdot 10^{0}$	1
HH	$1.60216(7) \cdot 10^{-7}$	$5.66(1) \cdot 10^{-7}$ *	

2HDM, $e^+e^- \rightarrow H\tau^+\tau^-$, Bredt/Höfer/Iguro/Ma/JRR/Zhang, w.i.p.

parameters	LO [fb]	NLO EW [fb]	correction [%]
\mathbf{SM}	4.028(5)	4.152(13)	3.10 ± 0.29
$\tan(\beta) = 1$ for type-II	4.022(5)	4.164(12)	3.52 ± 0.26
$\tan(\beta) = 30$ for type-II	4.022(5)	4.084(11)	1.54 ± 0.25
$\tan(\beta)=0.5$ for type-II	4.022(5)	4.185(12)	4.05 ± 0.26
$\tan(\beta) = 1$ for type-X	4.022(5)	4.163(12)	3.52 ± 0.26
$\tan(\beta) = 40$ for type-X	4.022(5)	4.081(12)	1.47 ± 0.25

- (Only?) trace towards EW symmetry breaking
- Still very large deviations from SM possible (300-400%)
- Calculation of triple Higgs form factor ("coupling") in specific models
- NLO corrections very important to determine parameter points in model space
- Automated calculations possible based on UFO models
- Renormalization done automatically (non-trivial!)
- Connected also to additional Higgs bosons

J. R. Reuter, DESY

Bahl/Braathen/Gabelmann/Kanemura/ Mühlleitner/Radshenko/Weiglein amm.

Braathen ea.; 2305.03015

- (Only?) trace towards EW symmetry breaking
- Still very large deviations from SM possible (300-400%)
- Calculation of triple Higgs form factor ("coupling") in specific models
- NLO corrections very important to determine parameter points in model space
- Automated calculations possible based on UFO models
- Renormalization done automatically (non-trivial!)
- Connected also to additional Higgs bosons

J. R. Reuter, DESY

Bahl/Braathen/Gabelmann/Kanemura/ Mühlleitner/Radshenko/Weiglein amm.

Braathen ea.; 2305.03015

Solid lines: - scalars, - fermions, - gauge/vector bosons, - ghosts

- Renormalization done automatically (non-trivial!)

J. R. Reuter, DESY

J. R. Reuter, DESY

Model-agnostic BSM search

J. R. Reuter, DESY

Model-agnostic BSM search

Asteriadis/Dawson/Giardino/Szafron, 2409.11466, 2406.03557; Dawson/Giardino/Forslund. 2411.08952

At tree level, depends on

 $C_{\phi D}, \ C_{\phi \Box}, \ C_{\phi e}, \ C^{1}_{\phi l}, \ C^{3}_{\phi l}, \ C_{ll}$

Linear rescaling of ZZH vertex

eeZ vertex

4-pt vertex, eeZ vertex

J. R. Reuter, DESY

Relationship between v and G_F

- **MID EW: contains 70 SMEFT operators**
- On-shell renormalization for W, Z, \overline{MS} for Wilson coefficients
- FeynArts, FeynCalc, Package-X
- Wilson coefficients at order $C_i/(\Lambda^2 16\pi^2)$

J. R. Reuter, DESY

Asteriadis/Dawson/Giardino/Szafron, 2409.11466, 2406.03557; Dawson/Giardino/Forslund. 2411.08952

Relationship between v and G_F

- **MID EW: contains 70 SMEFT operators**
- On-shell renormalization for W, Z, \overline{MS} for Wilson coefficients
- FeynArts, FeynCalc, Package-X
- Wilson coeffcients at order $C_i/(\Lambda^2 16\pi^2)$

J. R. Reuter, DESY

Asteriadis/Dawson/Giardino/Szafron, 2409.11466, 2406.03557; Dawson/Giardino/Forslund. 2411.08952

Relationship between v and G_F

- **MID EW: contains 70 SMEFT operators**
- On-shell renormalization for W,Z, \overline{MS} for Wilson coefficients
- FeynArts, FeynCalc, Package-X
- Wilson coefficients at order $C_i/(\Lambda^2 16\pi^2)$

J. R. Reuter, DESY

Asteriadis/Dawson/Giardino/Szafron, 2409.11466, 2406.03557; Dawson/Giardino/Forslund. 2411.08952

Relationship between v and G_F

Contributes to ZZH vertex

- **MID EW:** contains 70 SMEFT operators
- On-shell renormalization for W,Z, \overline{MS} for Wilson coefficients
- FeynArts, FeynCalc, Package-X
- Wilson coefficients at order $C_i/(\Lambda^2 16\pi^2)$
- Complete NLO EW SMEFT for $e^+e^- \rightarrow HZ$
- NLO little impact on single parameter fits
- Large correlations of operators that appear only at NLO

J. R. Reuter, DESY

Asteriadis/Dawson/Giardino/Szafron, 2409.11466, 2406.03557; Dawson/Giardino/Forslund. 2411.08952

Relationship between v and G_F

Contributes to ZZH vertex

Summary & Conclusions

- Spectacular experimental Higgs (+EW) precision program in e⁺e⁻ collisions
- Most measurements allow per-cent down to (sub-) per-mil level precision G
- Hard theoretical work needed to match this precision!
- NNLO (2-loop) EW slowly getting closer; still a long way to go for full processes
- Higgs precision program needs: production processes NNLO, decays @ min. 3-loop
- Massive 2- & 3-loop diagrams: PDE, sector decomposition, Mellin methods etc.
- Calculations in EFTs (SMEFT/HEFT) at least at the NLO EW level needed; cross correlations
- Calculations in specific models (extended Higgs sectors, MSSM, etc.): scheme dependence
- Focus on specific "effects", e.g. trilinear Higgs coupling; full NLO model calculations starting
- "Exclusive frontier": $2 \rightarrow 4, 6, (8)$ NLO SM, NLO e[±] PDFs, QED showers/matching
- Tools, tools, tools: community must value and support codes (loops, MC, fits)

J. R. Reuter, DESY

Higgs Precision is reconciling Loops and Legs

J. R. Reuter, DESY

Getty Villa, Pacific Palisades, Etruscan, 525 BC

Higgs Precision is reconciling Loops and Legs

DESY.

J. R. Reuter, DESY

Accuracy and Precision

Accurate Not Precise

Not Accurate Not Precise

sciencenotes.org

J. R. Reuter, DESY

Electroweak Precision Physics

$$\begin{split} \sigma_{\rm had}^{0} &= \sum_{q} \sigma_{q}(M_{Z}^{2}), \\ \Gamma_{Z} &= \sum_{f} \Gamma[Z \to f\bar{f}], \qquad (\text{from a fit to } \sigma_{f}(s) \text{ at various values of} \\ R_{\ell} &= \left[\sum_{q} \sigma_{q}(M_{Z}^{2})\right] / \sigma_{\ell}(M_{Z}^{2}), \qquad (\ell = e, \mu, \tau) \\ R_{q} &= \sigma_{q}(M_{Z}^{2}) / \left[\sum_{q} \sigma_{q}(M_{Z}^{2})\right], \qquad (q = b, c) \\ A_{\rm FB}^{f} &= \frac{\sigma_{f}(\theta < \frac{\pi}{2}) - \sigma_{f}(\theta > \frac{\pi}{2})}{\sigma_{f}(\theta < \frac{\pi}{2}) + \sigma_{f}(\theta > \frac{\pi}{2})} \equiv \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f}, \\ A_{\rm LR}^{f} &= \frac{\sigma_{f}(P_{e} < 0) - \sigma_{f}(P_{e} > 0)}{\sigma_{f}(P_{e} < 0) + \sigma_{f}(P_{e} > 0)} \equiv \mathcal{A}_{e} |P_{e}|. \end{split}$$

$$\mathcal{A}_f = \frac{1 - 4|Q_f| \sin^2 \theta_{\text{eff}}^f}{1 - 4|Q_f| \sin^2 \theta_{\text{eff}}^f + 8(Q_f \sin^2 \theta_{\text{eff}}^f)^2}.$$

Theoretical uncertainties for WW threshold don't match exp. precision: 3 GeV uncertainty needed: full 2-loop corr. $e^+e^- \rightarrow W^+W^-$ and $W \rightarrow ff$, ISR & matching (later); 3-loop Coulomb-enhanced

Recent efforts in $e^+e^- \rightarrow f\bar{f}$ (2-loop, logarithmic corr.)

Blümlein/de Freitas/Raab/Schönwald, 1901.08018, 1910.05759, 2003.14283, 2004.04287

J. R. Reuter, DESY

total =	√ <mark>expe</mark>	erim	iental ² + para	metric ² + intrinsic
	0 0 0	(α^2) (α^2) (α^3)	(α_s^2) complet (α_s^2) fermion (α_s^3) double-fer (α_s^3) 4-loop	e nic rmionic
Quantity	FCC-ee	Cur	rent intrinsic error	Projected intrinsic error
$M_W \; [{\rm MeV}]$	0.5–1‡	4	$(\alpha^3, \alpha^2 \alpha_s)$	1
$\sin^2\theta_{\rm eff}^\ell \ [10^{-5}]$	0.6	4.5	$(\alpha^3, \alpha^2 \alpha_s)$	1.5
$\Gamma_Z \; [\text{MeV}]$	0.1	0.4	$(\alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$	0.15
$R_b \ [10^{-5}]$	6	11	$(\alpha^3, \alpha^2 \alpha_s)$	5
$R_l \ [10^{-3}]$	1	6	$(\alpha^3, \alpha^2 \alpha_s)$	1.5

Beneke/Falgari/Schwinn/Signer/Zanderighi, 0707.0773; Actis/Beneke/Falgari/Schwinn, 0807.0102; C. Schwinn, in 1905.05078

Parametric Uncertainties

- Higgsstrahlung at threshold, 10 MeV uncertainty, leptonic recoil, minor theory uncertainties Z lineshape, ~0.1 MeV exp., QED ISR+ISR/FSR, EW box diagrams, Jadach/Skrzypek/Pietrzik, 1999 global fit of overconstrained EW pseudo-observables at Z pole, non-perturbative uncertainties
- M_H: • *M_Z*: • $\alpha_{s}(M_{Z})$:
- mt^{MS} (mt): N³LO QCD/NNLO EW, resummed NNLL, 4-loop mass translation., off-shell corr. Beneke ea., 1506.06864/1711.10429, Hoang ea. 1309.6323, Marquard ea. 1502.01030, Chokoufé et al. 1609.03390, Bach ea. 1712.02220
- m_{c/s}^{MS} (m_{c/s}): lattice QCD, sum rules, NNLO jet ratios.
- extracted from $e^+e^- \rightarrow hadrons$, τ decays (BESIII, VEPP-2000, Belle II), radiative return Δα: Proposal for direct measurement below/above Z pole: subtract EW from QED corrections available @ 1-loop; needed fermionic 2-loop corr., $\mathcal{O}(\alpha^2, \alpha^2 \alpha_s)$ corr. $\Rightarrow 10^{-4}$ 2-/3-loop box diagrams: full $\mathcal{O}(\alpha \, \alpha_s^2)$, double-fermionic $\mathcal{O}(\alpha^3)$ corr. $\Rightarrow 10^{-5}$

J. R. Reuter, DESY

Parametric uncertainties

1404.0319, 1401.7035, 0907.2110, 1411.3132, 1504.07638

hZ production:

- $\mathcal{O}(\alpha)$ corr. to hZ production and Z decay
- Technology for $\mathcal{O}(\alpha)$ with off-shell Z-boson available

- Can be combined with h.o. ISR QED radiation
 O(αα_s) corrections
- $\mathcal{O}(N_f \alpha^2)$ corrections

Theory error: $\Delta_{th} \leq O(0.3\%)$ (mostly from non-fermionic NNLO)

J. R. Reuter, DESY

Kniehl '92; Denner, Küblbeck, Mertig, Böhm '92 Consoli, Lo Presti, Maiani '83; Jegerlehner '86 Akhundov, Bardin, Riemann '86 Boudjema et al. '04 Denner, Dittmaier, Roth, Weber '03 Greco et al. '17 Gong et al. '16 Chen, Feng, Jia, Sang '18 Freitas, Song '22 [also see Chen, Guan, He, Li, Liu, Ma '22]

